IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Velocity oscillations in actin-based motility

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 New J. Phys. 10 033022
(http://iopscience.iop.org/1367-2630/10/3/033022)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.187.254.47
The article was downloaded on 29/07/2013 at 09:44

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/10/3
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

New Journal of Physics

The open-access journal for physics

Velocity oscillations in actin-based motility

Azam Gholami 1, Martin Falcke 12 and Erwin Frey 2

! Hahn-Meitner-Institute, Department of Theoretical Physics,
Glienicker Strasse. 100, 14109 Berlin, Germany

2 Arnold Sommerfeld Center for Theoretical Physics and
Center of NanoScience, Ludwig-Maximilians-Universitat,
Theresienstrasse 37, 80333 Munchen, Germany

E-mail: falcke@hmi.de

New Journal of Physics 10 (2008) 033022 (12pp)
Received 10 October 2007

Published 12 March 2008

Online athttp://www.njp.org/
doi:10.1088/1367-2630/10/3/033022

Abstract. We present a simple and generic theoretical description of actin-
based motility, where polymerization of filaments maintains propulsion. The
dynamics is driven by polymerization kinetics at the filaments’ free ends,
crosslinking of the actin network, attachment and detachment of filaments to the
obstacle interface and entropic forces. We show that spontaneous oscillations in
the velocity emerge due to a push—pull mechanism in a broad range of parameter
values, and compare our findings with experiments.
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1. Introduction

The ability to move is essential for living cells to survive. It may be used in the search for
nutrients, such as the motion of the amodhiatyostelium discoideupor for the purpose

of reaching another host for pathogens moving inside and between host cells. In both cases,
cells face the task of turning chemical energy into linear motion. They have developed a
mechanism exploiting the polarity of actin polymers, which prefer to bind monomers at one
end and preferentially release them at the other end. Actin is present in abundance in eukaryotic
cells and forms semiflexible polymers belonging to the cytoskeleton. Bacteria hijack the actin
polymerization machinery of host cells for their own purposes.

Force generation by semiflexible actin polymers is also used for cell motility in many other
eukaryotic cells and is crucial for development, regeneration, wound healing and the immune
response. The force exerted by the filaments arisesdtastic and entropicontributions since
semiflexible polymers undergo thermal shape fluctuati@ng][ This generates propulsion in
combination with polymerization. Thus, the leading edge of lamellipodia of crawling &lls [
is pushed forward by a polymerizing actin meshwork and bacteria move inside cells by riding
on a comet tail of growing actin filamentd,[5]. Thesein vivo systems of actin-based motility
are complemented kg vitro assays using plastic beads, lipid vesicles and oil dropdgt$11].

Polymerization at the surface of the obstacle generates motion. The same process produces
the filaments which form the actin meshwork further back from the surface. The meshwork
provides the support required for exerting a force on the obstacle. Complete understanding of
cell motility or pathogen propulsion requires consideration of both the meshwork dynamics
and the force generation and polymerization dynamics close to the obstacle surface in the
so-called polymer brush. A macroscopic theory for the meshwork as an active gel was developed
recently fL2-[14]. Here, we focus on the dynamics of polymerization and force generation.

Mathematical models have quantified the force generated by actin filaments growing
against obstacledl] 2, 15]. The resisting force depends on the obstacle which is pushed. In
the case of pathogens, it consists mainly of the force exerted by actin flaments bound to the
surface of the bacterium and pulling it backwards$,[17]. The tethered ratchet model§)
is a mathematical formulation of these experimental findings. It focuses on the dynamics of
the number of attached and detached polymers. In contrast with that, we will start from the
dynamics of distributions of the free length of the polymer.

Actin polymerization is controlled by a complex molecular netwdik [Nucleation of new
filaments, capping of existing ones, exchange of ADP for ATP on actin monomers, buffering of
monomers, etc all contribute to that control and have been modeseg 20]. Our goal is not
to model the full complexity of that biochemical network. We rather focus on the core process
of force generation and force balance resulting from the interplay between bound pulling
filaments and polymerizing pushing filaments, the transition between these two groups and the
motion of the whole force-generating configuration. This is motivated by recent observations
of complex dynamics in simple reconstituted systems: the velocity of beads, pathogens or
oil droplets propelled by actin polymerization may oscillatéd][ [21]-[23]. Our goal is to
describe the dynamics of such biochemically simpler systems and find a robust microscopic
description for oscillation mechanisms, which may then be controlled by higher order
processes.

New Journal of Physics 10 (2008) 033022 (http://www.njp.org/)


http://www.njp.org/

3 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

, , Uy ko
Crosslinked actin network —p» Brush ]

| .
| Viscous
force

T K ‘/“/ Obstacle

Figure 1. Schematic representation of an ensemble of actin filaments in the
brush oriented af* = 0 with respect to the normdl of an obstacle interface.
While attached filaments are under tension and pull the interface back, detached
filaments are compressed, polymerize with rgtg and push the interface
forward. All filaments are firmly anchored in a crosslinked meshwork, whose
front advances with velocityy reducing the free contour lengtlof the filaments

in the brush. Attached filaments detach with stress dependentkgasad
detached filaments attach with constant iate, is the interface velocity in the
extracellular medium, and is the distance between the front of the meshwork
and the interface.

We will describe the model in the following section. Secti®mlescribes the results of
simulations and bifurcation analyses and sectiavill relate our results to experiments and to
previous work on simple models of actin-based maotility.

2. A simple model of actin-based motility

The dynamics of the total number of filamerNsare due to nucleation of new filaments and
capping of existing ones. Capped filaments stop polymerizing and drop out of the dynamics.
But to keep matters simple and based on the assumption that nucleation and capping balance
we neglectN-dynamics. We consider a fixed numbhr of actin filaments. It was shown
experimentally by Brieheet al [24] that propulsion with a constant number of filaments is
possible, although the authors did not report saltatory motion. The fixed number of filaments
implies that we will not reproduce changes in F-actin density in actin comet tails as reported to
be associated with saltatory motiakl] 22].

The filaments are firmly anchored into a rigid crosslinked meshwork, which advances
with velocity vg; for an illustration see figuré. We consider the processes in the polymer
brush between the crosslinked meshwork and the surface of the obstacle which is pushed by
actin polymerization. Severing and depolymerization can be neglected for the brush dynamics
according to experimental ideas on processes in actin comet tails and lamellpldia [
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Filaments of variable free length are either attached to the obstacle surface via a
protein complex or detached from it. The two populations are specified by time-dependent
number distributions denoteN,(I,t) and Nq(,t), respectively. Filaments in the detached
state polymerize with a velocity,(l, x), which depends on both the polymer lengtind the
distancex between rigid support and obstacle. The constant attachmeritrated a stress-
dependent detachment r&td 26] describe the transitions between the two filament populations.
Attachment occurs during nucleation of new filaments. They nucleate from activated3Arp2
which is activated and inserted into existing filaments by protein complexes bound to the
obstacle surface including e.g. ActA and WASP (see the reviésjvgnd references therein).
While we consider the total number of filaments to be constant, we do not neglect this
transient attachment aspect of nucleation. Another putative transient attachment is mediated
by the isolated WH2 domain of N-WASP which forms a complex with G-actin. This complex
can bind barbed ends and mediates their binding to the bacterBnAJ] and references
therein). We lump both attachment processes into one rate law since both rates are proportional
to Nqg(, t).

The evolution of the length distributio$,(l, t) andNy(l, t) obeys an advection—reaction
equation:

a [ |
ad o[ |

The right-hand side of equationg)(describes attachment and detachment processes. The
second term on the left-hand side accounts for the gain and loss of the free length of the polymer
due to the dynamics of the polymer mesh, growing with veloejtyand the polymerization
kinetics of the filaments in the brush. The graft velocityvy has the direction orthogonal to the
graft boundary. This is not the tangential direction of polymers if polymers are bent or tilted.
However, the advection term in equatiod$ (equires velocities along the contour of filaments.
The correction factor ma(&, 1) turnsvy into such a velocity, i.e. the rate with which the graft
swallows contour length. It was derived with the assumption that filaments extend all the way
from the graft to the obstacle wall which is the case with precision sufficient for this purpose
(see sectioR).

The graft point represents the boundary between the polymer brush and the bulk gel of the
actin comet tail 28]. Consequently, the complete description of the motion of the graft would
require solving the bulk gel equations for the comet ti#] [ However, this would be far beyond
the purpose of this project, which focuses on processes in the polymer brush very much in the
spirit of the tethered ratchet modeld. The coupling between the obstacle surface and gel
boundary we assume here entails a graft velocity independent of the obstacle velocity at large
polymer length I(>> [, see below) and a graft velocity equal to the obstacle velocity at small
polymer length, i.e. when the brush disappears.

Processes contributing to the growth of the rigid polymer mesh are entanglement and
crosslinking of filaments in the brush. Both imply a vanishigdor | — 0, since short polymers
do not entangle and crosslinking proteins are unlikely to bind to them. At the samedime
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cannot grow without bound but must saturate at some vaJiédue to rate limitations for
crosslinking and entanglement. This suggests taking the following sigmoidal form:

vg(l) = vg™tanh( /I, (2)

with a characteristic length scdleThe constanit could be perceived as the width of the brush
gel boundary.

The polymerization rate is proportional to the probability of a gap of sufficient dize
(=2.7 nm) between the polymer tip and the obstacle for insertion of an actin monomer as was
calculated in f]. This implies an exponential dependencevpon the forceFy by which the
polymer pushes against the obstacle,

vp(l, X) = v exp[—d - Fq(l, x)/ kg T]. (3)

Here, v~ 500 nm st [1] is the force-free polymerization velocity. For the entropic force
Fyq we use the results obtained ig] [for D = 2 and 3 spatial dimensions, where we take the
accepted value df, ~ 15um [29, 30 for the persistence length of F-actin.

The dynamics of the distanocebetween the grafted end of the filament and the obstacle
interface (see figuré) is given by the difference of the averagg and the velocity of the
obstacle

X = —%/OO dlvg(1) [Na(, t) + Ng(l, t)] +%/‘00 d [Na(l, t)Fadl, x) + Ny, t)Fg(l, x)], (4)
0 0

where¢ is an effective friction coefficient of the obstacle. Note thg|, |Fq| > ¢ v, holds,
with v, denoting the obstacle velocity. The polymerization force and the force exerted by bound
filaments dominate the force balance in agreement with experimental results repo&#d in [

The force F4(l, X) acting on the obstacle interface results from the compliance of
the filaments attached to it by some linker proteins. We model these proteins as springs
with spring constank, and zero equilibrium length. This complex has a nonlinear force—
extension relation which we approximate by a piece-wise linear function; for details
see the supplementary material (available fretacks.iop.org/NJP/10/033022/mmediket
R, ~I[1-I(D—-1)/4¢,] be the average distance from the graft point to the tip of
the filament projected onto the grafting direction. The elastic response of filaments
experiencing small compressional forces<(R;) is approximated by a spring constant
k| = 1Z<BT£§/(D — 1)I* [32). For small pulling forcesX > R;), the linker—filament complex
acts like a spring with an effective constaak = kk;/(ki +k;). In the strong force regime,
the force—extension relation of the filament is highly nonlinear and diverges close to full
stretching B3]. Therefore, only the linker will stretch out. The complete force—extension
relation is captured by

—kx=Ry, X< Ry,
Fa= 1 —ket(X—R)), R <x<l, (5)
—k(xX—1)—ket(l =Ry, x=>1I.
Finally, we specify the force dependence of the detachment rate accordi2fg by |[
ko =kjexp[—d- Fa(l, X)/ksT] (6)
with k% ~ 0.5s1[18].

Equation (a) has a singularity ab,(ls) = max(1, Is/X)vg(ls) since the coefficient of the
derivative of Ny with respect tol is zero atls. The existence of this singularity sets the
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Figure 2. The evolution of the solution of equatior)( The width of the initial
Gaussian distribution of detached filaments decreases exponentially with time
and the peak of the distribution grows and localizes ardyrid the full system,

|5 is close tox sincev, drops fromv™® to almost O in a narrow range around

| =x.

length distribution dynamics of equatiofa) apart from distribution dynamics of polymers
in solution B4, 35. To illustrate the key physical features at that singularity, we start
with the simple equatiod; Ng — d[max(1, | /x)vg(l) — vp(l, X)]Ng = 0 with x kept constant.
Then, those parts of the distribution &l with | < Is will grow and catch up withs since
max(1, [ /x)vg(l) — vp(l, X) is positive there, while the parts with> |s will shorten towardds.
As a consequence, the whole distribution will become concentratéd & quantify this
heuristic argument, we expand ngaxl /X)vg(l) — vp(l, X) up to linear order arount like
v1(I —ls) and obtain the advection equation
0
ot
which we solve by the method of characteristics. Starting initially with a Gaussian
distribution we obtainNg(l, t) = c(t) exp[—( —I(t))2/w(t)?] with c(t) = coexp(vit), [(t) =
I+ (Ig — Is) exp(—vqt) andw(t) = wo exp(—vst). This shows thaNy evolves to a monodisperse
distribution which is localized arounds. Its width decreases exponentially with time
while its height grows exponentially. The timescale for this contraction is given by
[&(max(1,1/x)vg—vp)]* and is in the range of 1@s (for details see the supplementary
material, available fromstacks.iop.org/NJP/10/033022/mmediarhis is 1-2 orders of
magnitude faster than any other time constant of the system. The temporal evolution of the
solution of equation®) is shown in figure2. Since the same kind of singularity also occurs in
the full set of dynamic equations, equatiods)(and (Lb), we may readily infer thatN, and
N4 evolve into delta-functions with that dynamics. This is well supported by simulations, and
allows us to continue with the ansatz

Na(l, t) =na®)s(l —la(t)), (8a)
Na(l, t) = na()s( —la®) . (8b)

0
Nd_a[vl(l —19]I Ng=0, (7)
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It defines the dynamic variableg(t), 14(t), na(t) andl(t). Upon inserting equation8#) and
(8b) into (1) and @), multiplying (1) and @) by | and integrating over, we obtain

Ala(t) = vp(lg, X) — max(lf, 1) vg(lg) + kdz—:(la— lq), (9a)
ola(t) = —max(lf, 1) vg(la)+ka:—:(ld—la), (9b)
dNa(t) = —Ka(la, X)Na(t) +kana(t), (9¢)
ax(t) = ; [Na(t) Fa(la, X) + Na(t) Falg, X)] — %[Ug(la)na(t) +vg(l))na (D], (9d)

whereng(t) = N — ny(t), since we keep the total number of filaments fixed. The most obvious
differences between these equations and the tethered ratchet model are the dynamics of
X(t), lq(t) andl4(t) [18].

The values of many parameters of equatid®)cén be estimated using known properties
of actin filaments. We choose the linker spring constant 1 pNnnt! [18 and assume
N =200 [18] filaments to be crowded behind the obstacle. A realistic value of the drag
coefficients is 1072 pN s nnt? but results did not change qualitatively for a range from°10
1pNsnntl,

3. Results

We have numerically solved equatior {n both D =2 and 3 dimensions, and found the
dynamic regimes shown in figur8: stationary states and oscillationdhe existence of

an oscillatory regime is very robust against changes of parameters within reasonable limits
including the spatial dimension. We checked robustness against changes in the parameter values
for N, (see equation), ki, ¢ andk?, in addition to the examples shown in figuge In

general, we find that oscillations occur fof®* < 500 nm st and within a range of values

for ka. Figure3(d) demonstrates that changinfj** leads to a transition from steady to saltatory
motion. vy can be controlled by the concentration of free G-actin in experiments.

Oscillations are found fowg™ < v only. Otherwise, the graft catches up with the
obstacle and stays very close to it resulting in motion with constant velocity. Starting at
ka=0, we find an onset of oscillations upon increasiggat the lower boundary of the
oscillatory region. The stationary state changes stability slightly inside the oscillatory regime
and oscillations set in with a finite period and an amplitude different from 0; compare the
example shown in figuré(a). That is compatible with a saddle node bifurcation of limit cycles.

A transition from steady to oscillatory motion upon increasing protein concentration in the
extract is experimentally observed with bea#3][ An increase of protein concentration would

also increase the binding rdtg Therefore, we assume that the onset of oscillations observed in
these experiments corresponds to the lower transition line in fig(@@s(c), in particular since

the measured oscillations start also with a large amplitude and finite period and the coexistence
of steady and oscillatory motion close to the transition reporte@3hif reproduced by the
model (we assume a subcritical Hopf bifurcation in the model, 36@.[The upper boundary

of the oscillatory region is determined by a Hopf bifurcation. An example of an oscillation
close to that bifurcation is shown in figuf€o). Onset of oscillations in actin-based motility of
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Figure 3. Phase diagram of equations9)( outlining stationary and
oscillatory regimes withy7® =500 nm st for (a)—(c) and (@)D =2, =0,
(b)D=2,9 =n/4,(c)D =3, =0,and (d)D = 3,9 =0, v =250nms™.

¢ =103pNsnnt! andl = 100 nm, all other parameter values are specified in

the text.
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Figure 4. X, |4, 4 (in nm) andn, as a function of time, as obtained from numerical
solutions of equations9f with vy**=300nms* and (a)ka=0.143s™* and

(b) ka=3.49s1. D =3, =100 nm in both panels.
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Figure 5. Phase diagram of a brush with two populations of filaments, one
oriented at 0 and the other one at45°, outlining oscillatory and stationary
regimes inD = 3. Other parameter values are the same as in figa)e

oil droplets upon adding VASP to the medium is reportedlifi.[ The authors explain this
onset by de-adhesion activity of VASP which could not be specified on the molecular level. The
bifurcation diagram in figur& suggests that this onset of oscillations corresponds to the upper
transition with an emergence of oscillations upon decredsinghis bifurcation line can also

be crossed by increasing the dissociation kdtewvhich would correspond to a different way

of de-adhesion activity (data not shown). More details on the phase diagram will be published
elsewhere3g.

We have also studied the system when the network is oriented at an:&argie/4. In
this case, the spring constant of the attached filaments paralieiaioD = 2 readsk; L) =
4e3[5+e 2 —1+cosD (5 + e — 367 —cog (e /*— 1)?] /kg T, wheree =1/¢, and
R/(®) =1(1—1/4¢,)cosy [32). For the pushing force of a filament grafteddat= 7 /4, we use
the results of the factorization approximation given2h jvhich is valid for a stiff filament-like
actin. A numerical solution of equation8)(with the adapted forms dfy and F, results in the
phase diagram shown in figuséb).

Experimentally observed actin meshworks exhibit a range of filament orientations and
therefore oscillations should work with filaments of different orientations in the brush. Their
dynamics is coupled by the obstacle. Fig@(b) shows the oscillatory regime of a network
with filaments at£45 in two dimensions (2D). Results of simulations modeling a brush with
filaments with angles of“‘0and+45° in 3D are shown in figur&. Such a brush oscillates also.
These results imply that a brush comprising orientations betwd&and +45 would oscillate
as well, since the overlap of the oscillatory regimes of tilted and orthogonal filaments increases
with decreasing|.

We start with the description of the push—pull mechanism of the oscillations in the phase
with vy > vy, i.€. decreasing lengths |, andly; see figured(a). The magnitude of pulling and
pushing forces increases due to their length dependence. When the pushing force becomes
too strong, an avalanche-like detachment of attached filaments is triggered and the obstacle
jerks forward; compare the steep risddnl, andx shown in figured(a). That causes a just as
sudden drop in the pushing force. With low pushing force now, polymerization accelerates and
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Figure 6. Velocity and displacement of the obstacle as a function of time with
(8) ka=0.525s", v =500nms™* andvy™ =75nms*, (b) ka=0.235s™,
v =40nms? andvy™ = 10nms™. In both panel&] = 0.1s™*, [ = 100 nm,

¢ =103pNsnnrtandD = 3.

increases the length of detached filaments. The restoring force of attached filaments is weak in
this phase due to their small number. Hence, despite the fact that there are no strong pushing
forces, the obstacle moves forward. In the meantime, some detached filaments attach to the
surface such that the average length and number of attached filaments increases as well. When
the detached filaments are long enough to notice the presence of the obstacle interface, they
start to buckle. This, in turn, increases the pushing force and slows down the polymerization
velocity. Therefore, the graft velocity now exceeds the polymerization velocity and the average
lengths of attached and detached filaments start to decrease again and the cycle starts anew. The
period of oscillations is dependent on the parameter values. It reduces from 240 s idfegure

to 13 s in figured(b) ask, increases from 443 to 349 s* atvg™ =300 nms™.

The oscillations inx correspond to the saltatory motion of the obstacle sincetays
essentially constant. An illustration is shown in fig@ewvhich has the same velocity maxima
and period as the experimental data showr2i,[figure 8(b). We found the velocity maxima
to be close ta™". The velocity between the spikes in the simulations is about 2-3 times larger
than the experimental value. We assume this to be caused by neglecting capping. The period of
velocity oscillations of beads propelled by actin polymerization differs from thodestéria
by one order of magnitude {815 min [23]) and velocities are much smaller. These periods
and velocities can be obtained within our model with smaller valuesf8t and v (see
figure6(b)). However, experimental oscillations of bead velocities show a peak broader than the
simulated onesZ3].

As mentioned above, actin density variations in the comet tail of beads and pathogens
accompany the velocity oscillations in experiments. These density variations do not occur in our
model. This demonstrates that they are not required for the velocity to oscillate. The variations in
pulling and pushing forces driving the push—pull mechanism do not arise from density changes
but from the length oscillations of attached and detached filaments via the force—extension
relations of semiflexible polymers. The push—pull mechanism is not in contradiction to the
observed density variations and their phase relation with respect to the velocity time course.
Both pulling and pushing forces increase with the filament density. Therefore, the force changes
resulting from density variation would not counteract the force changes occurring in our model
but probably support and amplify them.

New Journal of Physics 10 (2008) 033022 (http://www.njp.org/)
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4. Conclusions

In summary, we derived a simple model for velocity dynamics in actin-based motility by
starting from the dynamics of length distributions of a free polymer in the brush. We have
presented a theoretical description of oscillations arising from the interplay of polymerization-
driven pushing forces and pulling forces due to binding of actin filaments to the obstacle.
The mechanism relies on the load dependence of the detachment rate and the polymerization
velocity. The model uses parameter values determined from measurements. It reproduces the
dynamic regimes of actin-based motility observed with obstacles riding on an actin comet tail,
the type of bifurcation observed in bead experiments upon an increase in protein concentration
and the onset of oscillations in oil droplet motion upon VASP addition. Oscillations are
observed for a range of tilt angles of the filaments as required for modeling of actin brushes
of experimentally observed actin comet tails.

A recent review by Mogilner distinguishes microscopic models and continuum
models Bg]. The tethered ratchet model is the prototypical microscopic model since it starts
from the properties of individual filaments. Our model belongs to the same group. Velocity
oscillations have not been explained yet with microscopic models. Here, we show that this class
of models can reproduce oscillations also. In contrast with the tethered ratchet model, equations
(9) include dynamics of the lengths |, andly. This appears to be the reason why our model
oscillates so robustly while the tethered ratchet model shows steady motion only.

An alternative theoretical explanation dfisteria and bead propulsion by actin
polymerization was given by the continuum model, which perceives the actin meshwork as
a continuous geld2, 23, 37). It explains the oscillatory motion as a consequence of tangential
stress which arises when an actin gel grows from the inside outwards on bent surfaces. Friction
arising from the binding of polymers to the surface keeps the velocity small until the stress is
released due to bond rupture and a stick—slip transition occurs (soap effect). The dependence of
the reaction rates on load leads to a nonlinear relation between friction force and velocity in the
guasi-static regime as shown in conjunction with the derivation of the continuum nizfjel [
However, the catastrophic rupture of attached filaments required for velocity oscillations is not
captured by the quasi-static force velocity relation but was assumed to occur at a cut-off value for
Fa[22, p 2269]. Here, we show that it occurs indeed as a consequence of the force dependence
of the reaction rates.

A way to store elastic energy seems also to be required to obtain oscillations. It is stored in
tangential stress of a bent gel in the continuum mo#d §nd in the tension between pushing
and pulling filaments in our model. Consequently, the mechanism of thrust generation during the
velocity peaks is different in the two models: soap eff@® persus push—pull. The oscillations
in our model do not require bent obstacle surfaces and are very robust with respect to changes in
various parameters, i.e. they appear to be generic. Therefore, complex biochemical regulatory
systems supplementing the core process described here may rather stabilize motion and
suppress oscillations than generate them. Nevertheless, aspects of the continuum model—like
tangential stress—would of course enter our model if curved obstacle surfaces are considered.
The formation of tangential stress on curved surfaces provides an explanation for the radius
dependence of the onset of oscillations as shown by the continuum n28i&ince the push—
pull mechanism and the soap effect are not clearly mutually exclusive, identifying which of
them applies for a specific system would require further specification of the model as well as
further experiments.
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