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Abstract. We investigate a model for driven exclusion processes where internal
states are assigned to the particles. The latter account for diverse situations,
ranging from spin states in spintronics to parallel lanes in intracellular or vehicular
traffic. Introducing a coupling between the internal states by allowing particles to
switch from one to another induces an intriguing polarization phenomenon. In a
mesoscopic scaling, a rich stationary regime for the density profiles is discovered,
with localized domain walls in the density profile of one of the internal states
being feasible. We derive the shape of the density profiles as well as resulting
phase diagrams analytically by a mean-field approximation and a continuum
limit. Continuous as well as discontinuous lines of phase transition emerge, their
intersections induce multi-critical behaviour.
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1. Introduction

Non-equilibrium critical phenomena arise in a broad variety of systems, including non-
equilibrium growth models [1], percolation-like processes [2], kinetic Ising models [3], diffusion
limited chemical reactions [4], and driven diffusive systems [5]. The latter provide models for
transport processes ranging from biological systems, like the motion of ribosomes along a m-RNA
chain [6] or processive motors walking along cytoskeletal filaments [7, 8], to vehicular traffic
[9, 10]. In this work, we focus on the steady-state properties of such one-dimensional transport
models, for which the totally asymmetric simple exclusion process (TASEP) has emerged as a
paradigm (for reviews see e.g. [11]-[13]). There, particles move unidirectionally from left to
right on a one-dimensional lattice, interacting through on-site exclusion. The entrance/exit rates
at the open left/right boundary control the system’s behaviour; tuning them, one encounters
different non-equilibrium phases for the particle densities [14].

Intense theoretical research has been devoted to the classification of such non-equilibrium
phenomena. For example, within the context of reaction—diffusion systems, there is strong
evidence that phase transitions from an active to an absorbing state can be characterized in
terms of only a few universality classes, the most important being the one of directed percolation
(DP) [15]. To search for novel critical behaviour, fruitful results have been obtained by coupling
two reaction—diffusion systems [ 16, 17], each undergoing the active to absorbing phase transition.
Due to the coupling, the system exhibits a multi-critical point with unusual critical behaviour.
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Figure 1. Illustration of an exclusion model with two internal states, adopting
the language of spin transport. Particles in states 1 () enter with rates ot (at),
move unidirectionally to the right within the lattice, may flip at rate @ and leave
the system at rates 81 (8"), always respecting Pauli’s exclusion principle.

We want to stress that already in equilibrium physics seminal insights have been gained
by coupling identical systems. For instance, spin-ladders incorporate several Heisenberg spin
chains [18]. There, quantum effects lead to a sensitive dependence on the chain number: for even
ones a finite energy gap between the ground state and the lowest excitation emerges whereas
gapless excitations dominate the low-temperature behaviour if the number of spin chains is odd.

In this work, we generalize the TASEP in a way that particles possess two internal states; we
have recently published a short account of this work in [19]. Allowing particles to occasionally
switch from one internal state to the other induces a coupling between the latter; indeed, the
model may alternatively be regarded as two coupled TASEPs. When independent, each of
them separately undergoes boundary-induced phase transitions [14]. The coupling is expected
to induce novel phenomena, which are the subject of the present work.

Exclusion is introduced by allowing multiple occupancy of lattice sites only if particles
are in different internal states. Viewing the latter as spin-1/2 states, i.e. spin-up (1) and spin-
down (), this directly translates into Pauli’s exclusion principle; see figure 1. Indeed, the
exclusion process presented in this work may serve as a model for semiclassical transport in
mesoscopic quantum systems [20], like hopping transport in chains of quantum dots in the
presence of an applied field [21]. Our model incorporates the quantum nature of the particles
through Pauli’s exclusion principle, though phase coherence is ignored. A surprising analogy to a
simple spintronics scheme, the Datta—Das spin field-effect transistor [20], holds. There, electrons
move unidirectionally through a ferromagnetic metal or a semiconductor. The polarization of
the electrons is controllable by a source for spin injection, a drain for spin extraction as well as a
gate in the form of a tunable magnetic field that controls the strength of spin precession. In our
model, this is mimicked by considering the spin-flip rate as a control parameter.

The model is potentially relevant within biological contexts, as well. In intracellular traffic
[7, 22], molecular motors walking on parallel filaments may detach from one lane and attach
on another, resulting in an effective switching between the lanes. In our model, identifying the
two internal states with different lanes, one recovers a transport model on two lanes with simple
site exclusion. In the same way, the system presented in this work serves as a highly simplified
cartoon model of multi-lane highway traffic taking lane switching into account [9, 10].

Significant insight into multi-lane traffic has been achieved (see [9, 10] and references
therein). In particular, novel phases have been discovered in the case of indirect coupling, i.e.
the velocity of the particles depends on the configuration on the neighbouring lane [23]-[25].
Recently, models have been presented that allow particles to switch between lanes, and the
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transport properties have in part been rationalized in terms of an effective single lane TASEP
[26]—[28]. There, the case of strong coupling has been investigated: the time-scale of lane
switching events is the same as of forward hopping. In our model, we explicitly want to ensure a
competition between the boundary processes and the switching between the internal states. We
therefore employ a mesoscopic scaling, i.e. we consider the case where the switching events are
rare as compared to forward hopping. This is the situation encountered in intracellular traffic [7]
where motors nearly exclusively remain on one lane and switch only very rarely. In the context
of spin transport, it corresponds to the case where forward hopping occurs much faster than spin
precession (weak external magnetic field).

The outline of the present paper is the following. In section 2, we introduce the model
in the context of spin transport as well as two-lane traffic. Symmetries and currents are
discussed, which play a key role in the following analysis. Section 3 describes in detail the
mean-field approximation and the differential equations for the densities obtained therefrom
through a continuum limit. The mesoscopic scaling is motivated and introduced, the details
of the analytic solution for the spatial density profiles being condensed in appendix A. We
obtain the generic form of the density profiles in section 4, and compare our analytic results
to stochastic simulations. We find that they agree excellently, suggesting the exactness of our
analytic approach in the limit of large systems. As our main result, we encounter the polarization
phenomenon, where the density profiles in the stationary non-equilibrium state exhibit localized
‘shocks’. Namely, the density of one spin state changes abruptly from low-density (LD) to high-
density (HD). The origin of this phenomenon is rationalized in terms of singularities in coupled
differential equations. We partition the full parameter space into three distinct regions, and
observe a delocalization transition. The methods to calculate the phase boundaries analytically
are developed simultaneously. Section 5 presents details on the stochastic simulations which we
have carried out to corroborate our analytic approach. The central result of this work is then
addressed in section 6, where two-dimensional analytic phase diagrams are investigated. Our
analytic approach identifies the phases where the polarization phenomenon occurs, as well as the
continuous and discontinuous transitions that separate the phases. The nature of the transitions
is explained by the injection/extraction limited current which is conserved along the track. As a
second remarkable feature of the model, we uncover multi-critical points, i.e. points where two
lines of phase boundaries intersect or the nature of a phase transition changes from discontinuous
to a continuous one. Although multi-critical point are well-known in equilibrium statistical
mechanics, a fundamental description for such a behaviour for systems driven far from equili-
brium still constitutes a major challenge. A brief summary and outlook concludes this work.

2. The model

In this section, we describe our model in terms of spin transport as well as two-lane traffic.
Though we will preferentially use the language of spins in the subsequent sections, the two-lane
interpretation is of no lesser interest, and straightforwardly obtained. Furthermore, we introduce
two symmetries which are manifest on the level of the dynamical rules.

2.1. Dynamical rules

We consider hopping transport on a one-dimensional lattice, composed of L sites, with open
boundaries, see figure 1. Particles possess internal states, which we restrict to two different
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Figure 2. Illustration of the two-lane interpretation. We label the upper lane as
lane I and the lower one as lane I1. They possess individual entering rates, o' resp.
o' as well as exiting rates, 8" resp. B

kinds; adopting a spin notation, they are referred to as spin-up (1) and spin-down ({,). They enter
at the left boundary at rates ot resp. o*, and move unidirectionally from left to the right through
the lattice. The time-scale is fixed by putting the rate for these hopping events to unity. Within
the bulk, particles may also flip their spin state, from spin-up to spin-down and back, at rate .
Finally, having reached the right boundary, particles may exit the system at rates ' resp. 8+,
depending on their spin state. We allow all of these processes only under the constraint of Pauli’s
exclusion principle, meaning that every lattice site may at most be occupied by one particle of a
given state. Spin-up and spin-down thus may simultaneously occupy the same site, however two
particles with identical spin polarization cannot share a lattice site. In summary, our dynamical
rules are the following:

i. atsite i = 1 (left boundary), particles with spin-up (spin-down) may enter at rate o' (),
i1. at site i = L (right boundary), particles with spin-up (spin-down) leave the lattice at rate
BT (B,
iii. particles may hop at unit rate from site i — 1 to the neighbouring site i fori € {2, ..., L},
1.e. within bulk,

iv. within bulk, particles can flip their spin state with rate w, i.e. spin-up turns into spin-down
and vice versa,

always respecting Pauli’s exclusion principle. Processes (1)—(iii) constitute the TASEP for the
two different states separately, while rule (iv) induces a coupling between them. Indeed, when the
spin-flip rate @ vanishes, we recover the trivial situation of two independent TASEPs, while we
will show that a proper treatment of w through a mesoscopic scaling induces nontrivial effects.

2.2. Two-lane interpretation

Having introduced our model in the language of semi-classical spin transport, where Pauli’s
exclusion principle is respected while phase coherence completely ignored, we now want to
show that it also describes transport with site exclusion on two parallel lanes. As schematically
drawn in figure 2, we consider two parallel lanes, each consisting of L sites, labelled as upper
lane (I) and lower lane (IT). They are identified with the internal states of the particles considered
before: a particle with spin-up (spin-down) now corresponds to a particle on lane I (lane II).
The processes (i) and (ii) describe entering of particles at lane I (II) at rate o' = o' (@' = a¥)
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and exiting of lane I (IT) at rate B' = B' (B = B'). Due to (iii), particles hop unidirectionally to
the right on each individual lane; at rate w, they may switch from lane I to II and back. Pauli’s
exclusion principle translates into simple site exclusion: all the above processes are allowed
under the constraint of admitting at most one particle per site. Again, we clearly observe that it
is process (iv) that couples two TASEPs, namely the ones on each individual lane, to each other.

2.3. Symmetries

Already on the level of the dynamical rules (i)—(iv) presented above, two symmetries are manifest
that will prove helpful in the analysis of the system’s behaviour. We refer to the absence of
particles with certain state as holes with the opposite respective state?. Considering their motion,
we observe that the dynamics of the holes is governed by the identical rules (i)—(iv), with ‘left’
and ‘right’ interchanged, i.e. with a discrete transformation of sites i <> L — i as well as rates
a’V <> 41, The system thus exhibits a particle—hole symmetry. Even more intuitively, the two
states behave qualitatively identical. Indeed, the system remains invariant upon changing spin-up
to spin-down states and vice versa with a simultaneous interchange of a' <> o* and ' < BY,
constituting a spin symmetry (in terms of the two-lane interpretation, it translates into a lane
symmetry).

When analysing the system’s behaviour in the five-dimensional phase space, constituted of
the entrance and exit rates o™+, BT+ and o, these symmetries allow to connect different regions
in phase space, and along the way to simplify the discussion.

3. Mean-field equations, currents and the continuum limit

In this section, we shall make use of the dynamical rules introduced above to set up a quantitative
description for the densities and currents in the system. Within a mean-field approximation, their
time evolution is expressed through one-point functions only, namely the average occupations
of a lattice site. Such mean-field approximations have been successfully applied to a variety
of driven diffusive systems, see e.g. [12]. We focus on the properties of the non-equilibrium
steady state, which results from boundary processes (entering and exiting events) as well as bulk
ones (hopping and spin-flip events). Both types of processes compete if their time-scales are
comparable; we ensure this condition by introducing a mesoscopic scaling for the spin flip rate w.
Our focus is on the limit of large system sizes L, which is expected to single out distinct phases.
To solve the resulting equations for the densities and currents, a continuum limit is then justified,
and it suffices to consider the leading order in the small parameter, namely the ratio of the
lattice constant to system size. Such a mesoscopic scaling has been already successfully used in
[29, 30] in the context of TASEP coupled to Langmuir dynamics.

3.1. Mean field approximation and currents

Let n?(t) resp. nf (#) be the fluctuating occupation number of site i for spin-up resp. spin-down
state, i.e. n,T V(1) = 1if this site is occupied at time 7 by a particle with the specified spin state and
nl“ () = 0 otherwise. Performing ensemble averages, the expected occupation, denoted by ,ol-T 3]

2 The convention to flip the spin simultaneously is natural in the language of solid-state physics. In the context of
two-lane traffic, it appears more natural to consider vacancies moving on the same lane in the reverse direction.
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and ,ol-i (1), is obtained. Within a mean-field approximation, higher order correlations between the
occupation numbers are neglected, i.e. we impose the factorization approximation

(n; (On(0) = p;(DP;(D; rse{t, I} (1

Equations of motion for the densities can by obtained via balance equations. The time-
change of the density at a certain site is related to appropriate currents. The spatially varying
spin current jf () quantifies the rate at which particles of spin state 4 at site i — 1 hop to the
neighbouring site i. Within the mean-field approximation, equation (1), the current is expressed
in terms of densities as

il =pl 001 =p/®], ief2,...,L}, (2)

and similarly for the current jl-i (#). The sum yields the total particle current J;(t) = jl.T () + jf (0.
Due to the spin-flip process (iv), there also exists a leakage current jl.N(t) from spin-up state to
spin-down state. Within mean-field

JH @) = wp] D11 = p 0], (3)
and similarly for the leakage current j,-”(t) from spin-down to spin-up state. Now, for i €
{2,..., L — 1} we can use balance equations to obtain the time evolution of the densities,

d : : : .

2P O =5l 0= L@+ - 0. )

This constitutes an exact relation. Together with the mean field approximation for the currents,
equations (2) and (3), one obtains a set of closed equations for the local densities

d
3P O =l O = p] 0] = p{ D11 = pl,; O + w0} (6) = wp] (). 5)

At the boundaries of the track, the corresponding expressions involve also the entrance and exit
events, which are again treated in the spirit of a mean-field approach

d
P10 =11 = p] (0] = pl O[1 = p ()] + wpi (1) = wp] (0. (6)
d
AL = pL 1 = pL (0] = B 0L (1) + wpi (1) — wpl (). (7)

Due to the spin symmetry, i.e. interchanging 1 and |, an analogous set of equations holds for
the time evolution of the density of particles with spin-down state.

In the stationary state, the densities /oiT “(#) do not depend on time ¢, such that the
time derivatives in equations (5)—(7) vanish. Therefrom, we immediately derive the spatial
conservation of the particle current: indeed, summing equation (4) with the corresponding
equation for the density of spin-down states yields

Ji:Ji+19 16{2”14_1}, (8)
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such that the particle current does not depend on the spatial position i. Note that this does not
apply to the individual spin currents, they do have a spatial dependence arising from the leakage
currents.

In a qualitative discussion, let us now anticipate the effects that arise from the non-conserved
individual spin currents as well as from the conserved particle current. The latter has its analogy
in TASEP, where the particle current is spatially conserved as well. It leads to two distinct regions
in the parameter space: one where the current is determined by the left boundary, and the other
where it is controlled by the right one. Both regions are connected by the discrete particle—hole
symmetry. Thus, in general, discontinuous phase transitions arise when crossing the border from
one region to the other. In our model, we will find similar behaviour: the particle current is
either determined by the left or by the right boundary. Again, both regions are connected by
the discrete particle-hole symmetry, such that we expect discontinuous phase transitions at the
border between both. Except for a small, particular region in the parameter space, this behaviour
is captured quantitatively by the mean-field approach and the subsequent analysis, which is
further corroborated by stochastic simulations. The phenomena linked to the particular region
will be presented elsewhere [31].

On the other hand, the non-conserved spin currents may be compared to the current in TASEP
coupled to Langmuir kinetics, see [29, 30]. Due to attachment and detachment processes, the
in-lane current is only weakly conserved, allowing for a novel phenomenon, namely phase
separation into a LD and a HD region separated by a localized domain wall. The transitions to
this phase are continuous considering the domain wall position x,, as the order parameter. In
our model, an analogous but even more intriguing phase will appear as well, with continuous
transitions being possible.

3.2. Mesoscopic scaling and the continuum limit

3.2.1. Mesoscopic scaling. Phases and corresponding phase transitions are expected to emerge
in the limit of large system size, L — 00, which therefore constitutes the focus of this work. We
expect interesting phase behaviour to arise from the coupling of spin-up and spin-down states
via spin-flip events, in addition to the entrance and exit processes. Clearly, if spin-flips occur on
a fast time-scale, comparable to the hopping events, the spin degree of freedom is relaxed, such
that the system’s behaviour is effectively the one of a TASEP. Previous work on related two-lane
models [27, 26] focused on the physics in that situation. In this work, we want to highlight the
dynamical regime where coupling through spin-flips is present, however not sufficiently strong
to relax the system’s internal degree of freedom. In other words, we consider physical situations
where spin-flips occur on the same time-scale as the entrance/exit processes. Defining the gross
spin-flip rate 2 = wL yields a measure of how often a particle flips its spin state while traversing
the system. To ensure competition between spin-flips with boundary processes, a mesoscopic
scaling of the rate w is employed by keeping €2 fixed, of the same order as the entrance/exit
rates, when the number of lattice sites becomes large L — oo.

3.2.2. Continuum limit and first order approximation. The total length of the lattice will be
fixed to unity and one may define consistently the lattice constant € = 1/L. In the limit of large
systems € — 0, a continuum limit is anticipated. We introduce continuous functions p'(x) resp.
p*(x) through p'(x;) = p! resp. p*(x;) = p; at the discrete points x; = ie. Expanding these to
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first order in the lattice constant,
p' W (xie) = p'V(xi £ e) = p"V(x) £edep™ (1)), 9)

the difference equations (5)—(7) turn into differential equations. Observing that w = €2 is already
of order €, we find that the zeroth order of equation (5) vanishes, and the first order in € yields

(20" (x) — 118,0" (x) + Q0o (x) — Qo' (x) = 0. (10)
Similarly, the same manipulations for p* yield

[20* (x) — 119,p% (x) + Qo' (x) — 2p*(x) = 0. (11)
The expansion of equations (6) and (7) in powers of €, yields in zeroth order

p'(0) =al, p'()=1-4",
pH(0) =at, pr(1) =1-p", (12)

which impose boundary conditions. Since two boundary conditions are enough to specify
a solution of the coupled first-order differential equations, the system is apparently over-
determined. Of course, the full analytic solution, i.e. where all orders in € are incorporated,
will be only piecewise given by the first-order approximation, equations (10)—(12). Between
these branches, the solution will depend on higher-orders of €, therefore, these intermediate
regions scale with order € and higher. They vanish in the limit of large systems, € — 0, yielding
domain walls or boundary layers.

Let us explain the latter terms. At the position of a domain wall, situated in bulk, the density
changes its value discontinuously, from one of a LD region to one of a HD. Boundary layers
are pinned to the boundaries of the system. There as well, the density changes discontinuously:
from a value that is given by the corresponding boundary condition to that of a LD or HD region
which is imposed by the opposite boundary.

3.2.3. Symmetries and currents revisited. In the following, we reflect important properties of
the system, symmetries and currents, on the level of the first-order approximation, equations
(10)—(12). The explicit solution of the latter can be found in appendix A.

The particle-hole symmetry, already inferred from the dynamical rules, now takes the form

,OT(U()C) o 1= pT(i)(l —X), aT(i) < ,BT(U. (13)

Interchanging 1 and | in the densities as well as the in and outgoing rates yields the spin
symmetry,

ot (x) < pt(), ol < at, gt < pt. (14)

The individual spin currents as well as the particle current have been anticipated to provide
further understanding of the system’s behaviour. In the continuum limit the zeroth order of the
spin currents is found to be jTV (x) = pt ™ (x)[1 — pTV(x)], such that equations (10), (11) may
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be written in the form
8" = Qlpt — o'l 8" =Qlp" — p'l. (15)

The terms on the right-hand side, arising from the spin-flip process (iv), are seen to violate
the spatial conservation of the spin currents. However, due to the mesoscopic scaling of the
spin flip rate w, the leakage currents between the spin states are only weak, see equation (3),
locally tending to zero when € — 0, such that the spin currents vary continuously in space.
This finding imposes a condition for the transition from one branch of first-order solution to
another, as described above: such a transition is only allowed when the corresponding spin
currents are continuous at the transition point, thus singling out distinct positions for a possible
transition.

Finally, summing the two equations in equation (15) yields the spatial conservation of the
particle current: d,J = 0.

4. Partition of the parameter space and the generic density behaviour

The parameter space of our model, spanned by the five rates o™, ¥, and , is of high
dimensionality. However, in this section, we show that it can be decomposed into only three
basic distinct regions: the maximal-current (MC) region as well as the injection-limited (IN) and
the extraction-limited one (EX). While trivial phase behaviour occurs in the MC region, our focus
is on the IN and EX region (connected by particle-hole symmetry), where a striking polarization
phenomenon occurs. The generic phase behaviour in these regions is derived, exhibiting this
effect.

4.1. Effective rates

The entrance and exit rates as well as the carrying capacity of the bulk impose restrictions on the
particle current. For example, the capacity of the bulk limits the individual spin currents jT¥ to
maximal values of 1/4. The latter occurs at a density of 1/2, as seen from the previous result
TV = ptV[1 — pt¥)]. To illustrate the influence of the injection and extraction rates, we first
consider an ‘open’ right boundary i.e. 8 = B' = 1. Particles then leave the system unhindered,
such that only the entrance rates may limit the particle current. Provided one of these rates, say
a', exceeds the value 1/2, the current of the corresponding state (1) is limited by the capacity
of the bulk to a value of 1/4 in the vicinity of the left boundary. A boundary layer thus forms
in the density profile of spin-up state at the left boundary, connecting the value of the injection
rate ' to the value 1/2. Up to this boundary layer, the density profile p'(x) is identical to the
one where o takes a value of 1/2, cf figure 3. Similar reasoning holds for the extraction rates
BT . They as well behave effectively as 1/2 when exceeding this value. To treat these findings
properly, we introduce the effective rates

ol = min [a'®), 17, (16a)

Bl = min[g1V,1]. (16b)
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Figure 3. Illustration of the effective rates. The right boundary is ‘open’, such
that only the capacity of the bulk and the entrance rates limit the spin currents. The
injection rate o’ > % effectively acts as % The analytic predictions correspond to
the solid lines, the results from stochastic simulations for L = 10 000 are indicated
by the wiggly line. With increasing spatial position, the densities approach a
common value p,. The parameters used are &' = 0.7, at = 0.15 and Q = 0.5.

The system’s bulk behaviour will only depend on them, and, in particular, remain unaffected
when a rate is varied at values exceeding 1/2.

4.2. IN, EX, and MC region

Equipped with these results, in the case of an ‘open’ right boundary, the spin currents in the
vicinity of the left boundary are given by j! = a:(1 — ;) resp. j¥ = al(1 — &), resulting
in a particle current Jiy imposed by the injection rates: Jiv = agff(l — agff) + oeiff(l — oeiff). The
analogous relations, with the injection and extraction rates interchanged, hold for the case of an
‘open’ left boundary, o’ = o = 1. The particle current is then controlled by the right boundary:
Jex = ﬁgff(l — ,Bgff) + ,Biff(l — ,Biff). In general, depending on which imposes the stronger
restriction, either the left or the right boundary limits the particle current: J < min(Ji, Jgx).
Indeed, J = min(Jy, Jex) holds except for an anomalous situation, where the current is lower
than this value®. Depending on which of both cases applies, two complementary regions in phase
space are distinguished: Jiy < Jgx 1s termed IN region, while Jiy > Jgx defines the EX region.
Since they are connected by discrete particle-hole symmetry, we expect discontinuous phase
transitions across the border between both, to be referred as IN-EX boundary.

Right at the IN-EX boundary, the system exhibits coexistence of LD and HD phases,
separated by domain walls. Interestingly, this phase coexistence emerges on both lanes (states),
which may be seen as follows. Recall that a domain wall concatenates a region of low and another
of HD. However, while the densities exhibit a discontinuity, the spin currents must be continuous.
In other words, the spin currents, and therefore the particle currents, imposed by the left and
right boundary must match each other. This yields the condition Jiy = Jgx, which is nothing but
the relation describing the IN-EX boundary. Actually, what we have shown with this argument
is that domain walls on both lanes (states) are at most feasible at the IN-EX boundary. However,

3 This situation arises in a certain neighbourhood of the multi-critical points B, discussed in section 6.
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Figure 4. The densities (a) and currents (b) in the IN region: generic state,
exhibiting the polarization phenomenon. Results from stochastic simulations are
shown as blue (L = 2000) resp. red (L = 10000) lines. They piecewise obey the
first-order approximations (black), grey lines indicate continuations of the latter
into regions where the densities are no longer given by them. The parameters are
al =04,at =0.2,8' =02, 8" =0.45,and Q = 0.5.

it turns out that there, they do indeed form, and are delocalized. We refer to our forthcoming
publication [31] for a detailed discussion of this phenomenon. Away from the IN-EX boundary,
it follows that at most on one lane (state) a domain wall may appear.

When both entrance rates o', a* as well as both exit rates B, ,Bi exceed the value 1/2, the
particle current is limited by neither boundary, but only through the carrying capacity of the bulk,
restricting it to twice the maximal value 1/4 of the individual spin currents: J = 1/2. The latter
situation therefore constitutes the maximal current region.

4.3. The generic state of the densities

As we have seen in the previous section, particularly simple density profiles emerge in the MC
region. There, up to boundary layers, the density profiles remain constant at a value 1/2 for each
spin state. Another special region in parameter space is the IN-EX boundary, characterized by
the simultaneous presence of domain walls in both spin states, as we discuss elsewhere [31].
Away from these regions, the generic situation for the density profiles is illustrated in figure 4.
Here, we have considered parameters belonging to the IN region; the behaviour in the EX region
follows from particle—hole symmetry. A domain wall emerges for one spin state and a boundary
layer for the other one. For specificity, we consider a domain wall for the spin-up state, the other
situation is obtained from spin symmetry. The density profiles /olT ) close to the left boundary
are given by the solution of the first-order differential equations (10) and (11), obeying the left

boundary conditions ,of x=0 = agff and ,olL x=0) = aiff. For the density profiles ,orT ) in
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the vicinity of the right boundary, we use the fact that the current in bulk is determined by
the injection rates, J = Jiy (which defines the IN region). Therefore, the densities satisfy right
boundary conditions which are given by p!(x = 1) = 1 — gl; and p} (x = 1) is found from the
conservation of the particle current:

J = O‘fo(l - O‘fo) +aiff(l - aiff) = ﬁgff(l - IBeTff) + /Ori(x = DI[I - ,Ori(x = DI (17)

At some point x, in bulk, the left and right solutions have to be concatenated by a domain
wall for spin-up. To determine the position x,, of this domain wall, we use the continuity of the
spin currents; see figure 4(b)*. This continuity condition singles out a distinct spatial position for
the domain wall: denote by ,01T (xw) the value of the density to the left of x,, and ,orT (xy) the value

to the right. From j1 = p*(1 — p1) together with p/' (xy) # p[ (x,), we arrive at the condition

o (x) =1 — pl(xy) (18)

for the domain wall position®. From the conservation of the particle current J, it follows that the
density p* is continuous at the position x,,.

When considering the internal states as actual spins, the appearance of a domain wall in
the density profile of one of the spin states results in a spontaneous polarization phenomenon.
Indeed, while both the density of spin-up and spin-down remain at comparable low values in
the vicinity of the left boundary, this situation changes upon crossing the point x,,. There, the
density of spin-up jumps to a high value, while the density of spin-down remains at a low value,
resulting in a polarization in this region.

Comparing the generic phase behaviour to the one of TASEP, we observe that the IN region
can be seen as the analogue to the LD region there: within both, a LD phase accompanied
by a boundary layer at the right boundary arises. Following these lines, the EX region has its
analogue in the HD region, while the MC region is straightforwardly generalized from the one
of TASEP. Furthermore, the delocalization transition across the IN-EX boundary is similar to
the appearance of a delocalized domain wall at the coexistence line in TASEP.

4.4. Phases and phase boundaries

In the generic situation of figure 4, the density of spin-down is in a homogeneous LD state, while
for spin-up, a LD and a HD region coexist. We refer to the latter as the LD—-HDyy phase, as the
phase separation arises within the IN region, to be contrasted from a LD-HDgx phase which
may arise within the EX region. Clearly, the LD-HDyy phase is only present if the position x,,
of the domain wall lies within bulk. Tuning the system’s parameter, it may leave the system
through the left or right boundary, resulting in a homogeneous phase. Indeed, x,, = 1 marks
the transition between the LD—HDy phase and the pure LD state, while at x,, = O the density
changes from the LD-HDy to a homogeneous HD state. Regarding the domain wall position x,,
as an order parameter, these transitions are continuous. Implicit analytic expressions for these

# Indeed, though they are not spatially conserved, the mesoscopic scaling of the spin-flip rate & was seen to cause
a only slowly varying spatial dependence; in the continuum limit, the spin currents are continuous.

3 For TASEP-like transport the particle-hole symmetry restricts the density jump to this mirror relation. More
general current-density relations are feasible [32, 33], but are not expected to change the picture qualitatively.
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phase boundaries, derived in the following, are obtained from the first-order approximation,
equations (10) and (11).

Spin symmetry yields the analogous situation with a domain wall appearing in the density
profile of spin-down, while particle—hole symmetry maps it to the EX region, where a pure HD
phase arises for one of the spins. Discontinuous transitions accompanied by delocalized domain
walls appear at the submanifold of the IN-EX boundary (see [31] for a detailed discussion).

The phase boundaries may be computed from the condition x, =0 and x, =1 in the
situation of figure 4. Consider first the case of x,, = 0. There, the density profiles are fully
given by the first-order approximation p! ") satisfying the boundary conditions at the right. The
condition (18) translates to

plx=0)=1—-pl(x=0)=1—a; (19)

which yields an additional constraint on the system’s parameters. This defines the hyper-surface
in the IN region where x,, = 0 occurs, and thus the phase boundary between the LD-HDy and
the pure HD phase.

Similarly, if x,, = 1, the densities follow the left solution ,01T 4 (x), determined by the left
boundary conditions, within the whole system. From equation (18) we obtain

plx=1)=1-pl(x=1) =Bl (20)

Again, the latter is a constraint on the parameters and defines the hyper-surface in the IN region
where x,, = 1 is found, being the phase boundary between the LD-HDy and the homogeneous
LD phase.

The conditions (19) and (20) yield implicit equations for the phase boundaries. The phase
diagram is thus determined up to solving algebraic equations, which may be achieved numerically.
Further insight concerning the phase boundaries is possible and may be obtained analytically,
which we discuss next.

Firstly, we note that in the case of equal injection rates, o' = ¥, the density profiles in the
vicinity of the left boundary are constant. If in addition o' = a* = B" < 1/2, we observe from
equation (20) that a domain wall at x,, = 1 emerges. Therefore, this set of parameters always
lies on the phase boundary x,, = 1, independent of the value of €2.

Secondly, we investigate the phase boundary determined by x, = 0. Comparing with
figure 4, we observe that the first-order approximation p, for the density of spin-up may reach the
value % at a point which is denoted by x; »: ,oj (x12) = % This point corresponds to a branching
point of the first-order solution. Increasing €2, the value of x/, increases as well. The domain
wall in the density of spin-up can only emerge at a value x,, > x;,,. At most, x,, = Xy, in which
case a domain wall with infinitesimal small height arises. For the phase boundary specified by
xw = 0, this implies that it only exists as long as x;,, < 0. The case xy, = x;,, = 0 corresponds

to a domain wall of infinitesimal height, which is only feasible if oegff = % Now, for given rates

ozeTff = % at, BT, the condition x; 2 = 0 yields a critical rate Q*(at, B, depending on the rates

a, B'. The situation x,, = 0 can only emerge for rates Q < Q*(a, B1). Varying the rates ', ot
and BT, the critical rate Q* (¥, B") changes as well. In appendix A, we show that its largest value
occurs at ¥ = B = 0. They yield the rate Q¢ = Q*(a' = ' = 0), which is calculated to be

Qc=1+1v/2In(3 - 2v2) ~ 0.38. (1)
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The critical Q*(a*, B') are lying in the interval between 0 and Qc: Q*(a¥, B) € [0, Qc], and
all values in this interval in fact occur. The rate Q¢ defines a scale in the spin-flip rate €2: For
Q < Qc, the phase boundary determined by x,, = 0 exists, while disappearing for Q2 > Qc.
Thirdly, we study the form of the phase boundaries for large €2, meaning 2 > Qc. In this
case, the phase boundary specified by x,, = 0 is no longer present. Furthermore, it turns out
that in this situation, the densities close to the left boundary quickly approximate a common
value p,. The latter is found from conservation of the particle current: 2p,(1 — p.) = J. We now
consider the implications for the phase boundary determined by x,, = 1. With ,01T x=1) = p.,

equation (20) turns into p, = ﬁsz, yielding

ZﬁeTff(l - lBeTff) = O‘lff(l - alff) + aiff(l - aiff)' (22)

This condition specifies the phase boundary x,, = 1, asymptotically for large 2. It constitutes a

simple quadratic equation in the in and outgoing rates, independent of 8, and contains the set
P — ot = Bt

af =i =p.

5. Stochastic simulations

To confirm our analytic findings from the previous section, we have performed stochastic
simulations. The dynamical rules (i)—(iv) described in section 2.1 were implemented using
random sequential updating. In our simulations, we have performed averages over typically 10°
time steps, with 10 x L steps of updating between successive ones. Finite size scaling singles
out the analytic solution in the limit of large system sizes, as exemplified in figures 3 and 4.

For all simulations, we have checked that the analytic predictions are recovered upon
approaching the mesoscopic limit. We attribute the apparent exactness of our analytic approach
in part to the exact current density relation in the steady state of the TASEP [34]. The additional
coupling of the two TASEPs in our model is only weak: the local exchange between the two
states vanishes in the limit of large system sizes. Correlations between them are washed out, and
mean-field is recovered.

The observed exactness of the analytic density profiles within the mesoscopic limit implies
that our analytic approach yields exact phase diagrams as well. The latter are the subject of the
subsequent section.

6. Two-dimensional phase diagrams

In this section, we discuss the phase behaviour on two-dimensional cuts in the whole five-
dimensional parameter space. Already the simplified situation of equal injection rates, o' = o,
yields interesting behaviour. There as well as in the general case, we investigate the role of the
spin-flip rate €2 by discussing the situation of small and large values of 2.

6.1. Equal injection rates

For simplicity, we start our discussion of the phase diagram with equal injection rates, a' = o*.
Then, the spin polarization phenomenon, depicted in figure 4, becomes even more striking.
Starting from equal densities at the left boundary, and hence zero polarization, spin polarization
suddenly switches on at the domain wall position x,,. The particular location of x,, is not triggered
by a cue on the track, but tuned through the model parameters.
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The phase transitions from LD to the LD-HDyy arising in the IN region take a remarkably
simple form. Their location is found from x,, = 1, and is determined by equation (20) (if phase
coexistence arises for spin-up). Since p'(x) = p¥(x) = a = constant for x < x,,, equation (20)
turns into o = B'. The latter transition line intersects the IN-EX boundary, given by Jiy = Jgx,
at Bt = BY = «, i.e. at the point where all entrance and exit rates coincide. At this multi-critical
point A, a continuous line intersects a discontinuous one. The same transition in the density
of spin-down state is, from similar arguments, located at o = ¥, and also coincides with the
IN-EX boundary in A. Neither the multi-critical point .4 nor these phase boundaries depend on
the magnitude of the gross spin flip rate 2. Therefore, qualitatively tuning the system’s state is
possible only upon changing the injection or extraction rates. The other phase transitions within
the IN region, namely from the HD to the LD-HDyy phase, are more involved. The analytic
solution given by (A.12) and (A.13) has to be considered together with the condition (19) for the
transition. However, at the end of section 4.4, we have found that these transitions (determined
by x,, = 0) disappear for sufficiently large 2 > Qc.

6.1.1. Large values of 2. In the situation of large 2 > ¢, phase transitions arising from
Xw = 0 in the IN region or from the analogue in the EX region do not emerge, as discussed
at the end of section 4.4. We have drawn resulting phase diagrams in figure 5, showing the
phase of spin-up (spin-down) in the left (right) panels, depending on « and B'. Along the IN-
EX boundary, being the same line (shown as bold) in the left and right panels, a delocalization
transition occurs. At the multi-critical point 4, it is intersected by continuous lines emerging
within the IN resp. the EX region. When B* > 1/2, a MC phase emerges in the upper right
quadrant, see figures 5(c)—(d).

To illustrate the system’s phase behaviour, let us consider what happens along a horizontal
line in the phase diagrams (a) and (b), ata value 87 > B*. Atsuch aline, for small values of o, both
spin states are in LD phases. Upon crossing a certain value of «, a domain wall enters at x,, = 1
in the spin-down density profile. Then, spin-down exhibits phase coexistence (LD-HDyy), while
spin-up remains in a LD phase. Further increasing «, the bold line is reached, where delocalized
domain walls arise in both spin states. For larger values of «, a localized domain wall emerges
for spin-up (implying a LD-HDgx phase), and a pure HD phase for spin-down. If « is further
increased, the domain wall in the spin-up density profile leaves the system through the left
boundary (at xy, = 0), and pure HD phases remain for both spin states.

While we have found the transitions within the IN region by simple expressions in the
previous subsection, the ones emerging in the EX region are more complex and involve the full
analytic solutions (A.12) and (A.13). Their most notable feature is that the width of the corre-
sponding coexistence phase decreases with increasing spin-flip rate €2, until it finally vanishes
in the limit 2 — oo. This may be seen by considering the analogue of equation (22) in the EX
region, which describes the phase boundary as it is asymptotically approached when 2 — oc:

206 (1 — o) = Bli(1 — Blyp) + ﬂiff(l - ﬂiff ; (23)

it coincides with the IN-EX boundary.

6.1.2. Small values of 2. As discussed at the end of section 4.4, when Q < Q, the appearance
of additional phase transitions becomes possible. For example, within the IN region, the situation
xw = 0 may emerge. It describes the transition from the HD to the LD—HDy phase; the analogue
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Figure 5. Phase diagrams in the situation of equal entrance rates o' = o' = «
and large 2. The phases of the densities of spin-up (spin-down) state are shown
in (a) resp. (b) for a value ¥ = 0.3. At a multi-critical point .4, continuous lines
(thin) intersect with a discontinuous line (bold), the IN-EX boundary. If 8+ > %
the MC phase appears for spin-up, see (c), as well for spin-down, drawn in (d). In
the first situation, the switching rate is 2 = 0.15, while € = 0.2 in the second.

occurs in the EX region. In figure 6, we show resulting phase diagrams for the spin-up (left panel)
and spin-down (right panel), resp. The additional transition lines intersect the IN-EX boundary
(bold) at additional multi-critical points By and Bgx. Also, they partly substitute the IN-EX
boundary as a phase boundary: across some parts of the latter, phase transitions do not arise. This
behaviour reflects the decoupling of the two states for decreasing spin-flip rate 2. Indeed, for
Q2 — 0, the states become more and more decoupled, such that the IN-EX boundary, involving
the combined entrance and exit rates of both states, loses its significance.

6.1.3. Multi-critical points. Although the shapes of most of the transition lines appearing in
the phase diagrams shown in figure 6 are quite involved, they also exhibit simple behaviour.
Pairwise, namely one line from a transition in spin-up and another from a related transition
in spin-down states, they intersect the IN-EX boundary in the same multi-critical point. This
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Figure 6. Phase diagrams in the situation of figures 5(a) and (b), but with
decreased to a small value, 2 = 0.05. Additional phase transitions emerge in the
IN as well as the EX region, accompanied by multi-critical points By and Bgx.
Caused by them, phase transitions do no longer appear across some parts of the
IN-EX boundary, which is there shown as dashed line.

intriguing phenomenon may be understood by considering the multi-critical points: e.g. at A,
the transition line from the LD to the LD—HD)y phase in the density profile of spin-up intersects
the IN-EX boundary, which implies that there we have a domain wall in the density profile of
spin-up at the position x,, = 1. However, being on the IN-EX boundary, the condition Jix = Jgx
implies that in this situation a domain wall forms as well in the density of spin-down states, also
located at x,, = 1. Consequently, 4 also marks the point where the transition line specified by
xy = 1 for spin-down states intersects the IN—-EX boundary. Due to the special situation of equal
entrance rates, one more pair of lines intersects in this point. Similarly, at By, the transition line
from the HD to LD-HDy phase in the density profile of spin-up intersects the IN-EX boundary,
such that a domain wall forms in the density of spin-up at x,, = 0. Again, as Jiy = Jgx holds on
the IN-EX boundary, this implies the formation of a domain wall in the density of spin-down
at x,, = 1, corresponding to the transition from the LD to the LD-HDgx phase for spin-down in
the EX region.

6.2. The general case

Having focused on the physically particularly enlightening case of equal entering rates in the
previous subsection, we now turn to the general case. To illustrate our findings, we show phase
diagrams depending on the injection and extraction rates for spin-up states, o' and B'. Similar
behaviour as for equal entrance rates is observed. The multi-critical point .A now splits up into
two distinct points Ay and Agx.

6.2.1. Large values of 2: asymptotic results. Again, large 2 prohibit the emergence of the
phase transition from the HD to the LD—HDyy phase in the IN region as well as from the LD to
the LD-HDgx phase within the EX region, see end of section 4.4. In this paragraph, we consider
phase diagrams which are approached asymptotically when €2 — oo. Convergence is fast in €2,
and the asymptotic phase boundaries yield an excellent approximation already for Q > 2Qc.
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The transition from LD to the LD—-HDy phase in the IN region asymptotically takes the
form of equation (22), and the one from HD to the LD—HDgx phase in the EX region is obtained
by particle-hole symmetry. All phase boundaries, including the IN-EX boundary, are thus given
by simple quadratic expressions.

Phase diagrams with different topologies that can emerge are exhibited in figures 7 and 8.
As in the previous subsection, we show the phases of spin-up (spin-down) states on the left
(right) panels. The phase boundaries between the LD and the LD—-HDy phase in the IN region
for spin-up as well as spin-down both intersect the IN-EX boundary in a multi-critical point Ay,
being located at 8T = B*¥. Similarly, the lines of continuous transitions within the EX region both
coincide with the IN-EX boundary in a multi-critical point Agx, which is situated at o’ = a*.
Note that the phase transitions emerging in the density profile of spin-down within the IN region
do not depend on B, thus being horizontal lines in the phase diagrams. Within the EX region
they are independent of «t, yielding vertical lines.

Forat, B¢ < 1/2, figure 7 shows different topologies of phase diagrams, which only depend
on which of the multi-critical points Ay, Agx is present. If both appear, see figure 7(a) and (b),
the LD-HDyy and the LD-HDgx phase for spin-up are adjacent to each other, separated by the IN—
EX boundary. Although in both phases localized domain walls emerge, their position changes
discontinuously upon crossing the delocalization transition. For example, starting within the
LD-HDy phase, the domain wall delocalizes when approaching the IN-EX boundary, and,
having crossed it, relocalizes again, but at a different position.

When o' = B' < 1/2, a subtlety emerges, see figures 8(a) and (b). If both & > 1/2 and
B > 1/2,1.e. in the upper right quadrant of the phase diagrams, these rates effectively actas 1/2,
and the condition Jiy = Jgx for the IN-EX boundary is fulfilled in this whole region. Therefore,
delocalized domain walls form on both lanes within this region, as is confirmed by our stochastic
simulations [31].

The MC phase emerges when all rates exceed or equal the value 1/2, corresponding to the
upper left quadrant of the phase diagrams in figures 8(c) and (d).

6.2.2. Small values of 2. When Q < Qc, the transitions from LD to LD-HD;y within the IN
region as well as the analogue in the EX region are possible. As in the case of equal entering
rates, the corresponding transition lines pairwise intersect the IN-EX boundary in multi-critical
points By and Bgx. As all transitions between phases of the spin-down density within the IN
region are independent of B', the corresponding lines are simply horizontal; and within the EX
region, their independence of a' implies that they yield vertical lines. The phase diagram for
the density of spin-down is thus easily found from the IN-EX boundary given by Jiv = Jgx
together with the locations of the multi-critical points A, Agx, Biv and Bgx. The latter follow
from the intersection of phase transition lines for the density of spin-up, involving the whole
analytic solution (A.12) and (A.13), with the IN-EX boundary.

In figure 9 two interesting topologies that may arise are exemplified. Induced by the presence
of the multi-critical point By, phase transitions do not occur across all the IN-EX boundary,
which is then only shown as dashed line. In figures 9(a) and (b), the points Agx and By are
present. The LD-HDyy phase for spin-up intervenes the LD and the HD phase; the LD-HDgx
phase for spin-up is also present, though very tiny. In the phase diagram of spin-down, the
LD-HD\y phase intervenes the LD and the HD phase accompanied by continuous as well as
discontinuous transitions. Again, the presence of the multi-critical points induces the topology;
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Figure 7. Phase diagrams in the general situation: asymptotic results for large €2.
Lines of continuous transitions (thin) within the IN resp. EX region intersect
the delocalization transition line (bold) in multi-critical points A resp. Agx.
Both of these points appear in (a) and (b) (¥ = 0.25, B* = 0.3) while only
Agx is present in (c) and (d) (a¥ = 0.2, B¥ = 0.4) and Ay alone in (e) and (f)
(¥ = 0.05, B* = 0.15), yielding different topologies.
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Figure 8. Delocalization as well as MC. Whenat = B* < 1/2anda’, gt > 1/2
(upper right quadrant in (a) and (b)), delocalized domain walls form in the density
profiles of both spin states. If instead o', B* > 1/2, the MC phase emerges,
see (c) and (d).

e.g. in figures 9(c) and (d), only By appears. For the discussion of the possible topologies, we
encounter the restriction that Ay and Byy cannot occur together, as well as Agx and Bgx exclude
each other (otherwise, the lines determined by x,, = 0 and x,, = 1 would cross).

We now discuss the influence of the spin-flip rate 2 on the continuous transition lines
for spin-up. In section 4.4 the manifold defined by o' = " = o), was found to be a sub-
manifold of the phase boundary specified by x,, = 1 in the IN region. Independent of €2, the
point ot = gt = oziff, denoted by N, thus lies on the boundary between the LD and the
LD-HD\y phase (determined by x,, = 1). For large €2, this boundary approaches the one given
by equation (22).

Regarding the transition from the HD to the LD-HDy within the IN region (determined by
xw = 0), section 4.4 revealed that for increasing €2 it leaves the IN region at a critical transfer
rate Q*(a*, B1). In the limit Q — 0, the densities p'(x) and p*(x) approach constant values,
and both the curve x,, = 1 as x,, = 0 for spin-up in the IN region approach the line 8" = " for
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Figure 9. Phase diagrams in the general case and small values of 2. The nodal
point Ay remains unchanged when Q is varied. The appearance of the multi-
critical point By is accompanied by the non-occurrence of phase transitions across
parts of the IN-EX boundary, then shown as dashed line. The multi-critical point
Agx emerges in (a) and (b), but not in the situation of (c) and (d). Parameters are
Q =0.08,at =0.35, 8% =0.45 in (a) and (b) and Q = 0.2, a* = 0.15, B¥ =
0.4 in (c) and (d).

al < % The phase in the upper right quadrant in the phase diagram converges to the MC phase,
such that in this limit, the case of two uncoupled TASEPs is recovered.

7. Conclusions

We have presented a detailed study of an exclusion process with internal states recently introduced
in [19]. The TASEP has been generalized by assigning two internal states to the particles.
Pauli’s exclusion principle allows double occupation only for particles in different internal states.
Occasional switches from one internal state to the other induce a coupling between the transport
processes of the separate states. Such a dynamics encompasses diverse situations, ranging from
vehicular traffic on multiple lanes to molecular motors walking on intracellular tracks and future
spintronics devices.
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We have elaborated on the properties of the emerging non-equilibrium steady state focusing
on density and current profiles. In a mesoscopic scaling of the switching rate between the internal
states, nontrivial phenomena emerge. A localized domain wall in the density profile of one of the
internal states induces a spontaneous polarization effect when viewing the internal states as spins.
We provide an explanation based on the weakly conserved currents of the individual states and the
current-density relations. A quantitative analytic description within a mean-field approximation
and a continuum limit has been developed and solutions for the density and current profiles have
been presented. A comparison with stochastic simulations revealed that our analytic approach
becomes exact in the limit of large system sizes. We have attributed this remarkable finding to the
exact current-density relation in the TASEP, supplemented by the locally weak coupling of the
two TASEPs appearing in our model: @ — 0 in the limit of large system sizes. Local correlations
between the two internal states are thus obliterated, as particles hop forward on a much faster
time-scale than they switch their internal state.

Furthermore, the parameter regions that allow for the formation of a localized domain
wall have been considered. Analytic phase diagrams for various scenarios, in particular the case
of equal entrance rates, have been derived. The phase diagrams have been found to exhibit a
rich structure, with continuous as well as discontinuous non-equilibrium phase transitions. The
discontinuous one originates in the conserved particle current, which is either limited by injection
or extraction of particles. At the discontinuous transition between both regimes, delocalized
domain walls emerge in the density profiles of both internal states. Multi-critical points appear
at the intersections of different transition lines organizing the topology of the phase diagrams.
Two classes of multi-critical points are identified, one of them arises only for sufficiently small
gross spin-flip rate 2 < Qc¢. The value 2, calculated analytically, provides a natural scale for
the rate 2.

It would be of interest to see which of the described phenomena qualitatively remain when
generalizing the model to include more than two internal states. Indeed, within the context of
molecular motors walking on microtubuli [7], between 12 and 14 parallel lanes are relevant.
Also, the internal states might differ in the sense of different switching rates from one to another
[28] and the built-in asymmetry may result in different phases. In the context of intracellular
transport it appears worthwhile to investigate the consequences of a coupling to a bulk reservoir,
cf [29, 30, 35]; in particular, to study the interplay of domain wall formation induced by
attachment and detachment processes as well as rare switching events.
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Appendix A. The densities in the first order approximation and the critical value ¢

In this appendix, we give details on the derivation of the analytic solution of the mean-
field approximation in the continuum limit to first-order in €, i.e. the system of differential
equations (10) and (11).
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Summing them we find

3:[20" (x;) — 11 + 8:[2p* (x)) — 1 = 0, (A.1)
such that

20" (x) — 117 + 2" () — 117 = J, (A2)
constitutes a first integral. Remember that

J = PT(Xi)[l - ,OT(XI')] + ,0i (x)[1 — ,0¢(Xi)],
such that J is given by the total current:

J=2—4j (A.3)
This equation suggests the following parameterization:

cosf = J22p" = 1), sind = J722pf — 1). (A.4)

The derivative reads

J do dp!
£ cos Qa = %, (A.5)

which leads to the differential equation
) do .
V/J sin 6 cos Qd— = Q(sin6 — cos ). (A.6)
X

This may be solved by a separation of variables:

%) sinfcos O
—x = ——db. (A7)
o0y Sin sinf — cos @

To perform the integral, the substitution y = tan 6/2 is useful. We obtain the inverse function
x = x(0):

Na

x(0) = ?G(y) + 1 (A.8)

y=tan (6/2)

Here we defined the function G (y) by

ey V2 V2=
G()’)—{1 5+ ln‘—ﬁ+1+y

}, (A.9)

and / is an constant of integration.

New Journal of Physics 9 (2007) 159 (http://www.njp.org/)


http://www.njp.org/

25 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

To obtain the inverse functions x(p') and x(p*), we have to express tan % by p' resp. p'.
Recognize that tan g can be positive or negative. We therefore define

—1 ifpt<1i
st = { o 2, (A.10)
+1 if p¥ > 5
and analogously st with 1 and |, interchanged. Now
0 1—J12Q2pt =1
tan - = s* @i =1 (A11)
2 1+J7172Q2p" = 1)

The inverse functions x(p') and x(p*) thus read:

x(ph) = ﬁG(y) +1, (A.12)

Q 1—7= 1201 -1
=gt (1= @pT=D)
y=s 1+7-120pt -1y

J
x(pY) = gG(y) + 1 (A.13)

The constants of integration [ and J =2 — 4" are determined by matching the boundary
conditions. The inverse functions of equations (A.12) and (A.13) constitute the solution to
equations (10) and (11), within the first-order approximation to the mean-field equations for
the densities in the continuum limit.

Next, we derive the result on Q¢ given at the end of section 4.4. Therefore, consider figure 4.
We are interested in the point x; », and thus in the right branch of the spin-up density profile. As
the spin-down density is in the LD phase, i.e. it is smaller than %, we have s¥ = —1 in the above
solution for p'. Thus, y < 0 in equation (A.12). At the branching point of the analytic solution,
i.e. the point x;,, we have the density %, such that there y = —1, implying G(y) = 0. Now, if
this branching point lies on the right boundary, x;,, = 0, as it does for the critical 2%, this yields
I = 0 in equation (A.12). On the other hand, the right branch satisfies the boundary condition
on the right: p"(x = 1) = 1 — B'. Upon substitution into equation (A.12), we obtain

VI
L=x(1- B = -G .
N =
which for given o, 87 is an equation for Q*(at, B1). In particular, Q*(at, B') is monotonically
increasing in G. Investigating G(y), it turns out that G(y) is in turn increasing in y. Since

y is bounded from above by y = 0, the maximal value for G(y) is provided by G(y = 0) =
1+ 14/21n (3 — 24/2). Next, we note that Q*(a*, B') is an increasing function of v/J. With the

constraint that ozgff = %, which is necessary for x,,, = 0, the largest V/J arises for o' =0, i.e.

(A.14)

VI=1. Combining both results, the maximal value for the critical rates Q*(a*, ") occurs for
a' = 0 and y = 0. Both conditions together yield

Qc=1+1v2In(3-2v2). (A.15)
Finally, we note thata¥ = 0 and y = Oimplies 87 = 0, such that Q¢ arises if @' = 0and 8" = 0.
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