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First order reversal curve (FORC) diagrams are a useful tool to analyze the magnetization

processes in magnetic materials. FORC diagrams are computed from measured first order reversal

curves on sintered Nd2Fe14B magnets. It is shown that the FORC diagram simplifies if the first

order reversal curves a desheared using the macroscopic demagnetizing field given by the

geometry of the sample. Furthermore the resulting FORC diagram is almost identical to the FORC

diagram measured for a thin platelet of the same material. This opens the possibility to compare

experimental FORC diagrams with FORC diagrams computed by micromagnetic simulations.
VC 2012 American Institute of Physics. [doi:10.1063/1.3678434]

I. INTRODUCTION

Sintered NdFeB-based magnets give the highest energy

density product.1 Thus they have a wide application area

whenever size or weight of the magnet becomes important.

Analysis of the coercive field as function of temperature2

indicate that magnetization reversal in sintered NdFeB-based

magnets is governed by the nucleation and expansion of

reversed domains. This proposition has not been confirmed

yet by micromagnetic computation, which because of the

huge grain size of sintered magnets, so far has been limited

to two-dimensional simulations3 or to studies of microstruc-

tural details such as grain boundary junctions.4

First order reversal curve (FORC) analysis is a useful

tool to understand reversal mechanisms, switching field

distributions, and interactions in magnetic systems.5,6 In this

paper we apply FORC analysis to sintered Nd2Fe14B-perma-

nent magnets and compare experimentally obtained curves

with micromagnetically computed ones.

II. MICROMAGNETIC AND NUMERICAL
BACKGROUND

We apply finite element micromagnetic simulations7 for

the simulation of the hysteresis loop and the first order rever-

sal curves of a sintered permanent magnet. The method is

modified in order to take into account the different character-

istic length scales in a sintered magnet. Firstly, the grain size

of sintered magnets might well exceed 1 lm. Secondly,

microstructural features in the order of 1 nm drastically influ-

ence the magnetization reversal process. Defects near the

grain boundary with a size of around 0.5 nm to 2 nm play a

critical role in magnetization reversal.2 In order to treat the

magnetostatic interactions and magnetization reversal in an

ensemble of grains of a sintered magnet, we apply the fol-

lowing two techniques: (1) The demagnetizing field is eval-

uated by direction integration over the field sources at the

boundaries of the grain. (2) We add an additional torque to

compute the influence of soft magnetic defects on magnet-

ization reversal.

The simulation of large grained materials is a challenge

for conventional micromagnetic simulations. Based on com-

puter experiments Rave et al.8 found that the mesh size has to

be smaller than the exchange length, in order to compute

the nucleation field of a Nd2Fe14B particle. In Nd2Fe14B the

exchange length is d¼ (A/K)1/2¼ 1.35 nm. Here A is the

exchange constant and K is the magnetocrystalline anisotropy

constant. Therefore a small mesh size is required near the

edges of the grains where a reversed domain will nucleate.

Near the edges the modulus of the demagnetizing field, Hd,

reaches its maximum.9 Near the edge the demagnetizing field

as a strong transverse component and thus creates a torque on

the magnetization. This leads to the well known flower

state.10 Near the edges the magnetization, M, rotates out-

wards. An external field, Hext, will create an additional torque.

The flower state becomes more pronounced when the external

field is increased. Exchange interactions and magnetocrystal-

line anisotropy balance the torque created by Hd and Hext.

When Hext reaches the nucleation field a reversed nucleus is

formed near the edge which is energetically more favorable.

Rave et al.8 looked into the individual contributions to the

total torque near the edge. The demagnetizing field shows a

singularity at the edge.9 The finer the mesh, the closer Hd is

evaluated near the edge. Therefore, flower state becomes

more pronounced and the nucleation field decreases with finer

mesh size. On the other hand, a smaller computational grid,

leads to a higher local exchange field. At a grid size of [1/2]d
or smaller the torque from the demagnetizing field and the tor-

que from the exchange field balance each other. A further

mesh refinement of the mesh will not change the results.
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The purpose of this study is to investigate magnetization

reversal taking into account the interactions between many

grains. A uniform fine grid or to a graded mesh that becomes

smaller near the grain boundaries will lead to billions of

unknowns, system sizes that are too large for available com-

putational resources. We use the above findings to construct

a micromagnetic algorithm that allows a uniform computa-

tional grid size which is orders of magnitude larger than d.

We solve the Landau-Lifhsitz Gilbert equation whereby the

external field is a given function of time, in order to compute

the loops and the reversal curves.

1þ a2

cj j
@M

@t
¼ �M�Heff �

a
Ms

M�M�Heff ;with

Heff ¼ HextðtÞ þHex þHd þHa:

(1)

Ms is the spontaneous magnetization. M is the magnetization

and Heff is the effective field. We apply a weak formulation

for the computation of the exchange field, Hex, and the ani-

sotropy field, Ha, at the nodes of a tetrahedral grid.7 The

demagnetizing field at the integration points of the finite ele-

ments is computed from surface charges at the grain bounda-

ries. We use the nodes of the grid as integration points

except for nodes that are on grain boundaries. For these

points the fields are evaluated at a distance of [1/2]d from

the grain boundaries. The field evaluation is accelerated

using hierarchical matrices to evaluate the surface

intergrals.11

A key feature that considerably influences the magnet-

ization reversal process in sintered Nd2Fe14B magnets are

magnetically soft defects. Near the grain boundary the

N2F14B crystal lattice is distorted12 and the magnetocrystal-

line anisotropy is close to zero. Thus magnetization reversal

is very similar as in exchange-spring systems.13 Reversal

starts in the soft magnetic region. Because of the difference

between the grain size and the thickness of the defect layer,

we are not able to resolve the defects with the finite element

mesh. Instead we add an additional torque to the nodes at the

grain boundaries. The nucleation field of a hard magnet with

a soft magnetic defect is given by14

Hn ¼ b
A

t2l0Ms
; (2)

where b depends on the geometry and t is the thickness of

the defect. If the local field, HdþHext, exceeds Hn the mag-

netization will reverse. Then we modify the effective field

for nodes near soft magnetic defects by

H0eff ¼ Heff þ b
A

t2Ms

ðHext þHdÞ
Hext þHdj j : (3)

The newly developed boundary integration method has been

tested for a cubic Nd2Fe14B particle. First the coercive field

as function of particle size was calculated with conventional

finite element micromagnetics. In order to account for the

mesh size requirements8 and the thin soft magnetic defects2

we use a geometrically graded mesh that becomes finer to-

ward the surface of the cube. Then the simulation was

repeated using a uniform mesh and boundary integration

method. Figure 1(a) compares the computed coercive field of

the different methods. The thickness of the distorted layer

with K¼ 0 is 0.8 nm. For a particle size of 300 nm the num-

ber of finite elements is 500 000 for the graded mesh and fi-

nite element method. For the uniform mesh and the

boundary integration technique the number of elements is

only 500. Thus we can model large scale multigrain struc-

tures with the new method.

The three-dimensional grain structure follows from a

Voronoi-construction.3 First a cube is divided into n3 regular

sub-cells. Within each cell we place a seed point for grain

growth at a random position. Additional seed points that are

mirrored at the magnets outer surface are added. Grain

growth with an isotropic growth velocity leads to the grain

structure. For the final finite element model only the grains

inside the cubes are meshed into tetrahedral finite elements.

The grains are separated by a 2 nm thin non-magnetic phase.

Figure 1(b) shows the resulting grain structure and the finite

element mesh.

III. RESULTS AND DISCUSSION

A set of first-order reversal curves measured on a sin-

tered Nd2Fe14B magnet of cubic shape is shown in Fig. 2(a).

The corresponding FORC diagram of Fig. 2(b) exhibits a

complex peak structure. To identify the inherent physics a

deshearing is performed with a demagnetizing factor of

N¼ 0.33 to create the FORC diagram that corresponds to a

FIG. 1. (Color online) (a) Comparison of finite element micromagnetics on

a graded mesh (solid line) with the boundary integration method (dots) for

computing hysteresis properties. The plot gives the coercive field of a

Nd2Fe14B cubic sample as function of size. (b) Grain structure and finite

element mesh of computer model of a sintered Nd2Fe14B magnet.
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platelet shaped sample as shown in Fig. 2(d). Remarkably

the FORC of the platelet sample reveals a simple structure of

a well defined peak broadened in two directions into a ridge

in a correlated manner as captured by the curvature of the

ridge, which yields itself to a much more transparent physi-

cal interpretation. Figure 2(d) closely resembles the FORC

diagram measured for the same magnetic material directly in

a platelet shape.

Figure 3 shows FORC curves simulated for a cubic sam-

ple. First order reversal curves were computed for 64 grains

with a diameter of 1 mm. The first-order anisotropy constants

K for each grain were taken randomly from a Gaussian distri-

bution with a mean of <K>¼ 4.2 MJ/m3 and a rK/<K> of

10%. The magnetization is m0Ms¼ 1.61 T and the exchange

constant is A¼ 7.7 pJ/m3. The thickness of the distorted

layer at grain boundaries is t¼ 0.51 nm. The easy axes were

uniformly distributed within a cone. The opening angle of

the cone is adjusted in order to achieve a given degree of

alignment f, where f ¼
P64

i¼1 cosðhiÞ=64 and hi is the mis-

alignment angle of grain i. The first order reversal curves

were averaged over 5 different realizations of K distributions

and then desheared with a demagnetizing factor of N¼ 0.33

as the experimental FORCs. The resulting FORC diagrams

are shown in Fig. 3. The resemblance between the measured

and the simulated FORCs is striking, suggesting that the

simulated model is capturing the physics of the experimental

samples with high fidelity.

Figure 3(a) shows magnet with medium degree of align-

ment of f¼ 0.83 and Fig. 3(b) shows the result for a magnet

with the same grain structure but an alignment of f¼ 0.93.

Visibly, increasing alignment increased the average value

of the coercivity distribution and decreased the width of this

distribution, both of them desirable for improving magnet per-

formance. Here a note of caution that our simulations do not

include thermal fluctuations, which may lead to a lower aver-

age coercive field at better alignments.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support by

Toyota Motor Corporation and the Austrian Science Fund

(SFB F41).

1J. F. Herbst and J. J. Croat, J. Magn. Magn. Mater. 100, 57 (1991).
2H. Kronmüller, K.-H. Durst, and M. Sagawa, J. Magn. Magn. Mater. 74,

291 (1988).
3T. Schrefl and J. Fidler, J. Magn. Magn. Mater. 111, 105 (1992).
4D. Suess, T. Schrefl, and J. Fidler, IEEE Trans. Magn. 36, 3282 (2000).
5C. R. Pike, C. A. Ross, R. T. Scalettar, and G. Zimanyi, Phys. Rev. B 71,

134407 (2005).
6M. Winklhofer and G. T. Zimanyi, J. Appl. Phys. 99, 08E710 (2006).
7T. Schrefl, G. Hrkac, S. Bance, D. Suess, O. Ertl, J. Fidler, in Handbook of
Magnetism and Advanced Magnetic Materials, edited by H. Kronmuller

and S. Parkin, (John Wiley and Sons, 2007), Vol. 2, pp. 765–794.
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FIG. 2. (Color online) (a) First order reversal curves measured

on a cubic Nd2Fe14B magnet. (b) corresponding FORC dia-

gram. (c) First order reversal curves desheared with a demag-

netizing factor of N¼ 0.33; (d) corresponding FORC diagram.

FIG. 3. (Color online) FORC diagram of a modeled sintered magnet with

degree of alignment (a) f¼ 0.83 and (b) f¼ 0.99, with otherwise identical

computation and processing parameters. The coercive force of the major

hysteresis loop is (a) 1.7 T and (b) 2.1 T.

07A728-3 Schrefl et al. J. Appl. Phys. 111, 07A728 (2012)

 [This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

129.187.254.47 On: Tue, 05 Nov 2013 08:37:49

http://dx.doi.org/10.1016/0304-8853(91)90812-O
http://dx.doi.org/10.1016/0304-8853(88)90202-8
http://dx.doi.org/10.1016/0304-8853(92)91063-Y
http://dx.doi.org/10.1109/20.908770
http://dx.doi.org/10.1103/PhysRevB.71.134407
http://dx.doi.org/10.1063/1.2176598
http://dx.doi.org/10.1016/S0304-8853(97)01086-X
http://dx.doi.org/10.1016/0304-8853(89)90122-4
http://dx.doi.org/10.1063/1.341858
http://dx.doi.org/10.1007/s00607-003-0019-1
http://dx.doi.org/10.1063/1.3519906
http://dx.doi.org/10.1063/1.1714613
http://dx.doi.org/10.1088/0953-8984/15/20/202

