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Abstract

We have considered the estimation of coefficients in a linear regression
model when some responses on the study variable are missing and some
prior information in the form of lower and upper bounds for the average
values of missing responses is available. Employing the mixed regression
framework, we have presented five estimators for the vector of regression
coefficients. Their exact as well as asymptotic properties are discussed
and superiority of one estimator over the other is examined.

1 Introduction

One of the frequently encountered features of the data collection process is the
missingness of some responses due to a variety of reasons. For example, in bio-
logical and medical sciences, some of the subjects( animal or human being ) may
die before the completion of experiment. Similarly, in agricultural studies, some
plants may be destroyed during the investigation. Likewise, in socio-economic
surveys, some persons may not be available to respond. Or some persons may
knowingly or unknowingly provide incorrect or unbelievable responses so that
they have to be discarded. In such situations, the standard statistical proce-
dures developed for data with no missing values cannot be immediately and
straightforwardly applied for deducing inferences. Consequently various strate-
gies have been evolved to find imputed values for the data set accordingly; see,
e.g., Little and Rubin (1987) and Rubin (1987) for an excellent exposition.
The thus repaired data resembles the data set without any missing value and
permits the application of standard statistical procedures for analysis. This



proposition, however, generally disturbs the known optimal properties of the
standard statistical procedures.

Sometimes some prior information about the missing responses may be avail-
able in the form of lower and upper bounds of their values. For example, if we
are collecting data on various characteristics of households for a socio-economic
study, some households in the lower stratum of the society may not disclose
their true income. Some of them may refuse outrightly while others may supply
figures which are false or unbelievable. Consequently, such values are considered
inappropriate by the data collector and are therefore treated as missing obser-
vations. However, depending upon the observations on other characteristics of
such households and matching them with complete observations or otherwise,
it may be possible to specify an interval in each case such that it is expected
to contain the income of that particular household. Such intervals specifying
the lower and upper bounds may be derived from various sources like the data
base, past experience of data collectors and users, long association with similar
investigations, stability in repetitive studies, relationships with other correlates
and / or some other extraneous considerations. In such circumstances, it may
be instructive to utilize this kind of information in finding the imputed val-
ues for missing responses, estimating the regression parameters, constructing
confidence regions and conducting tests of hypotheses.

When the prior information relates to regression coefficients in the form of in-
terval constraints, the coefficients are estimated by method of interval restricted
estimation using least squares procedures. The resulting estimators usually have
no closed form except in some particular cases and therefore further analytical
investigations are difficult to carry out; see, e. g., Escobar and Skarpness (1986),
Escobar and Skarpness (1987), Judge and Yancy (1986), Klemn and Sposito
(1980), Ohtani (1987), Ohtani (1991), Srivastava and Ohtani (1995) and Wan
(1996). Free from such a limitation and easy to implement are two alternative
procedures forwarded by Toutenburg and Roeder (1978); see also Toutenburg
(1982). One procedure involves formulating an ellipsoid enclosing the cuboid
defined by the interval constraints and then using the method of minimax linear
estimation for the regression coefficients. The other procedure consists of deriv-
ing a set of linear stochastic restrictions by treating the lower and upper limits
of the intervals as confidence limits and then applying the method of mixed re-
gression estimation. Toutenburg and Srivastava (1996) have presented a critical
apparaisal of the two procedures for the estimation of regression coefficients and
have discussed their asymptotic properties when disturbances are small. A gen-
eral conclusion emerging from their investigations is that the mixed regression
formulation yields more efficient estimators, at least asymptotically.

In view of the above observations, we propose to employ the mixed regression
framework for the estimation of coefficients in a linear regression model when
some responses on the study variable are missing but prior information in the
form of lower and upper bounds for the average values of the missing responses
is available. Such a framework is described in Section 2. The estimation of
regression coefficients is discussed in Section 3 and five estimators are presented.
Exact expressions for the bias vectors and mean squared error matrices for the
three estimators are provided and compared in Section 4. Similar expressions in
case of the remaining two estimators can be derived but they will be sufficiently



intricate and will not permit us to draw any clear conclusion. In Section 5, we
present large sample asymptotic approximations for the bias vectors and mean
squared matrices of all the five estimators and carry out efficiency comparisons.
The underlying asymptotic theory assumes that only the number of complete
observations grows large; the number of incomplete observations stays fixed.
Such a specification is relaxed in Section 6 and both are assumed to grow large.
Under this supposition, the asymptotic approximations for the bias vectors and
mean squared error matrices are given and a comparative study is made. Section
7 presents some concluding remarks. Lastly, the derivation of results stated in
Theorems is given in Appendix.

2 Specification of Model

Consider the following linear regression model with some missing responses

Ye = Xef+ec (21)
Yx X*/6+€*

where y. is a m. X 1 vector of observed responses, X. is a m. X K matrix of m,
observations on K explanatory variables and is assumed to be of full column
rank,  is a column vector of K regression coefficients and €. is a column vector
of m, disturbances. Similarly, y. denotes a m. x 1 vector of missing responses,
X. is a m, x K matrix (not necessarily of full column rank) of m, observations
on K explanatory variables without any missing value and €, is a column vector
of m, disturbances.

The elements of disturbance vectors €, and e, are assumed to be independently
and identically distributed following a normal distribution with mean 0 and
variance 0.

Suppose that there is some prior information available regarding the average
values of the missing responses in the form of lower and upper bounds:

where L; and U; denote the lower and upper bounds respectively for the expected
value of the ith element of ..

In order to utilize these constraints in the estimation of parameters, let us
consider the framework of mixed regression estimation. Following Toutenburg
and Srivastava (1996), let us treat them as p sigma limits so that the value of p
is determined by considerations like credibility and truthfulness of restrictions
(2.3). For instance, if we choose p = 3, the confidence coeflicient in more than

88%.

Thus if we write



1
a; = 5([42 — UZ) (2 4)
1 2
wz - E(Lz Uz) (2 5)
we Ccall express
a; :E(y*l) + € (Z = 1727"' ’m*) (26)

where ¢; is a random variable with mean vector 0 and variance ;.

Writing compactly, we find

a, E(y.1) €1
a2 _ E(y*z) . 6.2 @27)
. Blyan) | L em.
or
a = E(y.) +e (2.8)
= X.0+e

so that € is a m, x 1 random vector with mean vector 0 and variance matrix ¥
where ¥ is a diagonal matrix with diagonal elements as ¥1,%a, ... , ¥, -

It may be observed that (2.1) and (2.7) together mimics the mixed regression
framework because the vector a here is truely not a random vector. The equation
(2.7) serves as a kind of approximate representation of the restrictions (2.3);
see Toutenburg and Srivastava (1996) for details and its implications on the
efficiency properties of the estimators for regression coefficients.

3 Estimation of Regression Coeflicients

When only the complete observations are used, an application of least squares
method to (2.1) provides the following estimator of j3:

b, = (XéXC)ilXéyc . (31)

Obviously, such an estimator discards the remaining incomplete observations in
the available data set. We may therefore replace the elements of y. in (2.2) by
their predicted values as specified by X,.b.. Now applying least squares method
to the thus repaired model, we find the estimator of 3 as follows:

b= (XX, + XIX) ™ (Xl + XIX.D)
= b (3.2)



This implies that use of unbiased predicted values does not bring any improve-
ment; see Yates (1933) and Rao and Toutenburg (1999, Chap. 8). Besides it,
the estimator (3.2) does not utilize the available prior information.

If we consider the mixed regression framework specified by (2.1) and (2.2), an
application of least squares procedure gives the following estimator of 3:

brs = (X! X, + X/ X.) " (Xly. + X.a) (3.3)

while an application of the feasible generalized least squares procedure provides
another estimator of j3:

brars = (XX + X0 X)) (X ye + s> X[ ¥ a) (3.4)

where

. 1
2= C_-XCbC’ C_chc .
s mC_K(y )'(y ) (3.5)

is an estimator of 2. One can take (m. +m. — K) instead of (m.— K) in (3.5);
see Rao and Toutenburg (1999, Section 8.2).

Now we can take X,bps or X, bpaps as imputed values for the missing responses
in (2.2); see Toutenburg and Shalabh (1996),Toutenburg and Shalabh (2000) for
the properties and some additional results. Using these to replace y. in (2.2)
and then applying least squares method to the thus obtained equation and (2.1),
we find the following two estimators of j3:

B = (XIXe+ X.X.) N (Xlye + X1 X.brs) (3.6)
ﬂA? = (XéXc + X»I«X*)_I(Xéyc + XLX*bFGLS)

which do not reduce to b, like (3.2).

4 Comparison of Estimators: Exact Results

It is easy to see that b. is an unbiased estimator of 8 while the remaining four
estimators brs, bpars, B1 and [ are generally biased.

The bias vectors of byg and 3 are given by

B(brs) = E(brs —p)
(XX + X X) 7 X (a — X.0)
= 0 ( say) (4.1)
B(B) = E(B—p)
(X!X. 4+ XIX) ' XIX (XX, + XLX,) T X (a— X.53)
= (X!X.+ X.X,) 'X.X.6. (4.2)

Similar expressions for the bias vectors of brpgrs and ﬁg can be derived but
their functional forms will be sufficiently intricate and it will not be possible to
draw any clear inference.



From (4.1) and (4.2), we observe that

[BB)[B(B)] = 6X.X,(X'X,+X'X,) 2X'X,6 (4.3)
< 60 =[B(brs)]'[B(bLs)]

implying that the estimator ﬁl is superior to the estimator by g according to the
criterion of the length of the bias vector.

The variance covariance matrix of b. is given by

V(bc) = E(bc - ﬂ)(bc - ﬂ)l (4'4)
o? (XXt

while the mean squared error matrices of by s and 3; are

M(brs) = E(brs—0)(brs —B)' (4.5)
— O?[(X'X.) ! — A+ 88 (4.6)
M(ﬁl) = E(Bl - /3)(/31 - /B)I
= P (Ix + W)'[(X[Xe) " = Al(Ix + W) + W'66'W

W = X.X.(X!X.+X/X,)! (4.7)
A = (XIX) ' - (XX + XLX) T XX (XX + XX . (4.8)

As mentioned earlier, one can derive the exact expressions for the mean squared

error matrices of the estimators brgrs and ﬁg but they will be considerably
complex in comparison to (4.5) and (4.7).

As the matrix
(X0 X + XX (X[ X)X X + X1 X)) — (X[ XC)

is positive definite, the matrix A is also so. Consequently, from (4.4) and (4.5),
we have

D(be;brs) = V(be) — M(bps) = 0>A — 68’ (4.9)

which is a nonnegative definite matrix by virtue of Rao and Toutenburg (1999,
Theorem A.57, p. 370) if and only if

SATIS <o (4.10)

Similarly, the estimator ﬁl can be compared with b.. It is, however, difficult
to deduce any neat condition from (4.4) and (4.7) for the superiority of one
estimator over the other.

Finally, if we compare the expressions (4.5) and (4.7), it may be well appreciated

that no clear inference regarding the superiority of by g over 81 or vice-versa can
be drawn.



5 Comparison of Estimators: Asymptotic Ap-
proximations When m, Is Large But m, Stays
Fixed

In this Section, we utilize the large sample theory when the number of complete
observations grows large while the number of incomplete observations stays
fixed. For this purpose, we assume the asymptotic cooperativeness of the ex-
planatory variables in the model so that the matrix m_ ! X!X, tends to a finite
and nomnsingular matrix @) as m. grows large.

Utilizing the central limit theorem, it can be easily seen that all the five estima-
tors be, brs, brars, ﬁl and ﬁ2 are consistent for 8. Further, if we consider the
asymptotic distribution of mc ? times the estimation error, all the five estima-
tors are found to have the same asymptotic distribution which is multivariate
normal with mean vector 0 and variance covariance matrix o2 ~!. We therefore
need higher order approximations so as to discriminate among their performance
properties.

Let us first introduce the following notation:

S, = (mCXX) (5.1)
0 = —Xl(a-X.5)

e
by = Lnglrl(a—x*ﬂ).

e

From (4.1) and (4.2), it is easy to see that the bias vectors of byg and f; to
order O(m_?) are given by
My

Blbis) = S-S X X.5.6 (5.2)

c c

B(p) = (5.3)

Similar asymptotic results for the estimators bpgrs and Bg are derived in Ap-
pendix. These are stated below.

Theorem I: The bias vector of bpgrs to order O(m_?) is

2
Blbrars) = 27 8.0y — "6t 8, X U1 X, S04 (5.4)

c c

while the estimator B2 is unbiased to this order of approximation. However, if
we consider bias vector of order O(m_?), it is given by

B(f,) = m2 5 X!X.S.0y . (5.5)

C



Comparing the estimators with respect to the bias vector to order O(m_!), it
is seen that the estimators ﬁl and ﬁg are unbiased while brs and bpgrs are
generally biased. Comparing brs and brpgrs with respect to the criterion of
bias vector length to order O(m_?), we observe from (5.2) and (5.4) that bpars
is preferable in comparison to by, s when ¥; exceeds o for all i. Such a condition
is satisfied so long as o2 is less than the minimum value of ¥;, i.e.,

min(U; — L;)? > 4p?c? . (5.6)
(3

The opposite is true, i.e.,the estimator by g is better than bpgrs with respect
to the criterion of the bias vector length when o2 exceeds ¥; for all i which is
satisfied as long as

max(U; — L;)? < 4p°0? . (5.7)
2

Similarly, we see from (5.3) and (5.5) that the estimator 3, is superior to (i
according to the criterion of the length of the bias vector to order O(m_?) when
U, exceeds o2 for all i which holds true so long as (5.6) is satisfied. The reverse
is true when (5.7) holds good.

Summarizing the results, we conclude that the estimator b is unbiased while
the estimators 4, and 2 are almost unbiased; the remaining two estimators by s
and bpgrs are biased.

Next, let us compare the estimators with respect to the criterion of the asymp-
totic mean squared error matrix.

From (4.5) and (4.7), we observe that

2

1 . .
M(bis) = ——=S.——>S.20°X|X. —m209)S. + O(m.*)  (5.8)
A o’ 20° ' ' —4
M(ﬂl) = m—SC — WSCX*X*SCX*X*SC + O(mc ) . (59)

Similar results for the estimators bpgrs and Bg are obtained in Appendix.

Theoremll: The mean squared error matrices of the estimators brpgrs and Bg
are given by

2 4
M(brors) = —=Se— S.(2X107 X —m2Buby)S. + O(m:*15.10)
3 o’ ot ! I —1
M(B2) = —8c— —5S[X i XuS X ¥ X,
M mg
+XIU 1 X,S X! X,]S. +O0(m ) . (5.11)

Observing that the variance covariance matrix of b, is

V(be) = 0—250 (5.12)

me



we find from (5.8) that
D(b;;brs) = %SCXL [20%Ik — (a — X.f8)(a — X.)'] XS, (5.13)

which is nonnegative definite if and only if
(a — X.0)'(a - X.f) < 207

or

M s

Z[E(y*i) - %(L,- + U:))? < 20° (5.14)

i=1
where use has been made of Rao and Toutenburg (1999, Theorem A.57, p.370).

Thus the inequality (5.14) provides a necessary and sufficient condition for the
superiority of brs over b,.

Similarly, we observe from (5.10) and (5.12) that the matrix
4
D(be;braLs) = %scxgqu[w —(a—X.8)(a— X.B) U XS, (5.15)

is nonnegative definite if and only if

(a — X.3)9 " a— X.0) <2 (5.16)
or
= [2B(ysi) — (Li +U)]* _ 2
Z [ (Ui — L) = p? (6.17)

=1
which is the condition for the superiority of bpgps over be.

Comparing b. with B, it is obvious from (5.8) that the estimator (i is better
than b.. Similarly, it is again clear from (5.11) that (3, is superior to b.. Thus
both the estimators ; and (2 are found to be more efficient than b..

Next, let us compare the estimators brs, brars, /3’1 and /3’2 with respect to the
criterion of mean squared error matrix.

Taking the performance criterion as mean squared error matrix to order O(m;2),
it can be easily seen through a perusal of expressions (5.8)—(5.11) that both the
estimators by s and brpgrs are superior to Bl and ﬁg both so long as they are
more efficient than b.. On the other hand, when b;s and brgrs are no better
than b, i.e. the conditions (5.14) and (5.17) do not hold true, the estimators
By and B, are not only nearly unbiased but more efficient too in comparison to
the biased estimators by,s and brgrs-

Comparing (; and By, it is observed from (5.9) and (5.11) that

A oA o2

D(B1;B2) = ﬁSC[XLX*SCX,L(a%I/—l—I)X* (5.18)

C

+X! (00! — )X, S.X! X,]S.



which is nonnegative definite implying the superiority of B2 over Bl, when o2 is
greater than ¥; for all i. This condition is satisfied as long as (5.7) holds good.

Similarly, it is seen from (5.17) that /3’1 is superior to B2 when o2 is less than
W, for all i. This condition is satisfied as long as (5.6) holds true.

6 Comparison of estimators: Asymptotic Ap-
proximations When Both m. and m, are Large

Now let us analyze the properties of estimators when both the number of com-
plete observations and the number of incomplete observations grow large. Such a
specification has, however, little appeal from the viewpoint of situations encoun-
tered in practice. It is merely for academic pursuit and the results may interest
practitioners to appreciate the consequences when m. and m, grow large. Ac-
cordingly, it is assumed that both the matrices m ' X! X, and m;*X. X, tend
to finite and nonsingular matrices as m. and m. tend to infinity.

We first introduce the following notation:

S, = (LXQXC)*1
me
G = (—XIX.)
™
My
f =
me
1
Gy = (—X.v'Xx,) (6.1)
so that
1 1
(XX, +X!X,)"' = —(Ix+fS.G)'S.=—H (6.2)
M me
A 1 A 1
(X! X, +’X 0 X))t = —(Ix+ fo?S.Gy) 'S. = —Hg . (6.3)
M me

From Appendix, we have the following results:

TheoremlIII: The leading terms in the bias vectors are given by

B(brs) = fHO (6.4)
B(brgrs) = fo’Hgby (6.5)
B(B) = f!HGH# (6.6)
B(3) = f0*HGHyby (6.7)

It may be mentioned that (6.4) and (6.6) are exact results while (6.5) and (6.7)
are asymptotics.

Thesg results clearly indicate that all the four estimators, viz., b.s, braLs, /3’1
and (3, are inconsistent for 8, while b, is a known consistent estimator.

10



If we compare the estimators with respect to the length of bias vector, it is easy
to see that

[B@)] [BG)] < 1BOLS) (Bbws) (68)
ECIREES)

which implies the superiority of /3’1 over brs and /3’2 over brars.

IN

IN

[B(brars] [B(brars)] (6.9)

As the estimators are not consistent, we consider their variance covariance ma-
trices rather than their mean squared error matrices for comparing them.

Theorem IV: The asymptotic approximations for the variance covariance matrix
to order O(m_ ') are given by

Vibrs) = ;—iHsclﬂ (6.10)
V(brars) = ;—ZC(H\I/SC1H\p+2f202H\p501H\1;9\1;9(1,H\1;SC1H\p)(6.11)
V(p) = m—i(IK+ FGHYHS.'H(Ix + fGH) (6.12)
V(3) = ;—iH[(IK + fGHy)S ' (Ix + fHyG)
+2f*0*Hy S ' Hyby 0y Hy S, Hy G H . (6.13)

It is rather inappropriate, in our opinion, to make a comparison of the consis-

~

tent estimator b, with the inconsistent estimators brs, brars, 51 and 8. We
therefore delete it and restrict our attention to inconsistent estimators only.

It is interesting to observe from the expressions (6.10), (6.12) and (6.13) that
bps is better than 3 and s according to the criterion of asymptotic variance
covariance matrix.

Next, we observe that
H™' — Hy' =m X, (I, — 0¥ HX, (6.14)

is a positive definite matrix when ¥, ¥,, ..., ¥,, are all greater than o? which
holds true if Ui, exceeds 02 where ¥,,;, denotes minimum value in ¥;’s; see
(5.6). And then (Hy — H) is positive definite. The opposite is true, i.e. ,
(H — Hy) is positive definite when ¥, is less than 0% which holds so long as
(5.7) holds good.

It thus follows from (6.10) and (6.11) that by s is better than bpgrs when Wy,
is greater than o2 which is satisfied as long as the condition (5.6) holds true.

Similarly, we have

D(brs;brars) = V(brs) —V(brars)

o’ -1 -1
= —[HS."H—-HyS_, Hy

me

+2f20'2H\ysng\pelpaipH\pSng\y] (615)

11



which is nonnegative definite if and only if
0y HyS 'Hy(HS'H — Hy ST Hy) ' Hy ST Hyby < 2f%0° (6.16)

provided that W, is less than o2 which is satisfied so long as (5.7) holds true.

Under the condition (5.7) combined with (6.16), the estimator bpgrs is better
than bLS-

In a similar manner, we can compare the expressions (6.12) and (6.13), and

can deduce conditions for the superiority of 8; over Bg and vice-versa but such
conditions are not attractive as they are hard to verify in any given application.

7 Some Remarks

We have considered the estimation of the coefficients in a linear regression model
when some of the responses are missing but plausible lower and upper bounds
for them are available. The mixed regression framework for the utilization of
such prior information is presented and five estimators for the vector of regres-
sion coefficients are envisaged. One estimator is the traditional least squares
estimator which discards the incomplete observations and ignores the prior in-
formation too. The remaining four estimators use the incomplete observations
as well as the prior restrictions. Efficiency properties of these estimators are
analyzed employing some exact as well as asymptotic results and conditions are
obtained for the superiority of one estimator over the other. However, some
further exploration is required. For instance, it will be interesting to conduct
a simulation experiment and to investigate the properties of estimators. Appli-
cation of these estimators to some real-world data sets may also lead to some
interesting findings and help us in identifying the situations where use of prior
information may bring substantial gain in efficiency. It will be interesting to
carry out a similar investigation for evaluating the performance of estimators
arising from the ellipsoidal formulation of restrictions (2.3) and use of minimax
linear estimation approach considered by Toutenburg and Wargowske (1978).

Appendix

For the derivation of the results in Theorem I and Theorem II, let us write

1
u = 1/2Xéec
_ Loy e
w = ( 775 €c€e = Me o)

so that 4 and w are of order Op(1).

Using these, we observe from (2.1), (3.4) and (3.5) that

12



(brgLs —B) =

= (1-—) "+ =5 -—5) (A.1)
. w Ko* —u'Scu 39
= o+ mi/g - + Op(m, %)

(X!X,+ X0 X)) [Xlee + 82 X107 a — X.08)] (A2)

Retaining terms to order O(m_ 1), we get

{I—% (Y s XX, + 0 (mz)} 1
e ) S XX+ Oyl

: [LS wtm (‘7—2 + -2 )S.bg + O (m2)]

mi/Q ¢ ““me, mg/Q ¢ pAte

1 Mo 1 9 1
mi/g Seu + o~ S0y + Wsc(m*we\p — o’ X, U7 X, S.u)
+Op(mc_2)

Brgrs = E(brars —B)
LTS

c

which is the result (5.4) of Theorem I.

Similarly, to order O(m_?), we have

M(brars)

_ 1

= E(brars — B)E(brars — B)’
= LSCE(uu')SC +
m,

2
" S.[BwE () + E(w)fy]S.
-f—iSC (04 m?204 0% + M.y E(wu') + m.E(wu)dy
—0*E(uu)S. X0 X, — o* XU X, S.E(uu')]S.

04
2

S.(2X' T X, — m20g8y)S.
M m;

by virtue of the normality of disturbances.

This provides the result (5.10) of Theorem II.

In a similar manner, using (A.2), we can express

13



(B2 =B) = (XiXo+XIX)7T'[X, €c + XX, (bFGLS - B)] (A.3)
1 -1
= (I—{—m—CSCXiX*) m1/2SU+ 3/ZSXXSU

e ,
oz S XIS+ — /25 XX, S.(m.wby

C

—o? XL X, S.u) + O, (m; )]

2
= — /2 Seu+ 275, X! X, S 04
me mc

m5/2SXXS(m*w9q,—UZX\II1XSu)+O( 3.

Thus the bias vector to order O(m_?) is given by

R 2
B(f) = ”;*—jscxgx*scaw

C

while the mean squared error matrix to order O(m?) is

2
1
M(3) = m—S + — Se[m X, XSy E(wu') + m. E(wu)fy Se X, X.
—UQX*X*Scx;\I:—lx*SCE(uu') —0?B(uu)S. X9~ X, 5. X! X,]S.

2 0.4

= 25, - TS [X!X.S. XL 07X, + XU XS, X! X,]S..
me m
This establishes the result (5.5) of Theorem I and (5.11) of Theorem II.
Next, let us consider the results stated in Theorem III.

It can be easily seen that

(bs —B) = (X X+ X.X,) '[Xl(a— X.0) + X/e] (A.4)
= [y + fS.G)” (f50+ 1/QSu)
= (f9+ 1/25 u)
whence we have
(ﬂAl - ﬂ) = (XéXc + X,LX*)_l[X,LX*(bLS - ﬂ) + Xéec] (A5)

= f(Ig + fS.G)~'S.G(Ix + fS.G)~'S.0
+(Ik + [5.G) Ik + [5Gk + fS.G) *]Scu
= f?HGHO+ H(Ix + fGH)u
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Taking expectation, we find the results (6.4) and (6.6).

In a similar manner, using (A.1), we can express

(brars —B) = ([((Ix + fo?S.Gy) + f1/25 Gy +--]7'  (A6)
mMe

[fo?Seby + ——

fl/ZS HyGyHy + - ]
me

Syt ]

= [Hy -

[fo?S.0y + ——=(wfly +u) + -]

1/2

= fJ2H\p9\p+ £+O ( )

e /2
where

&= wa\psc_lH\peqj + Hyu .

Likewise, utilizing (A.6), we can write

(B> — B) = fPo* HGHyby + H(u+ fGE) + Op(m; ") . (A.7)

1/2

Taking exspectations on both the sides in (A.6) and (A.7), we find the results
(6.5) and (6.7) stated in Theorem III.

Finally, we consider the results of Theorem IV.

From (A.4), we observe that

Vibrs) = E[bLS - E(bLS)][bLS — E(brs)]
= —HE(uu VH = m—HS ‘H

me

which is the result (6.10).
Similarly, from (A.5), we find

o2

V(ﬁl)zm H(Ix + fGH)S: (Ix + fHG)H

c
which yields the result (6.11).
Next, we observe that

1
BE(w?) = —E(ce)? —20"E(ele.) + meo?

Me
= 20!

15



so that
_ 1 !
V(bFGLS) - m_CE(ff )
2
= J—H\p(sc_l + 2f20'2Hq;0\1;0(1,H\1;)H\1;
me
and
1
V) = HBu+ fGOW + fEQ)H

2
- 1‘;—H[S;1 + f(GHgST' + ST HyG)

Cc

+f2GHy S, " HyG + 20° f*Hy S, HyOy0y Hy ST Hy|H
2
- ;—H[(IK + fGHy)S - (Ix + fHuG)

+202 f*Hy S, ' Hy0404 Hy S, ' Hy|H

which provides the result (6.11) and (6.13).
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