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Abstract. We present a simple and generic theoretical description of actin-
based motility, where polymerization of filaments maintains propulsion. The
dynamics is driven by polymerization kinetics at the filaments’ free ends,
crosslinking of the actin network, attachment and detachment of filaments to the
obstacle interface and entropic forces. We show that spontaneous oscillations in
the velocity emerge due to a push–pull mechanism in a broad range of parameter
values, and compare our findings with experiments.
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1. Introduction

The ability to move is essential for living cells to survive. It may be used in the search for
nutrients, such as the motion of the amoebaDictyostelium discoideum, or for the purpose
of reaching another host for pathogens moving inside and between host cells. In both cases,
cells face the task of turning chemical energy into linear motion. They have developed a
mechanism exploiting the polarity of actin polymers, which prefer to bind monomers at one
end and preferentially release them at the other end. Actin is present in abundance in eukaryotic
cells and forms semiflexible polymers belonging to the cytoskeleton. Bacteria hijack the actin
polymerization machinery of host cells for their own purposes.

Force generation by semiflexible actin polymers is also used for cell motility in many other
eukaryotic cells and is crucial for development, regeneration, wound healing and the immune
response. The force exerted by the filaments arises fromelastic and entropiccontributions since
semiflexible polymers undergo thermal shape fluctuations [1, 2]. This generates propulsion in
combination with polymerization. Thus, the leading edge of lamellipodia of crawling cells [3]
is pushed forward by a polymerizing actin meshwork and bacteria move inside cells by riding
on a comet tail of growing actin filaments [4, 5]. Thesein vivo systems of actin-based motility
are complemented byin vitro assays using plastic beads, lipid vesicles and oil droplets [6]–[11].

Polymerization at the surface of the obstacle generates motion. The same process produces
the filaments which form the actin meshwork further back from the surface. The meshwork
provides the support required for exerting a force on the obstacle. Complete understanding of
cell motility or pathogen propulsion requires consideration of both the meshwork dynamics
and the force generation and polymerization dynamics close to the obstacle surface in the
so-called polymer brush. A macroscopic theory for the meshwork as an active gel was developed
recently [12]–[14]. Here, we focus on the dynamics of polymerization and force generation.

Mathematical models have quantified the force generated by actin filaments growing
against obstacles [1, 2, 15]. The resisting force depends on the obstacle which is pushed. In
the case of pathogens, it consists mainly of the force exerted by actin filaments bound to the
surface of the bacterium and pulling it backwards [16, 17]. The tethered ratchet model [18]
is a mathematical formulation of these experimental findings. It focuses on the dynamics of
the number of attached and detached polymers. In contrast with that, we will start from the
dynamics of distributions of the free length of the polymer.

Actin polymerization is controlled by a complex molecular network [5]. Nucleation of new
filaments, capping of existing ones, exchange of ADP for ATP on actin monomers, buffering of
monomers, etc all contribute to that control and have been modeled [18]–[20]. Our goal is not
to model the full complexity of that biochemical network. We rather focus on the core process
of force generation and force balance resulting from the interplay between bound pulling
filaments and polymerizing pushing filaments, the transition between these two groups and the
motion of the whole force-generating configuration. This is motivated by recent observations
of complex dynamics in simple reconstituted systems: the velocity of beads, pathogens or
oil droplets propelled by actin polymerization may oscillate [11], [21]–[23]. Our goal is to
describe the dynamics of such biochemically simpler systems and find a robust microscopic
description for oscillation mechanisms, which may then be controlled by higher order
processes.
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Figure 1. Schematic representation of an ensemble of actin filaments in the
brush oriented atϑ = 0 with respect to the normal̂n of an obstacle interface.
While attached filaments are under tension and pull the interface back, detached
filaments are compressed, polymerize with ratekon and push the interface
forward. All filaments are firmly anchored in a crosslinked meshwork, whose
front advances with velocityvg reducing the free contour lengthl of the filaments
in the brush. Attached filaments detach with stress dependent ratekd and
detached filaments attach with constant rateka. vo is the interface velocity in the
extracellular medium, andx is the distance between the front of the meshwork
and the interface.

We will describe the model in the following section. Section3 describes the results of
simulations and bifurcation analyses and section4 will relate our results to experiments and to
previous work on simple models of actin-based motility.

2. A simple model of actin-based motility

The dynamics of the total number of filamentsN are due to nucleation of new filaments and
capping of existing ones. Capped filaments stop polymerizing and drop out of the dynamics.
But to keep matters simple and based on the assumption that nucleation and capping balance
we neglectN-dynamics. We consider a fixed numberN of actin filaments. It was shown
experimentally by Brieheret al [24] that propulsion with a constant number of filaments is
possible, although the authors did not report saltatory motion. The fixed number of filaments
implies that we will not reproduce changes in F-actin density in actin comet tails as reported to
be associated with saltatory motion [11, 22].

The filaments are firmly anchored into a rigid crosslinked meshwork, which advances
with velocity vg; for an illustration see figure1. We consider the processes in the polymer
brush between the crosslinked meshwork and the surface of the obstacle which is pushed by
actin polymerization. Severing and depolymerization can be neglected for the brush dynamics
according to experimental ideas on processes in actin comet tails and lamellipodia [25].
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Filaments of variable free lengthl are either attached to the obstacle surface via a
protein complex or detached from it. The two populations are specified by time-dependent
number distributions denotedNa(l , t) and Nd(l , t), respectively. Filaments in the detached
state polymerize with a velocityvp(l , x), which depends on both the polymer lengthl and the
distancex between rigid support and obstacle. The constant attachment rateka and a stress-
dependent detachment ratekd [26] describe the transitions between the two filament populations.
Attachment occurs during nucleation of new filaments. They nucleate from activated Arp2/3
which is activated and inserted into existing filaments by protein complexes bound to the
obstacle surface including e.g. ActA and WASP (see the review [25] and references therein).
While we consider the total number of filaments to be constant, we do not neglect this
transient attachment aspect of nucleation. Another putative transient attachment is mediated
by the isolated WH2 domain of N-WASP which forms a complex with G-actin. This complex
can bind barbed ends and mediates their binding to the bacterium ([25, 27] and references
therein). We lump both attachment processes into one rate law since both rates are proportional
to Nd(l , t).

The evolution of the length distributionsNa(l , t) andNd(l , t) obeys an advection–reaction
equation:

∂

∂t
Nd −

∂

∂l

[
max

(
l

x
, 1

)
vg(l ) − vp

]
Nd = −kaNd + kdNa, (1a)

∂

∂t
Na −

∂

∂l

[
max

(
l

x
, 1

)
vg(l )

]
Na = kaNd − kdNa. (1b)

The right-hand side of equations (1) describes attachment and detachment processes. The
second term on the left-hand side accounts for the gain and loss of the free length of the polymer
due to the dynamics of the polymer mesh, growing with velocityvg, and the polymerization
kinetics of the filaments in the brushvp. The graft velocityvg has the direction orthogonal to the
graft boundary. This is not the tangential direction of polymers if polymers are bent or tilted.
However, the advection term in equations (1) requires velocities along the contour of filaments.
The correction factor max( l

x , 1) turnsvg into such a velocity, i.e. the rate with which the graft
swallows contour length. It was derived with the assumption that filaments extend all the way
from the graft to the obstacle wall which is the case with precision sufficient for this purpose
(see section3).

The graft point represents the boundary between the polymer brush and the bulk gel of the
actin comet tail [28]. Consequently, the complete description of the motion of the graft would
require solving the bulk gel equations for the comet tail [12]. However, this would be far beyond
the purpose of this project, which focuses on processes in the polymer brush very much in the
spirit of the tethered ratchet model [18]. The coupling between the obstacle surface and gel
boundary we assume here entails a graft velocity independent of the obstacle velocity at large
polymer length (l � l̄ , see below) and a graft velocity equal to the obstacle velocity at small
polymer length, i.e. when the brush disappears.

Processes contributing to the growth of the rigid polymer mesh are entanglement and
crosslinking of filaments in the brush. Both imply a vanishingvg for l → 0, since short polymers
do not entangle and crosslinking proteins are unlikely to bind to them. At the same timevg
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cannot grow without bound but must saturate at some valuevmax
g due to rate limitations for

crosslinking and entanglement. This suggests taking the following sigmoidal form:

vg(l ) = vmax
g tanh(l/l̄ ) , (2)

with a characteristic length scalel̄ . The constant̄l could be perceived as the width of the brush
gel boundary.

The polymerization rate is proportional to the probability of a gap of sufficient sized
(≈2.7 nm) between the polymer tip and the obstacle for insertion of an actin monomer as was
calculated in [1]. This implies an exponential dependence ofvp on the forceFd by which the
polymer pushes against the obstacle,

vp(l , x) = vmax
p exp[−d · Fd(l , x)/kBT ] . (3)

Here,vmax
p ≈ 500 nm s−1 [1] is the force-free polymerization velocity. For the entropic force

Fd we use the results obtained in [2] for D = 2 and 3 spatial dimensions, where we take the
accepted value of̀p ≈ 15µm [29, 30] for the persistence length of F-actin.

The dynamics of the distancex between the grafted end of the filament and the obstacle
interface (see figure1) is given by the difference of the averagevg and the velocity of the
obstacle

∂t x = −
1

N

∫
∞

0
dlvg(l ) [Na(l , t) + Nd(l , t)] +

1

ζ

∫
∞

0
dl [Na(l , t)Fa(l , x) + Nd(l , t)Fd(l , x)] , (4)

whereζ is an effective friction coefficient of the obstacle. Note that|Fa|, |Fd| � ζvo holds,
with vo denoting the obstacle velocity. The polymerization force and the force exerted by bound
filaments dominate the force balance in agreement with experimental results reported in [31].

The force Fa(l , x) acting on the obstacle interface results from the compliance of
the filaments attached to it by some linker proteins. We model these proteins as springs
with spring constantkl and zero equilibrium length. This complex has a nonlinear force–
extension relation which we approximate by a piece-wise linear function; for details
see the supplementary material (available fromstacks.iop.org/NJP/10/033022/mmedia). Let
R‖ ≈ l [1 − l (D − 1)/4`p] be the average distance from the graft point to the tip of
the filament projected onto the grafting direction. The elastic response of filaments
experiencing small compressional forces (x 6 R‖) is approximated by a spring constant
k‖ = 12kBT`2

p/(D − 1)l 4 [32]. For small pulling forces (x > R‖), the linker–filament complex
acts like a spring with an effective constantkeff = kl k‖/(kl + k‖). In the strong force regime,
the force–extension relation of the filament is highly nonlinear and diverges close to full
stretching [33]. Therefore, only the linker will stretch out. The complete force–extension
relation is captured by

Fa =


−k‖(x − R‖) , x 6 R‖,

−keff(x − R‖) , R‖ < x < l ,

−kl(x − l ) − keff(l − R‖) , x > l .

(5)

Finally, we specify the force dependence of the detachment rate according to [26] by

kd = k0
d exp[−d · Fa(l , x)/kBT ] (6)

with k0
d ≈ 0.5 s−1 [18].

Equation (1a) has a singularity atvp(ls) = max(1, ls/x)vg(ls) since the coefficient of the
derivative of Nd with respect tol is zero atls. The existence of this singularity sets the
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Figure 2. The evolution of the solution of equation (7). The width of the initial
Gaussian distribution of detached filaments decreases exponentially with time
and the peak of the distribution grows and localizes aroundls. In the full system,
ls is close tox sincevp drops fromvmax

p to almost 0 in a narrow range around
l = x.

length distribution dynamics of equation (1a) apart from distribution dynamics of polymers
in solution [34, 35]. To illustrate the key physical features at that singularity, we start
with the simple equation∂t Nd − ∂l [max(1, l/x)vg(l ) − vp(l , x)]Nd = 0 with x kept constant.
Then, those parts of the distribution ofNd with l < ls will grow and catch up withls since
max(1, l/x)vg(l ) − vp(l , x) is positive there, while the parts withl > ls will shorten towardsls.
As a consequence, the whole distribution will become concentrated atls. To quantify this
heuristic argument, we expand max(1, l/x)vg(l ) − vp(l , x) up to linear order aroundls like
v1(l − ls) and obtain the advection equation

∂

∂t
Nd −

∂

∂l
[v1(l − ls)] Nd = 0 , (7)

which we solve by the method of characteristics. Starting initially with a Gaussian
distribution we obtainNd(l , t) = c(t) exp[−(l − l̄ (t))2/w(t)2] with c(t) = c0 exp(v1t), l̄ (t) =

ls + (l̄ 0 − ls) exp(−v1t) andw(t) = w0 exp(−v1t). This shows thatNd evolves to a monodisperse
distribution which is localized aroundls. Its width decreases exponentially with time
while its height grows exponentially. The timescale for this contraction is given by
[∂l (max(1, l/x)vg − vp)]−1 and is in the range of 10−2 s (for details see the supplementary
material, available fromstacks.iop.org/NJP/10/033022/mmedia). This is 1–2 orders of
magnitude faster than any other time constant of the system. The temporal evolution of the
solution of equation (7) is shown in figure2. Since the same kind of singularity also occurs in
the full set of dynamic equations, equations (1a) and (1b), we may readily infer thatNa and
Nd evolve into delta-functions with that dynamics. This is well supported by simulations, and
allows us to continue with the ansatz

Nd(l , t) = nd(t)δ(l − ld(t)) , (8a)

Na(l , t) = na(t)δ(l − la(t)) . (8b)
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It defines the dynamic variablesnd(t), ld(t), na(t) andla(t). Upon inserting equations (8a) and
(8b) into (1) and (4), multiplying (1) and (4) by l and integrating overl , we obtain

∂t ld(t) = vp(ld, x) − max

(
ld
x

, 1

)
vg(ld) + kd

na

nd
(la − ld), (9a)

∂t la(t) = −max

(
la
x
, 1

)
vg(la) + ka

nd

na
(ld − la), (9b)

∂tna(t) = −kd(la, x)na(t) + kand(t), (9c)

∂t x(t) =
1

ζ
[na(t)Fa(la, x) + nd(t)Fd(ld, x)] −

1

N
[vg(la)na(t) + vg(ld)nd(t)], (9d)

wherend(t) = N − na(t), since we keep the total number of filaments fixed. The most obvious
differences between these equations and the tethered ratchet model are the dynamics of
x(t), ld(t) andla(t) [18].

The values of many parameters of equations (9) can be estimated using known properties
of actin filaments. We choose the linker spring constantkl ≈ 1 pN nm−1 [18] and assume
N = 200 [18] filaments to be crowded behind the obstacle. A realistic value of the drag
coefficientζ is 10−3 pN s nm−1 but results did not change qualitatively for a range from 10−5 to
1 pN s nm−1.

3. Results

We have numerically solved equations (9) in both D = 2 and 3 dimensions, and found the
dynamic regimes shown in figure3: stationary states and oscillations. The existence of
an oscillatory regime is very robust against changes of parameters within reasonable limits
including the spatial dimension. We checked robustness against changes in the parameter values
for N, l̄ (see equation (2)), kl, ζ and k0

d, in addition to the examples shown in figure3. In
general, we find that oscillations occur forvmax

g . 500 nm s−1 and within a range of values
for ka. Figure3(d) demonstrates that changingvmax

p leads to a transition from steady to saltatory
motion.vmax

p can be controlled by the concentration of free G-actin in experiments.
Oscillations are found forvmax

g < vmax
p only. Otherwise, the graft catches up with the

obstacle and stays very close to it resulting in motion with constant velocity. Starting at
ka = 0, we find an onset of oscillations upon increasingka at the lower boundary of the
oscillatory region. The stationary state changes stability slightly inside the oscillatory regime
and oscillations set in with a finite period and an amplitude different from 0; compare the
example shown in figure4(a). That is compatible with a saddle node bifurcation of limit cycles.
A transition from steady to oscillatory motion upon increasing protein concentration in the
extract is experimentally observed with beads [23]. An increase of protein concentration would
also increase the binding rateka. Therefore, we assume that the onset of oscillations observed in
these experiments corresponds to the lower transition line in figures3(a)–(c), in particular since
the measured oscillations start also with a large amplitude and finite period and the coexistence
of steady and oscillatory motion close to the transition reported in [23] is reproduced by the
model (we assume a subcritical Hopf bifurcation in the model, see [36]). The upper boundary
of the oscillatory region is determined by a Hopf bifurcation. An example of an oscillation
close to that bifurcation is shown in figure4(b). Onset of oscillations in actin-based motility of
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Figure 3. Phase diagram of equations (9) outlining stationary and
oscillatory regimes withvmax

p = 500 nm s−1 for (a)–(c) and (a)D = 2, ϑ = 0,
(b) D = 2,ϑ = π/4, (c)D = 3, ϑ = 0, and (d)D = 3,ϑ = 0,vmax

g = 250 nm s−1.
ζ = 10−3 pN s nm−1 and l̄ = 100 nm, all other parameter values are specified in
the text.
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Figure 4. x, la, ld (in nm) andna as a function of time, as obtained from numerical
solutions of equations (9) with vmax

g = 300 nm s−1 and (a)ka = 0.143 s−1 and
(b) ka = 3.49 s−1. D = 3, l̄ = 100 nm in both panels.
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Figure 5. Phase diagram of a brush with two populations of filaments, one
oriented at 0◦ and the other one at±45◦, outlining oscillatory and stationary
regimes inD = 3. Other parameter values are the same as in figure3(c).

oil droplets upon adding VASP to the medium is reported in [11]. The authors explain this
onset by de-adhesion activity of VASP which could not be specified on the molecular level. The
bifurcation diagram in figure3 suggests that this onset of oscillations corresponds to the upper
transition with an emergence of oscillations upon decreasingka. This bifurcation line can also
be crossed by increasing the dissociation ratek0

d, which would correspond to a different way
of de-adhesion activity (data not shown). More details on the phase diagram will be published
elsewhere [36].

We have also studied the system when the network is oriented at an angleϑ = π/4. In
this case, the spring constant of the attached filaments parallel ton̂ for D = 2 readsk−1

‖
(ϑ) =

4`2
p[

ε

2 + e−ε/2
− 1 + cos 2ϑ(1

4 + 1
12e−2ε

−
1
3e−ε/2) − cos2 ϑ(e−ε/2

− 1)2]/kBT , whereε = l/`p and
R‖(ϑ) = l (1− l/4`p)cosϑ [32]. For the pushing force of a filament grafted atϑ = π/4, we use
the results of the factorization approximation given in [2], which is valid for a stiff filament-like
actin. A numerical solution of equations (9) with the adapted forms ofFd andFa results in the
phase diagram shown in figure3(b).

Experimentally observed actin meshworks exhibit a range of filament orientations and
therefore oscillations should work with filaments of different orientations in the brush. Their
dynamics is coupled by the obstacle. Figure3(b) shows the oscillatory regime of a network
with filaments at±45◦ in two dimensions (2D). Results of simulations modeling a brush with
filaments with angles of 0◦ and±45◦ in 3D are shown in figure5. Such a brush oscillates also.
These results imply that a brush comprising orientations between−45◦ and +45◦ would oscillate
as well, since the overlap of the oscillatory regimes of tilted and orthogonal filaments increases
with decreasing|ϑ |.

We start with the description of the push–pull mechanism of the oscillations in the phase
with vg > vp, i.e. decreasing lengthsx, la andld; see figure4(a). The magnitude of pulling and
pushing forces increases due to their length dependence. When the pushing force becomes
too strong, an avalanche-like detachment of attached filaments is triggered and the obstacle
jerks forward; compare the steep rise inld, la andx shown in figure4(a). That causes a just as
sudden drop in the pushing force. With low pushing force now, polymerization accelerates and
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Figure 6. Velocity and displacement of the obstacle as a function of time with
(a) ka = 0.525 s−1, vmax

p = 500 nm s−1 andvmax
g = 75 nm s−1, (b) ka = 0.235 s−1,

vmax
p = 40 nm s−1 andvmax

g = 10 nm s−1. In both panelsk0
d = 0.1 s−1, l̄ = 100 nm,

ζ = 10−3 pN s nm−1 andD = 3.

increases the length of detached filaments. The restoring force of attached filaments is weak in
this phase due to their small number. Hence, despite the fact that there are no strong pushing
forces, the obstacle moves forward. In the meantime, some detached filaments attach to the
surface such that the average length and number of attached filaments increases as well. When
the detached filaments are long enough to notice the presence of the obstacle interface, they
start to buckle. This, in turn, increases the pushing force and slows down the polymerization
velocity. Therefore, the graft velocity now exceeds the polymerization velocity and the average
lengths of attached and detached filaments start to decrease again and the cycle starts anew. The
period of oscillations is dependent on the parameter values. It reduces from 240 s in figure4(a)
to 13 s in figure4(b) aska increases from 0.143 to 3.49 s−1 atvmax

g = 300 nm s−1.
The oscillations inx correspond to the saltatory motion of the obstacle sincevg stays

essentially constant. An illustration is shown in figure6, which has the same velocity maxima
and period as the experimental data shown in [22], figure 8(b). We found the velocity maxima
to be close tovmax

p . The velocity between the spikes in the simulations is about 2–3 times larger
than the experimental value. We assume this to be caused by neglecting capping. The period of
velocity oscillations of beads propelled by actin polymerization differs from those ofListeria
by one order of magnitude (8−15 min [23]) and velocities are much smaller. These periods
and velocities can be obtained within our model with smaller values forvmax

g and vmax
p (see

figure6(b)). However, experimental oscillations of bead velocities show a peak broader than the
simulated ones [23].

As mentioned above, actin density variations in the comet tail of beads and pathogens
accompany the velocity oscillations in experiments. These density variations do not occur in our
model. This demonstrates that they are not required for the velocity to oscillate. The variations in
pulling and pushing forces driving the push–pull mechanism do not arise from density changes
but from the length oscillations of attached and detached filaments via the force–extension
relations of semiflexible polymers. The push–pull mechanism is not in contradiction to the
observed density variations and their phase relation with respect to the velocity time course.
Both pulling and pushing forces increase with the filament density. Therefore, the force changes
resulting from density variation would not counteract the force changes occurring in our model
but probably support and amplify them.
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4. Conclusions

In summary, we derived a simple model for velocity dynamics in actin-based motility by
starting from the dynamics of length distributions of a free polymer in the brush. We have
presented a theoretical description of oscillations arising from the interplay of polymerization-
driven pushing forces and pulling forces due to binding of actin filaments to the obstacle.
The mechanism relies on the load dependence of the detachment rate and the polymerization
velocity. The model uses parameter values determined from measurements. It reproduces the
dynamic regimes of actin-based motility observed with obstacles riding on an actin comet tail,
the type of bifurcation observed in bead experiments upon an increase in protein concentration
and the onset of oscillations in oil droplet motion upon VASP addition. Oscillations are
observed for a range of tilt angles of the filaments as required for modeling of actin brushes
of experimentally observed actin comet tails.

A recent review by Mogilner distinguishes microscopic models and continuum
models [38]. The tethered ratchet model is the prototypical microscopic model since it starts
from the properties of individual filaments. Our model belongs to the same group. Velocity
oscillations have not been explained yet with microscopic models. Here, we show that this class
of models can reproduce oscillations also. In contrast with the tethered ratchet model, equations
(9) include dynamics of the lengthsx, la andld. This appears to be the reason why our model
oscillates so robustly while the tethered ratchet model shows steady motion only.

An alternative theoretical explanation ofListeria and bead propulsion by actin
polymerization was given by the continuum model, which perceives the actin meshwork as
a continuous gel [22, 23, 37]. It explains the oscillatory motion as a consequence of tangential
stress which arises when an actin gel grows from the inside outwards on bent surfaces. Friction
arising from the binding of polymers to the surface keeps the velocity small until the stress is
released due to bond rupture and a stick–slip transition occurs (soap effect). The dependence of
the reaction rates on load leads to a nonlinear relation between friction force and velocity in the
quasi-static regime as shown in conjunction with the derivation of the continuum model [22].
However, the catastrophic rupture of attached filaments required for velocity oscillations is not
captured by the quasi-static force velocity relation but was assumed to occur at a cut-off value for
Fd [22, p 2269]. Here, we show that it occurs indeed as a consequence of the force dependence
of the reaction rates.

A way to store elastic energy seems also to be required to obtain oscillations. It is stored in
tangential stress of a bent gel in the continuum model [22] and in the tension between pushing
and pulling filaments in our model. Consequently, the mechanism of thrust generation during the
velocity peaks is different in the two models: soap effect [22] versus push–pull. The oscillations
in our model do not require bent obstacle surfaces and are very robust with respect to changes in
various parameters, i.e. they appear to be generic. Therefore, complex biochemical regulatory
systems supplementing the core process described here may rather stabilize motion and
suppress oscillations than generate them. Nevertheless, aspects of the continuum model—like
tangential stress—would of course enter our model if curved obstacle surfaces are considered.
The formation of tangential stress on curved surfaces provides an explanation for the radius
dependence of the onset of oscillations as shown by the continuum model [23]. Since the push–
pull mechanism and the soap effect are not clearly mutually exclusive, identifying which of
them applies for a specific system would require further specification of the model as well as
further experiments.
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