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Abstract

The success of a newly founded company or small business depends on var-
ious initial risk factors or staring conditions, respectively, like e.g. the market
the business aims for, the experience and the age of the founder, the prepa-
ration prior to the launch, the financial frame, the legal basis of the company
and many others. These risk factors determine the chance of survival for the
venture in the market. However, the effects of these risk factors often change
with time. They may vanish or even increase with the time the company is in
the market. In this paper we analyse the survival of 1123 newly founded com-
panies in the state of Bavaria, Germany (see Briiderl, Preisendorfer & Ziegler,
1992). Our focus is thereby primarily on the investigation of time-variation of
the initial factors for success. The time-variation is thereby tackled within the
framework of varying coefficient models, as introduced by Hastie & Tibshirani
(1993), where time modifies the effects of risk factors. An important issue in
our analysis is the separation of risk factors which have time-varying effects
from those which have time-constant effects. We make use of the Akaike

criterion to separate these two types of factors.
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1 Introduction

In times of economic change many new firms come into the market, as e.g. in recent
years start-up companies have become a talking point. It is of great interest for
economists and financiers, as well for the company founders of course, to predict the
success and the survival chances of the company. Of particular interest at the time-
point of launching the business is thereby the investigation of available indicators
of success, called starting conditions or risk factors which known at the beginning.
These may be used in the prognosis of success or failure. Although a prognosis right
from the start is important, one also often wants to know the chances of survival
after some years in the marketplace. Then, the initial indicators which are most
influential at the beginning, might loose their prognostic power as their effect varies
with time. In this paper the objective is to investigate if and how the effects of

starting conditions vary over the time a company is in the market.

We consider a sample of 1123 firms which have been founded during the years
1985 and 1986 in the state of Bavaria in the southern part of Germany. The dataset
is available from the Central Archive for Empirical Social Research, University
Cologne, Germany (http://www.gesis.org/ZA/). The original survey consists of

1849 firms but we pursue a complete case analysis here.

The data have been thoroughly investigated before in several papers by Briiderl,
Preisendorfer & Ziegler (1992) or Briiderl (1995). The authors did not however
investigate any time variation of effects. In general, the problem in the investiga-
tion of time variation in the effects of starting conditions is, that many influential
variables are to be considered but possibly only a few of them have time-varying

effects. It is therefore of particular interest to distinguish between variables which



have time varying effects and variables which have time-constant effects. We do this

by applying an Akaike criterion to different models for the data.

(Table 1 about here)

The variables considered in our analysis are given subsequently, see also Table 1.
We consider variables describing the legal and financial frame of the company, as
well as the number of employees and the length of preparation time for the business.
Moreover, we investigate the effect of the target market for the business and the
qualifications of the owner. In particular we include the following variables in our

analysis.

e Legal basis of the business
Based on the German law we classify the business in small business (legall = 1,
“Kleingewerbe”), partnership (legal2 = 1, “Personengesellschaft”) and joint-stock

companies (“Kapitalgesellschaften”), which is taken as reference category.

e Financing of the business
Companies without starting capital at the time-point of foundation are treated as
reference category. For other companies we record whether they start with outside

capital (out.capital = 1) or own company capital (in.capital = 1).

e Number of employees
We treat a single person business as reference category and distinguish between
companies with 2 or more employees (employl = 1) respectively with 3 or more

employees (employ2 = 1).

e Preparation of business

Companies were prepared by a planing process and/or a trial period or lead time.
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We record whether these preparation periods were longer than 6 months (plan = 1

if business was planed > 1/2 year, lead = 1 if trial period > 1/2 year).

e Target market of business

The target market is described with with its price level (price = 1 if the target
market has high price level, 0 otherwise), and whether the product offered or pro-
duced is already available in the market (product = 1 if product is in the market,
0 for new development). Moreover it is recorded whether the business aims for a
national or international market (national = 1 if the target market is national, 0
for international) and whether the target market is a niche market with specialised

customers (customer = 1 if target customer is not special, 0 for special customer).

e Founder of the business

The founder of the business is described with his/her gender (gender = 1 for males,
0 for females) and age (agel = 1 for junior owner with < 30 years of age, 0 otherwise;
age2 =1 for senior owner older than 40 years, 0 otherwise). The education of the
owner is characterised by its school and higher education degree (school = 1 for
high-school degree, 0 otherwise; training = 1 for master degree including craftsman
or university, 0 otherwise) Moreover the experience of the owner in the branch and

area of business is considered (branch = 1 for expert of branch, 0 otherwise)

Since the exact date of failure is of minor importance, we consider discrete survival
models where time is measured in months. Figures 1 and 2 show the size and the
time-variation of the above effects. As can be seen from the plots, some effects
clearly change with time, while others remain constant. We will apply an Akaike

criteria to separate the two sets of covariables, i.e. those with time-varying and those



with time-constant effects.

The paper is organised as follows. In Section 2 we introduce the model which
yields the estimates shown in Figures 1 and 2. We introduce semiparametric model
where some effects are time-varying and others or time-constant. Model selection
based on the Akaike criteria is introduced to distinguish between risk factors with
time varying and time constant effects, respectively. In Section 3 we apply the mod-
elling approach and determine the factors influencing the success of new companies.
Technical details as well as a description of the estimation routine is postponed to

the Appendix.

2 Survival Model with Varying Coefficients

2.1 Discrete Survival Model

Let T; be the (true) survival time of the i-th company. This may be unobserved
as the company might be still in business. Instead, we observe the right censored

version of survival time C; and denote with d; the censoring indicator with

5 — 11—;<Ci
o0 >0

Thus 0; = 1 indicates that failure has been observed, i.e. the business got bankrupt,
while 0; = 0 indicates that the company is still in the market at the end of the
observation period. In the following, random censoring is assumed, which means that
T; and C; are considered as independent. Survival is measured on a discrete scale
like monthly intervals and the distribution of J; implicitly assumes that censoring
takes place at the beginning of the interval which determines the discrete scale. For

discrete time measurements the essential instrument to investigate survival is the



discrete hazard function
At) = P(T=tT >1). (1)

The hazard function gives the probability for failure in the next time period. We

model A(¢) to depend on covariates or risk factors, respectively, by assuming

Altlr) = h{fo(?) +};$kﬁk(t)} (2)

where h(:) is a known response function. A common choice for h(-) is the logit
function which is used in the following. In (2), fy(¢) is the smooth baseline hazard
while S (t) is the effect of the covariable z;, which is allowed to vary with time as
smooth but unspecified functions, £k = 1,..., K. One may consider the variation of
the effects to mirror the interaction between the covariates x; and the survival time
t. In general, the covariates z; may also be time-varying itself, i.e. x = x;. For
simplicity of notation and also for ease of interpretation we restrict the presentation

in the following to covariates which are constant over time.

Model (2) provides a large amount of flexibility as seen from Figures 1 and 2.
This is since the shape of the effects is unspecified at all. However, model (2) may
not be parsimonious at the same time since some of the covariate effects appear to
be constant over time, i.e. (i (t) = [i. It seems therefore advisable to extend (2) by
allowing for a mixture of time varying and time constant effects. This is achieved
by the semiparametric model

Atlz) = h{Bo(t) + D arBe(t) + > xkfr} (3)
kev kec
where V is the index set of covariables with time-varying effect and C is the index

set of time-constant effect variables.



In the analysis of the data it is of particular interest to determine the sets V and
C of time-varying and time-constant effects. We will make use of the Akaike criteria

and select a flexible but still parsimonious model.
2.2 Model-selection

The selection of an appropriate model has in general to consider two components.
First a bandwidth h used for smoothing has to be selected. Secondly the sets V and
C of covariates with time varying and time constant effects have to be determined.
For reasons of interpretation of the model, the second point of the model selection is
more important than the first one and is therefore emphasized here. Let M be the
model determined by specification of index sets C and V and let 7, denote the corre-
sponding predictor, i.e. in model (3) one has ny = Bo(t) + > key Tk (t) + X kee Tr B
Correspondingly, s denotes the fitted predictor. The Akaike information for model
M is then defined by

AIC(M) = —2(fju) + 2 dim(M) (4)

where 1(-) is the likelihood evaluated at the predictor (see appendix for details) and
dim(M) denotes the dimension or the degree of model M. The intention is to select
a model M which miniizes (4). In the time constant effects model M, with A(¢|z)
= h{Bo(t) + > pec xrPx}, i.-e. the number of the elements in C. In the solely smooth
model My, as given in (2), we make use of approximations as derived in Kauermann
& Tutz (2000) and define the dimension by the trace of a smoothing matrix. This

means dim(My) = |V|tr(Sy) where Sy, is the T x T dimensional smoothing matrix
-1

T
Sy,tj = WTj (Z’wts’fs> (5)
s=1

where w;; = K{(t—j)/h}/K(0) with K(-) as unimodal, symmetrical kernel function,

h as bandwidth and 7; as the number of observations at risk at time j, i.e. 7; =

7



* 1 0(C; > j) with 6(-) as Indicator function. Since wy = 1 one obtains

-1
dim(My) = |V| ET:Tt <ZT: wts7_5>

t=1  \s=1
Note that dim(My,) > |V| where equality holds if bandwidth A — oo. In Kauer-
mann & Tutz (2001) it is shown that if profile likelihood estimation is used in the
semiparametric model My ¢ as given in (3), the smoothing step and the parametric
fit are “locally orthogonal”. This means that the degree of a semiparametric model

can be defined by
dim(Myc) = [V|tr(Sp) + [C]. (6)

Note that dim(My) and dim(M,) as given above result as special cases of (6).
In the next session we use (4) to choose an appropriate model for the survival of

companies.

3 Survival of Newly Founded Companies

We return to the data introduced in Section 1. As a first step, model (2) with
all 18 covariates as described in Section 1 is fitted. (The smoothing parameter h
was determined by minimizing the Akaike criterion yielding h = 10 for K(-) as the
normal kernel) Model (2) allows all of the coefficients to be time-varying as seen
from Figures 1 and 2. The baseline clearly shows a quadratic shape which indicates
that the risk for getting bankrupt is increasing in the first 18 months and is slowly

decreasing afterwards.
(Figures 1 and 2 about here)

We included the fitted time-constant effects resulting from model M. as hori-

zontal lines. It is obvious that the effects given by the horizontal lines represent an
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average across the time-variation. For some covariates this seems adequate while for
others time-variation is obvious. For example the time-variation in the legal basis
is very close to a straight line, thus a time-constant effect seems to be adequate.
In contrast, for variable out.capital, which indicates whether the company started
with outside capital, a time-constant effect seems not appropriate as the effect is
decreasing across time. Although the time-constant effect is negative and signals a
slight reduction for the relative risk for companies going bankrupt if they have out-
side finance, the risk is actually not reduced in the start up period but it increases
after about 2 years. This means that firms which were able to raise money before

launching have a better chance of survival in the long run.

(Table 2 about here)

We now make use of the Akaike criterion to find an appropriate model for the
data, i.e. to separate between time-constant and time-varying covariates. Table
2 shows a selection of models which have been fitted. From the top downwards
the number of variables modelled with time-variation is successively reduced. The
minimal model M, (model 5) is the model shown in Figures 1 and 2 as horizontal
dashed lines. Clearly, based on the AIC criterion model 5 seems not adequate
compared to other models. This indicates that there is time variation for some of the
risk factors considered. The model with smallest AIC' value is model 4 where only
out.capital, plan, price and age are time-varying. The estimated varying coefficients

are given in Figure 3 and fitted time constant-effects are listed in Table 3.

(Figure 3 and Table 3 about here)



It is seen from the effect of the variable plan, that if the launch of the new business
was planed well in advance it reduces the hazard during the starting up period, but
the effect vanishes with time and disappears after being in the market for about 3
years. The same holds for the variable price, meaning that a new business which
aims for a high price market has a reduced risk of failure for the starting up period.
This advantage however fades away after about three years. Finally, the age of the
person who is running the business has a time-varying effect. If the person who is
in charge of the business is young (le 30 years) the hazard is increased. This effect

decreases with time even though it does not vanish.

Table 3 shows the time-constant effects some of which are not significant. Refit-
ting the model with the significant variables provides similar parametric estimates
as seen from Table 2 (model 4*). The smooth estimates also resemble very much
those from model 4 and are therefore not shown. The constant effects show that
the legal form of the company is a time constant risk factor indicating an increased
risk for small businesses and partnerships compared to joint stock companies. If a
company is large enough at the launch to employ > 3 people it proves to have better
survival chances. Moreover, if the company was run in a trial period it reduces the
risk of failure. Companies aiming for a national market only and companies serving
a niche market with specialized customers also have better chances to remain in
the market. Finally, prior knowledge of the branch is clearly an advantage for the
company. All these effects remain constant over the time the company is in the

market.

10



4 Discussion

The analysis shows that the effect of risk factors for the survival and success of
newly founded companies can vary with the length of time that the business is in
the market. This means that even though at the launch of the company some of
the factors may be useful for predicting its probability of survival in the market, the
predictive power can vary and decrease with the age of the company. On the other
hand, the analysis also shows that not all risk factors have a time varying effects

but some preserve a constant prognosis power even after years.

A Technical Detalils
A.1 Varying Coefficient Model

Local Likelihood

We describe briefly how to fit model (2) by local likelihood. Let observations be
given by (t;,0;,2;), i = 1,...,n, where time ¢; = min(7;,C;) is the minimum of
failure time 7; and censoring time C;. Assuming random censoring, the likelihood

contribution of observation ¢ is given by

t;—1

= el JT0 - AGle) ™)
where the constant ¢; = P(C; > ;)% P(C; = t;)'7% is considered as non-informative
and is therefore omitted in the following (see e.g. Fahrmeir & Tutz, 2001, chapter
9). For ease of presentation it is useful to rearrange the data by using two types of

indicator variables. The variable
it = 0 otherwise

indicates failure at time point ¢ while

1 ift<t
0y = .
0 otherwise
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indicates whether the firm belongs to the risk set at time point . Note that by
construction d;; = 1 implies ¢; > ¢. It is easily seen that based on (7) the log
likelihood contribution for the ith firm has the form Y-/_, 8;0;{3(¢)} with T as

maximal survival time and

LadB@)} = O [yalog{A(t; z:)} + (1 — i) log{1 — A(t, ;) }] . (8)

The likelihood term given in (8) corresponds to the likelihood of a binomial distri-
bution (see e.g. Fahrmeir & Tutz, 2001, chapter 9). The overall likelihood is now
given by
no T

1(8) = ;;fsitlit{ﬁ(t)} (9)
which has to be maximized with respect to B8 = {g(¢t), t = 1,...,T}. Direct
maximization of (9) will not necessarily yield smooth estimates, since no smoothness
restrictions are imposed on [3(¢). The suggestion is therefore to maximize a local
version of (9) in order to achieve smoothness. For estimation of 5(ty) at time point
to we introduce the kernel weights wy, = K{(to —t)/h} with K(-) being a unimodal

kernel function and A denoting the bandwidth. Incorporating the weights into the

likelihood yields the local likelihood function

n T
Z Z w0t6itlit(ﬁ)- (10)
i=1 t=1
Maximization of (10) provides the local maximum likelihood estimate of 5(t). Rep-

etition of the maximization for ¢, = 1,...,T finally yields a smooth estimates

3(1), cee B(T) with the amount of smoothness corresponding to the bandwidth h.

Properties of the smooth estimate

The following derivation is basically as in Kauermann & Tutz (2000) (see also Fan,
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Farmen & Gijbels, 1998). The difference occurring here is due to the censor vari-
ables ¢;; in (9) which are random numbers. Let [, ;; denotes the score contribution

evaluated at the true parameter. This implies E(d;l, ) = 0 which follows from

Moreover, Y°/_, 6;Fy; serves as unbiased estimate for E(YX[_, 6;:Fy;). Finally one

finds for mixed moments

T T T
E{Z Z 6it6isln,itln,is} - Z E{ln,ztln,zt|6zt — 1}

t=1 s=1

T T
—+2 Z Z P((Szt =1, 51’8 - 1)E{ln,itlmis

t=1 s>t

— ZP it — 1 its (12)

t=1

5z‘t = 1a5is = 1}(11)

where (12) follows from (11) since for s > ¢ one has 6;s =1 = 0;; = 1 and y; = 0
such that E(l;ilyis|0is = 1) = —Xit(t) E(lys]0is = 1) = 0. These results secure that
the randomness of the censor variable is not disturbing in the derivation of what

follows. From (10) we get by expansion

n T
0 = ZZWOt(Sti ln,zt{ﬁ(to)}
1=1t=1
n T
= Z Z th(Sti ln,it — Z Z th(Sz’tXiTEtXi{B(tO) - B} +...
i=1t i=11t=1
n T
& {B(te) — B(to)} = {ZZWOt(SitXZ’TEtXi}il
i=11=

ET:thén Xl o+ X Fu Xa{B(t) — 5(t0)}]] +....

1t=

™M= ;

g

Taking expectation yields in first order approximation

[y

E{B(t) — Blte)} = Z;E {é:tz;th(sthTFﬂX} Zth(Sti FuXi{B(t) — B(to) }
— {iiwmp a = DXTFy X, }

13
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X lzn: wo P60y = 1) X Fy Xi{ B(t) — 5(t0)}] +...

t=1

Moreover, for the variance one finds by making use of (12)

n T
Var{(B(te)} = E[{ZZthéitXiTFitXi}il
i=1t=1
T n T
X{Z w0t612thTl72; ti'}{ZZwmfsithEtXit}*l}
i=11=1
n T n T
~ {ZngtP t—l}/{ZZthP(éitzl)}
i=1t=1 i=11=1

-1

T T
X {ZZthP it — 1 XZtEtXZt} (14)

i=1t=1
Using standard smoothing results one finds that the bias has order O(h?) while the
variance has order O(n~'). It should be noted that the order of the variance is
different from what is typically met for smooth estimates (see e.g. Fan & Gijbels,
1996). The reason for this is that the asymptotic consideration is not based on
the assumption that ¢ is getting infinitely dense. Instead, in accordance with the
conditions met in discrete survival, it is assumed that ¢ is measured on a grid while

the sample size n is growing.

A.2 Semiparametric Model

Estimation in the semiparametric model (3) is slightly more complicated. We make
use of a combination of local and profile likelihood, as generally suggested by Severini
& Wong (1992), see also Kauermann & Tutz (2001). For normal response models
the resulting estimate is also known as the Speckman estimate (Speckman, 1988).
The basic idea is to apply a backfitting type algorithm, where the covariates for the
parametric component are locally balanced in each step. The welcome property of
this approach is that estimates of the parametric components achieve the standard

parametric precision, i.e. they possess \/n convergence.

14
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Let n¢; = Y kec Tk,iBx be the predictor of the parametric component. We assume
for the moment that 7 is fixed and known. The smooth estimate then results by

maximizing the local likelihood as in (10) but now with given offset 7, i.e.

n T
> wobili{ Xv By (to) + e} (15)
i=1t=1

where Xy ; = (x4, k € V) is the design (row) vector built from the intercept and
the covariates and [y () as corresponding parameter vector. Note that we slightly
changed the notation here by writing the likelihood contributions l;;(n) with the
predictor as argument. Even though this is unusual it will be helpful in the following
for notational reasons. Maximizing (15) with respect to [y (ty) is done by solving
the local score equation
n T N
DS wa X Gitlyid Xv,iBy (to) + nc,i}- (16)
i=11=1
The resulting estimates /3y (to), to = 1,...,T are inserted in the likelihood for f¢,
yielding the profile likelihood
n T
Zzéztlzt XV zﬁV ) +XC,iBC)‘ (17)
i=1t=1
Due to (16), the smooth estimates Bv(t) depend on the fixed parameters (3¢, which
however is suppressed in the notation. Differentiation of the profile likelihood (17)

has to account for this dependence and therefore yields the profile score equation

n T ,A —~ —~
Z > (XCTZ + %) Sitlyi{ XviBv(t) + Xcife}- (18)

The derivative dpy(t)/dfBc can now be calculated from differentiating (16) with

respect to Bc. This provides in first order approximation

~ —1
a t n T n T
BaVB(TO) = - <Z Z w0t5itX$,tFith,t> <Z Z w0t6itX$7tEtXC,t> . (19)
c i=11t=1 i=1t=1
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This derivative can be seen as a smoothing of the covariates Xc. To see this let

Xy =1, for simplicity, which yields

0Py (to) i n T
7 = —(Q_wolduFuXea)/ (DD wodiki).
b i=1 i=11=1

It is shown in Severini & Wong (1992) for normal smoothing models and in Huns-
berger (1995) for general smoothing models that estimates resulting from solving
the profile score function are more efficient than estimates ignoring (19), i.e. simple
backfitting estimates where iteratively the parametric and the smooth part of the
model are fitted. The same result holds in this setting, since the random variables

0;; do not disturb the asymptotic behavior. In particular one finds

-1

n T
Var( ﬁc <ZZ7TZtXcZ FyXe z)
=1

=1
with Xe,; = Xe, + dXy iBy(t)/(9Bc), while the smooth estimates fulfill (13) and

(14) but with X; replaced by Xy, and Fj; evaluated at Xy ;5y(t, 1) + X fc-
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Aspect

Variable Coding

legal basis legall = 1 for small business
legal2 = 1 for partnerships
financing out.capital = 1 for outside capital > 0
in.capital = 1 for company capital > 0
employees employl = 1 if > 2 employees
employ?2 = 1if > 3 employees
preparation plan = 1 if business was planed > 1/2 year
lead = 1 if business had a lead of > 1/2 year
target market product = 1 if offered product is already on the market
= 0 for new development
price = 1 if target market has high price level
national = 1 if target market is national
customer = 1 if target customers are not special
= 0 for special customers
owner gender = 1 for male
= 0 for female
training = 1 for master degree (craftsman or university)
school = 1 for high-school degree
branch = 1 for expert of branch and area of business
agel = 1 for junior owner, i.e. age < 30 years
age2 = 1 for senior owner, i.e. age > 40 years
Table 1: Description and coding of variables
log- degree AIC-
Number Varying Coefficients likelihood of model criterion
1 all -1652 66.9 3437
baseline, legall+2 , out.capital, in.capital -1658 54.3 3425
2 plan, lead, price, national, customer,
gender, branch, agel+2
3 baseline, out.capital, plan, price, national, -1665 43.1 3416
gender, branch, agel+2
4 baseline, out.capital, plan, price, agel -1676 31.2 3414
5 baseline -1692 21.5 3428
4* baseline, out.capital, plan, price, agel -1680 24.2 3410

Table 2: Likelihood and Akaike criterion for various models.



model 4 model 4*
Effect Estimate Stud. Value Estimate Stud. Value

legall 1.11 5.40 1.13 6.17
legal? 0.98 5.02 0.98 5.51
in.capital -0.11 -1.42
employl -0.14 -1.09
employ?2 -0.51 -2.88 -0.57 -2.50
lead -0.89 -2.72 -0.78 -3.72
product 0.20 1.58
national -0.27 -2.40 -0.30 -2.74
customer 0.25 2.26 0.27 2.50
gender 0.07 0.55
age2 -0.06 -0.44
school -0.17 -1.36
training 0.01 0.06
branch -0.53 -4.91 -0.47 -4.53

Table 3: Parameter estimates, standard deviation and studentized value for model
4 and model 4*
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Figure 1: Varying coefficients for model 1 (first part). Solid horizontal line shows
zero effect as reference, dashed horizontal line gives the estimated time-constant

effect.
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Figure 2: Varying coefficients for model 1 (second part). Solid horizontal line shows
zero effect as reference, dashed horizontal line gives the estimated time-constant
effect.

v



-45 -35

-55

-0.5 05

-1.5

0.0 05 1.0 1.5 2.0

baseline out.finance
/\/ °
o x/
o
5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60
months months
plan price
S
o
5 /\
o
/—\ o
o

5 10 15 20 25 30 35 40 45 50 55 60
months

agel (<=30)

—

5 10 15 20 25 30 35 40 45 50 55 60
months

5 10 15 20 25 30 35 40 45 50 55 60
months

Figure 3: Varying Coefficients for Model 3




