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Abstract

We consider two consistent estimators for the parameters of the
linear predictor in the Poisson regression model, where the covariate
is measured with errors. The measurement errors are assumed to
be normally distributed with known error variance o2. The SQS
estimator, based on a conditional mean-variance model, takes the
distribution of the latent covariate into account, and this is here
assumed to be a normal distribution. The CS estimator, based on

a corrected score function, does not use the distribution of the latent



covariate. Nevertheless, for small o2, both estimators have identical
asymptotic covariance matrices up to the order of o2. We also
compare the consistent estimators to the naive estimator, which
is based on replacing the latent covariate with its (erroneously)
measured counterpart. The naive estimator is biased, but has a
smaller covariance matrix than the consistent estimators (at least

up to the order of 2).

Keywords: Poisson regression model, measurement errors, corrected

score estimator, structural quasi score estimator, naive estimator

1 Introduction

In a Poisson regression model the response variable y is Poisson distributed
with a parameter A which depends on one or several covariates zy, see,
e.g., Cameron and Trivedi (1998) and Carroll et al (1995). Here we restrict
our attention to the case of just one covariate x. The dependence on x
is given by an exponential function: A = A(z, ) = exp(fo + S1z) with
unknown parameter vector 8 = (fp,51)". As in a Poisson model mean
and variance are equal, we have a mean-variance model, where mean and
variance are both given by .

Given a sample of i.i.d. pairs (z;,y;),i = 1,...,n, the parameters By

and f; can be estimated by maximizing the log-likelihood function of 3:

1(B) =D Ayiln A(wi, B) — A(xi, B)}, (1)



which gives rise to the estimating equation

> {vi —exp(Bo + Brzi) }(1, ) = 0. (2)

It can be solved by standard methods.
Here, however, we assume that the covariate z; is contaminated with

measurement errors. Instead of x; we observe w; such that
Wi = Tj + U,

where u; is the measurement error, which is supposed to be independent

of (z;,y;) and normally distributed:
s ~ N(O, O’i)

Its variance o2 is assumed to be known.
As is usual in measurement error models, we distinguish between the
functional and the structural variant of the model. Here we base our

investigation on the structural variant and, in fact, we assume that
2
€Ly~ N(u-T?Uz)

We also assume that the (y;,z;,u;),i = 1,...,n, are i.i.d. Finally, for
technical reasons, we assume that 3 is confined to an open bounded subset
of R2. This assumption guarantees that the estimators below are well de-
fined, at least for large n, and that they converge a.s. to certain theoretical

values. In some cases it is possible to do without this assumption.



The model can be written as a mean-variance model in z. By con-
ditioning on w a conditional mean-variance model in w is derived, from
which a structural quasi score (SQS) estimator can be constructed, Car-
roll et al (1995), Thamerus (1998). The SQS estimator is consistent and
asymptotically normal.

For the functional case, where no distributional assumptions for the z;
are made, we also have an estimator, the corrected score (CS) estimator,
which is also consistent and asymptotically normal. The CS estimator is
constructed by correcting the likelihood score function of the error-free
model so that the measurement errors are taken into account, Stefanski
(1989), Nakamura (1992). Of course, the CS estimator can be applied
to the structural variant of the model, too, and then it can be compared
to the SQS estimator. Stefanski and Carroll (1987) describe still another
estimator, the conditional-score estimator, but we will not deal with this
one; see however Carroll et al (1995), chapter 6.

The comparison is accomplished by looking at the asymptotic covari-
ance matrices of the SQS and CS estimators. It turns out that it is difficult
to compare the asymptotic covariance matrices for a large error variance
o2, but comparatively easy for small o2. We do this by expanding the
error covariance matrices up to the order of o2 omitting terms of higher
order. Surprisingly, up to this order, there is no difference in the asymp-
totic covariance matrices of the SQS and CS estimators despite the fact

that both estimators use different amounts of prior information.



We also include in our investigation the so-called naive estimator,
which is found by maximizing the log-likelihood (1) with z; replaced by
w;. The naive estimator is asymptotically biased. Nevertheless its asymp-
totic covariance matrix can be of some interest and is therefore compared
to the other two covariance matrices, again for small o2,

The present study shows some analogy to a similar investigation for
the polynomial model with measurement errors, Kukush et al (2001). But
the covariance matrices to be compared to each other are quite different.
The SQS, CS, and naive estimators here correspond to the SLS, ALS, and
OLS estimators, respectively, in that earlier paper.

The Poisson model with measurement errors has been extensively dealt
with, e.g., in Carroll et al (1995). Thamerus (1997) studied a Poisson
model in the structural case with heteroskedastic measurement errors and
with a distribution of the x; which consists of a mixture of normal distri-
butions.

In Section 2 we introduce the naive estimator and study its asymptotic
covariance matrix in particular for small o2. We do the same for the
CS and the SQS estimators in Sections 3 and 4, respectively. Section 5
contains the main result: a comparison of the three covariance matrices for
small o2. Section 6 contains some simulation results, which corroborate

the theoretical findings, and Section 7 concludes.



2 The naive estimator

2.1 Estimator

The naive estimator 3N is the solution to the estimating equation

% > {vi — exp(Bon + Bivwi) }(1,w) =0, (3)

which follows from (2) by replacing x; with w;. The solution exists and
is unique for large n, Wedderburn (1976). A simple way to solve (3) is
the iteratively reweighted least squares method, e.g., Fahrmeir and Tutz
(1994). If B* is the approximated value of 3 in the k’th iteration, then
Apk = gkt — Bk is found by regressing n = y/z, — zx on & = z and
& = wzy, where 2z, = exp{3 (8§ + Bfw)}. The iteration stops when AS*
is sufficiently small, and then BN = B¥ + AB*. A starting value 5° may

be found by regressing log(y + €), with some small €, on 1 and w.

2.2 Bias

In order to find the bias of BN we solve the estimating equation after

taking expectations:
E{y — exp(bo + byw)}(1,w)" = 0. 4)

According to the theory of estimating equations, BN; which is the solution

to (3), converge a.s. to the solution to (4), which we denote by b = (bg, b1)’,



ie.:

lim Ay =b.

n—roo

To evaluate (4), and other expectations that we shall meet in the se-

quel, we need the following well-known and very useful relations for w ~

N(/lwaagu):

Ee*” = explapy + %agoﬁj) (5)
E(we™) = (uy+ aoy)Ee"™™ (6)
E(w’e™) = {0} + (b + ac})*} Be (7)
E(w?e™) = {3(ptw +aol)ol + (pw + ao’)®} Ee™. (8)
Now,
Ey =E{E(y |z)} = E{exp(fo+ fi12)} = exp(Bo + Brpww + 35107)
E(yw) =E{E(yw | z)} = E{zexp(fo+ f12)}
= (o + Broy) exp(Bo + Biiw + 5570%)
E{exp(bo + biw)} = exp(bo + byt + Sb702)
E{wexp(bo +biw)} = (i + bi10s,) exp(bo + bipuw + 50073,

where we used (5) and (6) with ¢ = $; and z in place of w for the first
two equations and a = b; for the last two equations. Note that ., = ..
Substituting these expected values into (4) and taking logarithms in the

first component equation, we derive the following system



Bo + B + 5810y = bo + bij + 3bioy,

(bw + B102) exp(Bo + Brpww + 58702) = (pw + b103,) exp(bo + by + 567075,

which has the solution

0.2
b = (1-=)4 9)
Uw
02 o o« 02
bo = fBo+ Bluwa—;‘ + 3Bion(1 - 0—;‘), (10)

where we used the relation 02, = 02 + ¢2. The bias of Sy now simply is

b — 5. We observe the well-known attenuation effect in Bl N-

2.3 Variance

We shall now derive the asymptotic covariance matrix X of ﬁ ~- To this
purpose, consider the left hand side of the estimating equation (3) and

call it S,,(Bn). A Taylor series expansion of S, gives

Su(Bn) = Sa®) + == (By =) + O(| By = b|*) =0. (1)

We shall show that, for certain symmetric nonsingular matrices A(b) and

B(),




From this and (11) it then follows that
VaBy =5 <5 NO,Zy), Iy =AT'OBOATG), (12

see also Lemma 2 in Kukush and Schneeweiss (2000). We are going to

derive A(b) and B(b). First,
1 n
VnSy(b) = 7n > {yi — exp(bo + byw;) (1, w;)".
1
Because of (4), ES,(b) = 0 and thus by the CLT

VS, (b) = N(0, B(b))

with
B(b) = E[{y — exp(by + byw) }* W], (13)
where
1 w
W =
w w?

We shall first take the conditional expectation given w. To this purpose,
we first compute, with the help of (5), the conditional expectation of y

given w:

E(y [w) = m(w,5) = E{E(y|z)|w}=E{exp(fo + frz) | w},

m(w,B) = exp(Bo + fru(w) + 36777) (14)



with

2

pw) =B |w) = w- 2w = p) (15)
?=Vie ) = oi(1- %), (16)

and similarly the conditional variance given w:

V(y |w) =v(w, ) = V{E(y | z) | w} + E{V(y | 2) [ w}
=E[{E(y | 2)}* | w] - [E{E(y | ») | w}]* + B{E(y | 2) | w}

v(w, B) = m*(w, f)(exp(Bi7°) — 1) + m(w, B).  (17)
See, e.g., Thamerus (1997), (1998). It then follows that
E[{y — exp(bo + b1w)}* | w] = v(w, B) + {m(w, B) — exp(bp + biw)}*
and therefore, by (13),
B(b) = E[(v(w, B) + {m(w, B) — exp(bo + biw)}*) W] (18)

Next,

0Sn(b)
v

1 n
_ = 21: exp(bo + byw;)W;.
By the LLN this converges in probability to
A(b) = Elexp(bo + bhyw)W]. (19)

Obviously A(b) ist positive definite and therefore invertible, and so (12)

is proved.

10



It is possible to evaluate the matrices A(b) and B(b) by computing
the expectations with the help of (5) to (8). But we shall not do so here.

Instead we are looking for simpler approximations.

2.4 Small-o, approximation

By expanding A(b) and B(b) as a Taylor series in 02 we derive approxima-
tions for A(b) and B(b) and finally for the asymptotic covariance matrix
of Bx up to the order of o2 for 2 — 0. Consider A(b) first. From (9)

and (10) we see that

w w
bo+biw =7+ o3B30 + B — =)+ 0,(00),

where we introduced the linear index
v =7(w) = Bo + frw.
It follows that!

A w W
exp(bo +biw) = €7 + o2 B (5 + L — e 1 0,(0%)  (20)

UU) UU)
and thus, according to (19),

A() = B(eW) + 026 { (%Bl + Z—;”> E(e7W) — J%E(evwW)} +0(oh).

w w

LWe use the relation 7% =1+ ac? + O(od).

11



Now E(e"W) = A(f), which we denote by A. With the help of (5) to (7)

we obtain
1 w 1 g
A=E(EW)=E{¢e = et (21)
w o w? g 9°+op
with
d = Bo+ Pt + 38705, (22)
g = Myu+ ﬁlai; (23)

Again using (5) to (7) and also (8), we find

0 1
E(e"wW) = gA + o2 . (24)
1 2¢
Putting all this together, we finally get
A(D) = A—02C +0(c}) (25)
with
C =ipIA+ G, (26)
0 1
G=¢l
1 2¢g

Let us now turn to B(b). We shall need approximations for m(w, §) and
v(w, B). Substituting (15) and (16) into (14) and taking (20) into account,

we obtain
m(w, B) = exp(bo + byw) + Op(afj). (27)

12



In addition, see (17) and (16),
v(w, B) = m(w, B) + a5 fim* (w, B) + Oy(0y,),
and as m(w, B) = 7 + 0, (02) because of (27) and (20),
v(w, B) = m(w, B) + oo 7€ + Oy(ay,). (28)

Now, by (18), (27) and (28),

B(b) Efv(w, 8)W]+ O(0y,) (29)
= E[m(w, )W]+ 2B W) + O(a2)
and by (27) and (19)
B(b) = E[exp(bo + byw)W]+ o2B2E(*W) + O(ol)

A(b) + o287 A + O(0y),

where we introduced the matrix
A =E(W), (30)

which is constructed in the same way as A, see (21) to (23), except that

B is replaced by 23. Thus

- ~ 1 qJ
A = € g
Jg g+oy,
d = 2(Bo+ Bipw + Bio2)

g = Nw‘*‘QBIUZ-

13



As a last step we use (25) and get
B(b) = A+ 02(—C + p2A) + O(c%) =: B+ O(o?). (31)
Note that
B =A+0(c2). (32)

Now, with the help of (25) and (31), the asymptotic covariance matrix of
Bn, see (12), can be expanded as follows, where the last equation follows

from (32):

YN (A—c2C) 'B(A—-a2C)" ! + O(c})

= (A 40, AT CAT)B(AT + 0, A7 CATY) + O(ay)

AT'BATY 4202 A71C AT + O(od)
and finally, again by (31),

YN =AT 42 ATHC + BEA)AT + O(od). (33)

3 The corrected score estimator

3.1 Estimator

The corrected score estimator Bcs is found as the solution to a “corrected”
estimating equation. Starting from the likelihood score function of the

model, see (2),
Y (Bsy, ) = {y — exp(Bo + pra) }(1, z)",

14



we are looking for a “corrected” quasi score function ¢.(8;y,w) such that

E[¢c(ﬂ;y7w) | y,a:] = ¢(ﬂ;y;$)- (34)

Such a function is given by

be(Bry,w) = (y — ) (1,0)" + 07,e(0, Br)’ (35)

with the abbreviation
c= P+ frw — %/B%UZ =7- %/3%‘73-

(34) is verified with the help of (5) and (6) with w replaced by u. See
also Carroll et al (1995), Chapter 6.

The corrected estimating equation is now

> (B yi,wi) =0
i=1

or

Zyi(l,wi)' = Zexp(ﬁo + Blwi - %Bfoi)(lawi - 3103)’-
1

1
It can be solved by a Newton algorithm. Let ¥ = (Bk,3¥)" be the

approximate value of /3’ at the k’th iteration and define ¢¥ = gk + gkw; —

$(B¥)?02. Then Ak := ph1 — gk is computed from the equation

-1

ko2
Agt = |yet ! wi = Py
! w; — froy,  (wi = froy)? — o
n 1 X 1
x> |vi —ef .
! W w; — pioy,

15



The algorithm stops when AS* is sufficiently small and then Bos = B +
ASF.
Note: It is also possible, and even simpler, to derive the corrected score

function . by first correcting the log-likelihood function (1) via

1(8) =Y {yi(Bo + Brwi) — exp(Bo + Prw; — 35707 }
1

and then taking derivatives with respect to 5. It might also be advanta-
geous to maximize [, directly rather than to solve the corrected estimating

equation.

3.2 Variance and small-o, approximation

According to the theory of quasi score estimators, see Heyde (1997),

Vi(Bes — B) = N(0,2cs)

with an asymptotic covariance matrix given by

Yos = A;chAgl, (36)
0
Ac = _E{a_ﬂlwc(ﬁayaw)}

B. = E{¢c(B;y,w)e(Biy,w)}.
From (35) we get after some algebra

61/16 1 w 9 0 ﬂl

c

- u
o w w? B 1+26w—piol

[l
o
|
Q

16



Taking expectations and remembering (21), we obtain

0
A = ep(-3502) |A-oB] e .
Bi 1428w — fiol
A, = exp(—38i00){A— 0o F}+ O(oy), (37)
where
0
F=E<e o
B 1425w

This expectation can be evaluated by borrowing from (21):

0 b1
81 142B1g

F=¢l

for d and g see (22) and (23).

As for the term B., we first obtain from (35)

B, = E{(y—e)W +ou(y —e)pre W} + O(03),
- 0 1
W =

1 2w

The expectation is evaluated by first taking conditional expectations given

w and then expectations with respect to w. Thus

B. = E[{v(w,p)+ (m(w,) —e)*}W]

+ orE{(m(w, B) — e)p1e W} + O(0),).

17



Due to the definition of ¢, see (35), we have m —e® =m — €7 + Op(02) =
0,(02) because of (27) and (20). Hence B. = E(wW) + O(ol), and
according to (29) this equals B(b) + O(ol). Thus due to (31)

B. = B+ 0(ay,). (39)

Now we are ready to derive an approximation for Y g, see (36). With

(37) and (39) we obtain

Ses = exp(Biop)(A - oy F) T B(A— oy F)7! + O(0y)

exp(ﬂ%oi)(A_l + 012“4_1FA_1)B(A_1 + O'ZA_IFA_l) + O(O’i)

= exp(Bio2)(A™'BA™ +202A7'FA™Y) + O(o})

= A'BA Y4 5202A T +202A T FAT + O(0)), (40)

where (32) was used each time for the derivation of the last two equations.

With the help of (31) we get the more extensive expression

Yos=At+02A N BEA+2F — C + BEA) A +0(od). (41)

4 The structural quasi score estimator

4.1 Estimator

We can write the Poisson regression model as a mean-variance model:

E(y | #) = exp(fo + fix)

V(y | z) = exp(Bo + f1).

18



By conditioning on the observable variable w we derive a new, “observ-
able”, mean-variance model. It is given by (14) and (17), which we repeat

for the convenience of the reader.

E(y | w) =m(w,8) = exp(Bo+ fip(w) + 3517°)

V(y | w) = U(waﬂ) = m2(w7ﬂ)(exp(ﬂf7_2) - 1) + m(waﬂ)
The conventional quasi score function for this model is, see Carroll et al
(1995):

i) = fy—mw B w5 0

{y —m(w, B)}v~" (w, B)ym(w, B)(L, u(w) + B17°)".

(42)

The structural quasi score estimator B s@s is the solution to the estimating
equation
n

> a5 yi,wi) = 0.

i=1
It can be solved by the iteratively reweighted least squares method in a
similar way as in 2.1. Here AB* is found from a least squares regres-
sion of n = {y — m(w, )} /\/v(w, BF) on & = m(w, 5*)/\/v(w, BF) and
& = m(w, B*) (u(w) + BF72)/+/v(w, B¥). See also Thamerus (1997). The
terms p(w) and 72, which are also needed to compute m and v, have
to be estimated by replacing j,, and o2 in (15) and (16) by their usual
—w o).

estimates: fi,, = W, 62

19



4.2 Variance

If the (nuisance) parameters p,, and o2 were known, the asymptotic co-
variance matrix of 3 sqs (more precisely: of V(B sq@s — ) would simply
be given by the inverse of the covariance matrix of the quasi score function,

see Carroll et al (1995). The latter is, see (42),

® = E{¢s(B;y,w),(By,w)}
= E{E[¢;(8;y, w)¢s(B;y,w) | w]} (43)
= E{m*(w,f)v " (w, B)(1, u(w) + S17°)' (1, p(w) + f17°)}

- S w %) w 72
- E{m(w,ﬂ)(exp(ﬂfﬂ)—1)+1(1vﬂ( ) + A7) (1, w(w) + By )}_

But as p,, and o2 have to be estimated, too, the asymptotic covariance
matrix of BSQS is, in fact, given by

_ _ 2 _
Ys0s =@+ @ 1(03F1F1’+U—4F2F2')<1> L

where Fy = E(0t;/01y) and Fy = E(dv;/00,?), see Kukush and Schneeweiss
(2000), Theorem 2.

However, for the approximations to be consider below, the additional
terms F1F| and FyFj can be dropped. The reason for this is that

depends on j1,, and o2, only through u(w) and 72 and that

Ou(w) _ 0,(02), o) _ 0,(02)

Optw u 00 u
ar? _ ar? _ 4
Oppw 0’ 80;2 Ou>



see (15) and (16), and therefore F; = O(02), i = 1,2. Hence Ysgs can

be approximated by ®1:

ESQS = ¢! + O(O’i) (44)

4.3 Small-o, approximation

We want to derive an approximation to (43) and (44) for small 02. We
start with the factor in front of the matrix in (43). Let us abbreviate

m(w, §) by m. By (16)

272 = 2772 + Op(”i)
m(exp(fiT?) — 1) +1 mpioZ +1
= m-— Uiﬂ%mg + Op(aﬁ). (45)

Now for the matrix in (43). By (15), (16) and (23)
pw) + prr* = w + oy (g — w) /oy, + Op(0y)
and so

(1, w(w) + p172)" (L, p(w) + Br7%)

2
=W+ 254 (g - w) + 0,0 (46)

Taking the product of (45) and (46), we see that ® can be approximated

as follows:

® = E[mW —o2(m?BwW - EZV)] +0(od)
o

w

21



V = (9-w)
1 2w

We know from (27) and (20) that

m = exp(by + byw) + O, (k) = €7 + 0, (02).
Therefore by (19) and (25)

E(mW) = A(b) + O(c) = A — 02C + O(ad).
Borrowing from (21), we further obtain

m 1
E <%V> = gE(e“’V) +0(0?)

0 1 0 g

1 .
= —26d g - + O(O’i)
o 2 2
w 1 2¢g g 2(¢°+02)
= —-D+0(c2)
with
0 0
D =2¢¢ (47)

0 1

Finally, because m? = €?” 4+ Op(02) and because of (30),
E(m?siW) = fi A+ O(o3).
Collecting all these results, we obtain
®=A—-02{C+ D+ A} +0(c?) (48)

22



and thus, according to (44),

Ysgs = ATV 4+ 02A7H(C + D + A AT + O(od). (49)

5 Comparing covariance matrices for small

2

measurement error variance o,

We first compare the asymptotic covariance matrices of the two consistent
estimators. They turn out to be equal up to the order of o2.

Proposition 1
Ysgs = Xcs + 0(03).
Proof: Consider the difference of (49) and (41)
A(Ssgs — Xos)A=02(2C + D — B A — 2F) + O(o2).
But according to the definitions (26), (38) and (47) the matrix in brackets

is zero. (Note that F = 81G + 1D).

A convenient formula for both £ggs and s up to the order of o2 is
Ssos = A +02{iBiAT  + AN (BG + D+ BTA) AT} + O(0h) (50)

with 4,G,D, and A from (21), (26), (47), and (30), respectively, where d

23



and g come from (22) and (23). The inverse of A is given by

A—1 _ Le_d 92 + 0—12” -9
= 0_12”

Now let us compare the covariance matrices of B v and of either BSQS or
Bes-

Proposition 2
A(ESQS —XN)A= o‘iD + O(O’i)

Proof: The result follows immediately from the difference of (33) and (49).

We can give an explicit expression for the difference of the covariance

matrices:
22 | 9* -9
Ysgs — XN = 0—4“6 ¢ +0(0y,) (51)
w —g 1

with d and ¢ as in (22) and (23), respectively. The difference matrix is

positive semidefinite up to the order of o2.

6 Simulation

The following small simulation study was designed to test the theoretical
findings of the previous sections, especially Propositions 1 and 2. We de-
signed a Poisson regression model with 8y = —1, 1 = 0.5, z ~ N(5,1),

and u ~ N(0,0.05). Samples of size n = 500 were taken, and, for each

24



sample, estimates of By and (3, were computed by the various estima-
tion methods (Naive, CS, SQS). This was done N = 1000 times. Bias
(= average - true parameter value), standard deviation, and the covari-
ance matrix multiplied by n for each estimator were evaluated from the
1000 replications. For ease of comparison the differences of the covariance
matrices multiplied by n are also presented.

In addition to the estimators discussed in this paper, we also stud-
ied two more estimators: an artificial “Benchmark” estimator, which is
simply the ML estimator derived from the Poisson regression model with
the “true” variable z in place of the observed variable w, and the Regres-
sion Calibration (CAL) estimator, which comes from a Poisson regression
model where the variable z is replaced with E(z | w) = pu(w), see Carroll
et al (1995).

The sample size is large enough so that one may expect the results

to correspond to asymptotic theory. We also experimented with n = 100

2

and found results similar to those for n = 500. The error variance, oy,

is pretty small so that the approximations of our small-o, theory are
brought out most clearly. On the other hand, it is big enough so that
there is still a marked bias in the naive estimator. We also tried out
larger error covariances, e.g., 02 = (0.1 and found similar results. In order
to be able to compare the simulation results to those of small-o, theory
the latter have been presented in the following table under the heading

“theoretical”. The bias has been evaluated by (9) and (10), the covariance
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matrices ¥y and Xggs or Xcg by (33) and (49), respectively, and the
difference ¥sgs — X by (51). It is seen that the theoretical results are

rather well corroborated by the simulation results.

Table 1: Comparison of different estimators (n = 500)

Bench Naive SQS CS CAL

simul. simul.  theor. simul.  theor.  simul. | simul.

Bias fo | 0.0001 | 0.1242  0.1253 | -0.0001 0 -0.0012 | 0.0056
B1 | -0.0002 | -0.0238 -0.0238 | -0.0001 0 -0.0000 | -0.0001

Std B | 0.1108 | 0.1151  0.1131 | 0.1190 0.1178 0.1193 | 0.1185
B1 | 0.0200 | 0.0210 0.0204 | 0.0215 0.0212 0.0214 | 0.0214

naéo 6.1419 | 6.6238 6.3929 | 7.0779 6.9347 7.1220 | 7.0257
naél 0.2001 | 0.2214 0.2071 | 0.2316  0.2248 0.2297 | 0.2282

NoB,B, -1.0868 | -1.1874 -1.1313 | -1.2564 -1.2294 -1.2598 | -1.2469
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Especially for larger o

Table 2: Comparison of n-fold Covariance Matrices (n = 500)

454 —.069
SQS - Naive (simulated):

—-.069 .010

—.073  .008

540 —.098
SQS or CS - Naive (theoretical):

—.098 .018

498  —.073
CS - Naive (simulated):

—.044 .003
SQS - CS (simulated):

003 .002

The regression calibration estimator, Scayr, fares almost as good as

the truely consistent estimators. Bc AL seems to have a small bias for .
We should like to mention that the iterative algorithms of Sections 3.1

and 4.1 to compute Bcs and BSQS, respectively, do not always converge.

2
u

simulation study, the algorithm may diverge. Taking Bc AL as a starting
value for the iterations helped only in a few cases. Searching for “good”

starting values might succeed in bringing the algorithms to convergence,
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but seems to be a difficult job. Another possibility, which, however, we
did not try, is to bound the estimates of 8 a priori.
The algorithms were programmed in GAUSS (Edlefsen and Jones,

1995), a mathematical programming language on IBM-compatible PC.

7 Conclusion and discussion

We studied three estimators for the parameters of a Poisson regression
model: the naive estimator ﬁN, which is inconsistent, but for which
the bias can be evaluated, see (9) and (10), and two consistent estima-
tors,which make use of the knowledge of the measurement error variance,
here assumed to be known. The corrected score estimator 305 is con-
structed on the basis of the functional variant of the measurement error
model, while the structural quasi score estimator BSQS is based on the
structural variant.

It should be noted that, as expected, all three estimators become iden-
tical when there is no measurement error, see (3), (35) and (42).

We computed the asymptotic covariance matrices for all three estima-
tors and approximated them by rather simple expressions up to the order
of 02, see (33), (41) and (49) or (50). Up to this order fos and Bsgs
have the same covariance matrix, which is greater than the covariance

matrix of B ~. These formulas can, in principle, be used to compute the

asymptotic covariance matrices of the estimators at least approximately
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for small o2.

According to our simulation study they agree pretty well to the vari-
ances of the estimates that result from finite samples from models with
reasonably small measurement error variances.

We do not maintain that Bcs and BSQS are equally good estimators.
In fact, it seems that ﬁ sqs performs better than Bc s if the error variance
becomes larger in the sense that ﬁsQ s has smaller variances for its two
components than /3’05.

On the other hand, ﬁsQ s is biased when the assumption of a normal
distribution for the latent covariate, an assumption which is the basis for
the construction of the estimator, is not true. The bias depends on the size
of the deviation from normality and can be appreciable. The corrected
score estimator Bc s does not depend on the distribution of the covariate
and is always consistent. It is thus more robust than BSQS.

It is good to know that the more robust estimator Bc s, although it
is inferior to the more sensitive estimator ﬁst in case the normality
assumption holds true, is approximately almost as efficient as BSQS for
small error variances. This seems to point to Bcs as the estimator of
one’s choice in general unless one is sure that the normality assumption
is correct and the error variance is large. In this case BSQS seems to be
the better estimator.

Finally we would like to mention that the theory developed in the

present paper can be extended to the case where the distribution of the
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latent covariate is not just a normal distribution but rather a finite mix-
ture of normal distributions. This would rend the structural quasi score

estimator more flexible.
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