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Abstract

A nonlinear structural errors-in-variables model is investigated,
where the response variable has a density belonging to an expo-
nential family and the error-prone covariate follows a Gaussian dis-
tribution. Assuming the error variance to be known, we consider
two consistent estimators in addition to the naive estimator. We
compare their relative efficiencies by means of their asymptotic co-
variance matrices for small error variances. The structural quasi
score (SQS) estimator is based on a quasi score function, which is
constructed from a conditional mean-variance model. Consistency
and asymptotic normality of this estimator is proved. The corrected
score (CS) estimator is based on an error-corrected likelihood score
function. For small error variances the SQS and CS estimators
are approximately equally efficient. The polynomial model and the
Poisson regression model are explored in greater detail.

Key Words: Exponential family, structural errors-in-variables model,
asymptotic covariance matrix, efficiency, polynomial regression, Poisson
regression, small measurement error variance

1 Introduction

Measurement error (or errors-in-variables) models have been extensively
studied over the last decades, see, e.g., the monographs of Schneeweiss and



Mittag (1986), Fuller (1987), Cheng and Van Ness (1999), and Carroll
et al (1995). In particular, the last book deals almost exclusively with
nonlinear regression models.

In this paper, we study a rather general nonlinear model, where the
response variable has a density belonging to an exponential family, the
canonical parameter of which depends on covariates in a nonlinear way
with an unknown parameter vector J to be estimated. We also have a
dispersion parameter ¢, which may or may not be known. One of the
covariates is unobservable; it can only be observed with a Gaussian latent
measurement error u.

It is well known that, in such a situation, ignoring the measurement
error in the estimation procedure gives rise to an estimator - the so-called
natve estimator - which will typically be inconsistent. However, consis-
tent estimators of 3 are available, in particular if the measurement error
variance o2 is known, and this will be assumed in the present paper.

We will consider two consistent estimators. Assuming a Gaussian dis-
tribution for the error-prone latent covariate, we can construct a structural
quasi score (SQS) estimator of §. It is based on a conditional mean-
variance model, conditioned on the observed covariate, which can be de-
rived from the original model, see Carroll and Ruppert (1988), Heyde
(1997), Carroll et al (1995), and Thamerus (1998) for special cases. We
show that the SQS estimator is consistent, asymptotically normal, and
eventually (i.e., for large enough sample size) unique. We also prove the
convergence of an iteratively reweighted least squares algorithm. The
asymptotic covariance matrix of the SQS estimator turns out to include
special terms which stem from the necessity of estimating the mean and
variance of the error-prone covariate distribution as nuisance parameters.
These additional terms can, however, be neglected for small o2, more
precisely: they are of the order o2,

The other consistent estimator of 3 considered in this paper is a cor-
rected score (CS) estimator, which is based on solving a corrected score
estimating equation, see Stefanski (1989), Nakamura (1990), Buonaccorsi
(1996), Carroll et al (1995). In contrast to the SQS estimator, knowl-
edge of the distribution of the error-prone covariate is not required for
the CS procedure. The CS estimator is asymptotically normal with an
asymptotic covariance matrix, wich can be evaluated.

The same can be done for the naive estimator, although this estimator
is asymptotically biased. We can, however, determine its asymptotic bias.



We want to compare the relative asymptotic efficiency of these three
estimators in terms of their asymptotic covariance matrices. Such com-
parisons have been carried out with the help of Monte Carlo simulations,
e.g., Kuha and Temple (1999), Schneeweiss and Nittner (2001). But to
the best of our knowledge, theoretical comparative studies have not been
carried out before except for the special cases of the polynomial and the
Poisson regression models, Kukush and Schneeweiss (2000), Kukush et al
(2001a), (2001b).

It seems that the asymptotic covariance matrices are hard to compare
in general. We can only do so in certain border line cases where either 2
or both 02 and ¢ are small. (Another borderline case, for large errors, has
been dealt with for the polynomial regression in Kukush and Schneeweiss
(2000).)

When only 2 tends to zero and ¢ stays fixed, it turns out, surprisingly
enough, that SQS and CS coincide in their asymptotic properties up to
the order of 02. This is our main result.

On the other hand, when ¢ is proportional to ¢2 and both tend to
zero, SQS is more efficient than CS and the latter becomes almost as
efficient as the naive estimator.

These findings are specialized to two particular cases: the polynomial
regression and the Poisson regression, where more detailed results can be
presented.

In the next two sections the model is presented, and the SQS estima-
tor is defined. In Section 4 its consistency, uniqueness and asymptotic
normality are shown. The convergence of an iterative algorithm for con-
structing the estimator is also established. An expansion of the asymptotic
covariance matrix for 02 — 0 is given. In Section 5 we introduce the CS
estimator and derive an expansion of its asymptotic covariance matrix.
The equivalence of the covariance matrices of the SQS and CS estimators
up to the order of o2 is established. In Section 6 we compute the asymp-
totic bias of the naive estimator and expand its asymptotic covariance
matrix. Section 7 deals with two special models: polynomial and Poisson
regression. In Section 8 we study the case when both o2 and ¢ are small.
Section 9 has some simulation results. Section 10 contains some conclud-
ing remarks. Proofs are presented in Section 11. In the appendix, we
first present a general expression for the covariance matrix of a parameter
of interest when nuisance parameters are present. Secondly, we give an
auxiliary matrix inequality, which might be of some interest also outside



its particular application in the present paper.

2 The model

Throughout this paper we suppose that a response scalar random variable
Y has a density f(y|£) with respect to a o-finite measure m on the Borel
o-field in IR given by

folg) = exp { =18

Fel o)} 1)

This relation describes a density belonging to an exponential family with
canonical parameter £. ¢ is a dispersion parameter, ¢ > 0, c¢(y,p) is
measurable, the function C(-) is smooth enough (see Section 4.1), and
C"(&) > 0, for all £&. Then the mean and the variance of Y given ¢ are,
respectively,

EY]E) =C'(€),  VI§) =¢-C"9), (2)

see, e.g., McCullagh and Nelder (1989). In general, we suppose that ¢ is

unknown, but is known to belong to a fixed interval [a1,b1],a1 > 0,01 <

00. In some special cases, e.g., in the Poisson model, ¢ may be known.
We assume that

§=¢(X, 2, 8), 3)

where X is an unobservable random scalar explanatory variable (covari-
ate), Z is an observable random vector of further explanatory variables
and f is a nonrandom vector of regression parameters; £(-,-,-) is smooth
enough (see Section 4.1).

For each i =1,2,...,n, let the triple (Y;, X;, Z;) have a distribution given
by

px (@)dx - mz(dz) - f{yl¢(x, 2, )} - m(dy),

where px(-) is the density of X, and my is the distribution of Z. We
assume in particular that X; ~ N(u,,02), with unknown pu,,02. Suppose
also that the triples (Y;, X;, Z;), ¢ =1,2,... are i.i.d. The true predictors
X; are related to the observed surrogate covariates W; through

Wi=X;+U;, i=1,...,n,



where the U; are i.i.d., independent of (Y;, X;, Z;), and
Ui ~ N(0,02). (4)

We assume o2 to be known. Finally, 8 € O3, where O is the closure of
a given convex open bounded subset of IRF.

The parameter [ is to be estimated by the observations (Y;, W;, Z;),
1=1,...,n.

3 The structural quasi score (SQS)
estimator

Let us introduce the conditional mean and variance of Y

m(W,Z,ﬁ) = E(Y|W7Z)7 (5)
v(W,Z,B8,¢) = V(Y|W,Z). (6)

Using (2), we have, compare, e.g., Carroll et al (1995), Section 7.8, and
Thamerus (1998):

m(W,Z,8) = E[C'{¢(X,Z,8)}W, Z], (7)
v(W,Z,8,¢) = VI[C{E(X,Z,B)}W, Z] + ¢E[C"{E(X, Z, B)}|W, Z]
= Al(WJ Z:ﬁ)+9@A2(WJ Z:ﬁ) (8)

The conditional distribution of X given W is N{u(W), 72}, with

2
au
W) = W—U—Q(W—Mw); 9)
4
. o,
T2 = O'i — E (10)

Here jiy := EW = g, 02 :=Var(W) = 02 + 02.

As the conditional distrubution of X given W depends on the parame-
ters ., and o2, therefore m(W, Z, 3) as well as v(W, Z, 8, ¢), A1 (W, Z, B),
and Ax(W, Z, 3) all depend on these unknown nuisance parameters. Let
fl., and 62 be the sample mean and sample variance of W, respectively.
Replacing i, and 02, with their estimates fi,, and 62, we obtain 71, A, Ay,

and ¢ from m, A1, Ay, and v, respectively.



Now, we define the SQS estimators BSQS and Psgs as measurable so-
lutions to the conditionally asymptotically unbiased estimating equations

55 =0 (11)

% Z{Yi — (Wi, Zi, B)}0 = (Wi, Zi, B, )

i=1

-1

1 < ) 183 .

B € Og, ¢ € ar,b].
The idea behind (12) can be explained als follows. For the true values
B = Bo, ¢ = @0, the right hand side of (12) converges a.s. to

[EAQ(Wa Za ﬂO)]_l{E[Y - m(Wa Z7 60)]2 - EAl (Wa Za ﬂO)}
= [EAZ(W7 ZJ /60)]_1{EU(W7 ZJ /307 900) - EAl (WJ Z: ﬁO)} = Yo,
see (8).

4 Asymptotic properties of BSQS

4.1 Further assumptions

Consider the model described in Section 2. Hereafter Gy and ¢g denote the
true values of 3 and ¢, and the expectation E is always taken with respect
to the true parameter values. We introduce some further assumptions

(i) Do is an interior point of Og, and ¢g € (a1,b1).
(i) C(¢) € C*(IR), and for all z, z, 3,
|ICOLe(x, 2, B)}| < const(el + Al =1, 4,
with some fixed A > 0 and const > 0.

Note that one could just as well have taken a bound of the form const -
exp[B(|X|+]|Z]|)] with some B > 0. Both types of bounds are equivalent.
Adding or multiplying two such bounds yields a bound of the same type
albeit with different constants.



(iii) EeAl?ll < oo, for each A > 0.

Under (ii) and (iii) the conditional mean and variance of Y given W and
Z are well defined and satisfy (7), (8).

(iv) For each z,z, 8, with some const > 0 and A > 0

C"{&(x, 2, 8)} > const - e~ A=Al

We need (iv) to bound v1.

(v) &(z,2,0) is defined for § in a neighborhood U(©g) of Os, and
é('aza ) € CB(R X U(Gﬁ))

(vi) ||D;Dé§|| < const(eAl*l 4+ eAll=l),
for 0 <i<4,5=0,1.

(vii) For each ¢ € [a1,b1], the equation
1 9m
B

has the unique solution 8 = [y, where mg := m(W, Z, o), m =
m(W7 Z7 ﬂ)’ and U = U(W7 Z7 67 <p)'

Due to (vii), the limit equations for the system (11), (12) have the unique
solution 8 = By, ¢ = @o. We introduce the compound parameter 6 :=

(8%, )" and let 8y := (85, o)".

(viii) The matrix
g ((9m om
9B 9pt

It then follows that the following matrix ® is also positive definite, where

E[(mo — m)v ]=0

6=0¢

is positive definite.

_10m dm

(v %6—,6”)

=00



4.2 Consistency and uniqueness of BSQS

When we study various asymptotic properties of the estimators we shall
often use the expression "eventually” to indicate that a certain property
holds true for large enough n. The following definition makes this precise.

Definition 4.1. Let Uy, Us, ... be a sequence of random vari-
ables on a probability space (2, F,P). A sequence of state-
ments A,,(U,), n =1,2,...is said to hold true eventually if

300, P(Q) =1,Vw € Qy IN(w) VYn > N(w): Ap{U,(w)}holds true.

We can now state the following theorem about existence, uniqueness,
and consistency of the SQS estimator.

Theorem 4.1. Assume (i) to (viii). Then:

a) eventually, the estimating equations (11), (12) have a so-
lution ﬂSQS S @5 and @SQS S [al,bl],

b) as n — o0, BSQS — ﬂo and @SQS — Yo a.s.,
c) eventually, the solution of (11), (12) is unique.

4.3 The algorithm

We look for an algorithm to solve the system (11), (12) in the domain © 4 x
[a1,b1]. The fact that this domain is compact will be useful in the proof
of asymptotic properties of the estimators. In addition, the restriction of
the estimators to a compact domain may provide computational stability
of the numerical procedure.

Denote by h,, () the function on the right hand side of (12), and let

- on iy L
Sn(ﬁaaa(p) = %Z{Y; - m(Wi7Zi;ﬁ)}ﬁ_l(WhZian@)W

i=1

. (13)

Introduce also the projector P onto the interval [a;, b] with P(u) = ay
ifu<a, Plu)=uif ag <u < by, and P(u) = by if u > b1. Now, we
modify the equations (11), (12) to the form

Sn(B,8,¢) =0, (14)
@ =P o hn(B). (15)



The following algorithm to solve (14), (15) is a modification of the itera-
tively reweighted least squares procedure, see Carroll and Ruppert (1988).

1. Given an estimate 3) € O from the j-th round of the algorithm,
find o) from (15), treating 31) as known.

2. Solve the equation S, (8, 8Y), W) = 0 for 8 € O3, using
o(Ws, Zi, o, ) with a = 89 and ¢ = o). The updated estimate
puUth ¢ Op is given by a weighted least squares estimate from
regressing Y; on m(W;, Z;, ), with weights

wd = [6(Wi, Zi, B9, D)) 1.
The corresponding unweighted least squares estimate /3’* € Opg can

be used as an initial value 3(©) for 3.

To show the convergence of the iterative procedure we have to strengthen
assumption (vii).

(vii)” For each a € ©g and ¢ € [a1, b1], the equation

op

where mg and m are as in (vii), has the unique solution 8 = fy.

£ { (o — w7, Z, ] G2 =0,

Thus in contrast to (vii), we fix a in the function v.
Theorem 4.2. Assume (i) to (vi), and also (vii)’. Then:
a) eventuall}f, the equation S,(8,a,¢) = 0 has a unique
solution fy(a, ¢) for arbitrary a € 5 and ¢ € [a1,b1],
b) eventually, 89 — Bsos and ) = @s0s, as j — oo.

4.4 Asymptotic normality

According to (10) and (9), the conditional mean m(W, Z, ) involves the
nuisance parameters p,, and 2. In view of (9), it is convenient to use
instead v := (jw,0,%)" =: (71,72)! as a nuisance parameter. Let o =
(1wo,0,0)¢ be the true value of v. For p = 1,2 let

15_m5m>

58 5 (16)

F,:=E (v

6=00,7="0



Theorem 4.3. Assume (i) to (viii). Then

Vi(Bsqs — Bo) 4 N(0,%50s),
with

2
ESQS = (1)71 + Qil(ag)oFlFlt + O_TF2F§)(I)717 (17)

w0
where ® is given in condition (viii).

Remark 4.1. If u,, and o2 are known, then ¥ggs = @71, see Carroll
et al (1995). The additional terms in (17) appear because the sample
estimators of v are plugged in.

Remark 4.2. Theorem 4.3 and the formula for the asymptotic covari-
ance matrix can be extended to the case, where the measurement error
variance o2 is unknown, but some validation data (i.e., some additional
observations of the latent variable X) are used to estimate it.

4.5 Expansion of Xgqg

We want to find approximating expressions for Xg¢s for fixed ¢ and o2 —

0. Hereafter {3 denotes the column vector %, and similarly &, := %,
oo 1= g—;g, etc. We shall need the following matrices:
So = BO"O&E)| . €=EX.Z), (18)
=0o
S = E(C"OGE), s E=EW,Z0) (19)

We introduce a new assumption, related to (viii).
(ix) The matrix E(¢5¢5) |,8:,80 is positive definite, where {5 = {3(X, Z, ).

Remark 4.3. Assumptions (iv) and (ix) imply that the matrix Sy of
(18) is positive definite. Under assumptions (ii) to (vi), S tends to Sy,
as 02 — 0, and therefore under the additional assumption (ix), S is also
positive definite for small enough o2.

Remark 4.4. Assumption (ix) is equivalent to the statement that
the components of £g at B = B are linearly independent with positive
probability, more precisely: For all a €R* a # 0: P(a'és # 0) > 0. Note
that when &(X, Z,8) = g(Bo + /1 X + B.Z) with some function g, then
(ix) implies 2 > 0.

10



Therorem 4.4 Assume (i) to (vi), and (vii) for small enough
o2, and (ix). Let o be fixed and o2 — 0. Then

Sses = @71+ 0(ay), (20)
and furthermore
ESQS = (,0571
1 . -~ B .
+ 505(,05 YE{20 7 1C"PEREpEh + O [(€8€h)2e + 26288 ]
+ C"[2(6:858h)e — Eualplh] + CWELEEYS™ (1)
+ 0(0y),

where C) = C')(¢) and ¢ and the derivatives of ¢ are taken
at the point (W, Z, By).

5 The corrected score (CS) estimator

We start with the likelihood score function of 3 for the original model (1).
Due to the structure of the exponential family (1), the likelihood score
function is given by

¢(y,x,z,ﬂ) = yfﬁ - C’(E)é_ﬁ, (22)
where ¢ and {3 are taken at the point (z,z,(). The estimating equa-

tion for the maximum likelihood estimator based on the observations
(Xiy Zi; 1/'1)77’ = 17 sy is then given by nil Z?:l w(}/z;Xh Zl;ﬁ) = 07
and its limit as n — oo is
E[{C"(&) — C'(§)}¢s] =0, B € Op, (23)
where & = &€(X,Z, (), and £ and &g are taken at the point (X, Z, §).
We need the following assumption.
(x) The equation (23) has the unique solution 8 = fo.

This is an identifiabily condition for the error-free model (1).

According to the approach of Carroll et al (1995), Chapter 6, see
also Nakamura (1990), we want to introduce a corrected score function
Ye(y,w, z, B) such that

E{g(Y,W, Z,B)IY, X, Z} = 9 (Y, X, Z, ). (24)

11



To this purpose, consider the functions fi(z, z, 8) = £3(z, z, §) and
fa(z,z,8) = C'{&(z, 2z, 8)}¢s(x, 2, B). We are looking for new functions
fic(w, 2, 3) such that

We demand that:

(xi) For f1 = &g and fo = C'(£)&p there exist solutions fi., fo. of equa-
tions (25) defined for all § in the neighborhood U(03) of ©3, and
fic(w, z,-) € CH(U(Op)),i = 1,2; see condition (v).

(xii) For fi = &3 and fo = C'(£)és and for the respective solutions
fie, fac satisfying (xi) the following expansion holds at any point
(w,z,8) € R x E, x Og as long as 02 < o3 for some fixed o2 > 0.

,BflC = Dﬁf, - —0’ DY (fz)zz -rest, (26)
i=1,2,j=0,1, and
|Irest|| < const(e?1®! 4 eAll=l) (27)
with const > 0 and fixed A > 0.

We comment on the new assumptions. Due to (xi), the function

'l/Jc(y,’lU,Z,ﬁ) = yflc(wazaﬁ) _f2c(wazaﬁ) (28)

satisfies (24). The condition (xii) with j =0 gives an approximation of
fic, foe (and therefore of 1..) for small enough 0’ . This approximation is
based on the representation of the solution f;. in the form

f' :f'__ f _+_o_4§: k 282kfl (29)
c K3 1)jxTx u P 2kk' amzk bl

which was shown in Stefanski (1989), p.4344, in a regular case. Therefore
for j =0 in (26)

et = S A a0

2kE!  Ox2k’
k=2

12



and for this expression, with 02 < o2, we require the bound (27). To
justify (26) and (27) for j = 1, one can assume that (25) is differentiable
with respect to 3, i.e.,

E{(fic)s(W, Z,8)|X, Z} = (fi)s(X, Z, ),

and use a representation like (29) for (fic)s. We will see that assump-
tions (xi) and (xii) hold for the polynomial regression and for the Poisson
regression model.

Now, for the corrected score function . given in (28), we define the

corrected score (CS) estimator Bcg as a measurable solution to

S (Vi Wi Zi ) =0, B €O (31)

i=1

Note that (23) is the limit estimating equation for Sog (31) as n — oo.
In Carroll et al (1995) the asymptotic propertles of ,805 are studied.
Under (x)-(xii), 505 is strictly consistent, i.e., 505 — Bo a.s. Introduce

g%
E o5 =60

where 9. and .g¢ are taken at the point (Y, W, Z, 3). The matrix A, is
symmetric and positive definite. Indeed, by (24), (22) and (2) we have

E’l/}c(ya WJ Z: /8) = E¢(Y; X7 ZJ /3) = E[{C’(£0) - C’(g)}gﬁ]a

where 50 = f(Xa Zvﬂo)a é- = é-(Xv Z:ﬂ): and 5,6 = %g(Xv Z:ﬂ) Differ-
entiating with respect to 8¢ and setting 8 = B, we get (bearing in mind
assumptions (ii) and (vi))

A = E(C"&pEh)| 5_g, = So, (33)

A=~ Ewcwt|g =80’ (32)

which is positive definite under assumption (ix), see Remark 4.3. Now

Vi(Bos = o) % N(0,Zcs),
where X g is given by the sandwich formula
Yos = A;lBCAgl. (34)

The next statement is the central result of the paper.

13



Theorem 5.1. Assume (i) to (vi), and (vii) for small enough
o2, and (ix) to (xii). Let ¢ be fixed and 02 — 0. Then

Yos = ESQS + 0(0'3)

6 The naive (N) estimator

The naive estimator BN of 3 is defined as a measurable solution to
1 n
i=1

Thus the likelihood score function (22) is used, but in (35) the unobserv-
able regressor X; is replaced with the observed surrogate covariate W;.
The limit equation is given by

E[m(W,Z, Bo)¢s — C'()§s] =0, B € Op, (36)

where ¢ and g are taken at the point (W, Z, 3). We shall now investigate
the properties of the naive estimator under the following restriction of the
function &(z, z, B):

(xiii) £ is linear in .
For instance, canonical generalized linear models, with &€ = 8o+ B,z + 3Lz

are linear in 3. The same is true for the polynomial model. In fact, for
most common models &(z, z, ) is a linear function.

Theorem 6.1. Assume (i) to (iii), and (v), (vi), (ix), (x),
(xiii). Then for small enough o2:

a) the equation (36) has a unique solution 8, = (.(c2),
b) eventually, the equation (35) has a solution 8w,
c) BN = Bs as., as n — oo,

) B« =Bo+ 30208, 4+ O(04), as o2 — 0, with

AB, = _S_lE[(C”éncgﬁ)w + Cl,émémﬁ]? (37)

where S is given in (19), C" = C" (), and £ and its derivatives
are taken at the point (W, Z, 5o).

o,

14



The asymptotic covariance matrix of /3’ ~ has a sandwich structure, which
is similar to (34). Introduce the following two symmetric matrices

A= —Byp (By),  Bu=Ey(B)¢"(By), (38)

where t(8.) is short for (Y, W, Z, 8.). The symmetry of A, follows di-
rectly from the definition (22) of 4. According to the theory of estimating
equations, under the conditions of Theorem 6.1 for small enough o2

Vi(By = B.) 5 N(0,Sw),
where
Yy = A7'B. AL (39)

This asymptotic covariance matrix can be compared to the asymptotic
covariance matrices of Bsgs or fcs for small o2:

Theorem 6.2. Under the assumptions (i) to (iii), and (v),
(vi), and (ix) to (xiii), let 2 — 0 and ¢ be fixed, then
1
(Xsgs —Xn) = §UZ¢5_1E{C"[(§B§E)M + 2£,5EL 5]
+ 20”1[2(590555,%)90 - fzzfﬁgf;’ + (fE;Aﬂ*)f,é‘f@]
+ 2096015+ O(oy),

where C() = C)(¢), ¢ and its derivatives are taken at the
point (W, Z, By), and AB, is given in (37) and S in (19).

7 Special cases

7.1 Linear-in-3 regression model

Consider the following structural errors-in-variables model

k

Yi = ) Bihi(XiZ) +¢ (41)
j=0

W, = X;+Uj, 1=1,...,n. (42)

15



We assume that hj, j = 0,...,k, are known measurable functions, X; ~
iid. N(pg,02), Z; are i.i.d. random vectors with values in a Euclidean
space Ez, and the errors (g;, U;) are i.i.d. Gaussian, independent of the
X;’s and Z;’s, with zero expectations and variances o> and o2 and covari-
ance o., = 0. This is a particular case of the model of Section 2, with
§= Z?:o Bihi(X, Z),C(€) = €/2, ¢ = oZ. Let 8° = (Boo, B0, - - - Bro)’
and pg = 02, be the true values of 8 = (Bo,...,0)" and o2, and let
B° € O3, where O is a convex compact set in IR¥*1. We assume that
hi(-,2) € C*(IR) and

|hj(z, 2)| + |hja (2, 2)] < const(eA‘z‘ + eA”z”)

with const > 0 and fixed A > 0, j = 0,...,k. In this case the matrices
(18) and (19) are calculated as

So = En(X,Z)h'(X,Z), S =Eh(W,Z)h'(W,Z), (43)

with h := (ho,...,ht)t. We require Sy to be nonsingular and assume
(i) and (iii). Then Theorem 5.1 and Theorem 6.2 are applicable, and as
o2 — 0 we obtain

ESQS = ECS + 0(0'3),
1
Yos— Yy = iaiJgS_IE {(hh") 4y + 2h hE} ST 4+ O(0), (44)

where h and its derivatives are taken at the point (W, Z).
Let a;; be the difference of corresponding diagonal elements of the
asymptotic covariance matrices of the estimators SfB¢cs and SfGn:

ajj; = [S(Ecs—EN)S]jj, jZO,...,k. (45)
From (44) we conclude that, as 02 — 0,

8%(n3) oh; 2
o T2 <a7>

+0(od) (46)

[P
I E
ajj 2Uu06
with the derivative of h; taken at (1, Z). The following statement is an
easy consequence of (46).

Proposition 7.1. Suppose that for fixed j the function h; (,2)

is convex a.s., and P{%(X, Z) # 0} > 0. Then for small
enough o2 it holds that a;; > 0.
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This proposition gives a sufficient condition for the asymptotic vari-
ance of (SBN)]- to be smaller than the asymptotic variance of (S,Bcs)j for
small measurement errors.

Analyzing the leading term of expansion (46), it is interesting to give
a geometric interpretation of the inequality 8%(h3})/dz> 4 2(dh;/dx)* > 0.
An easy calculation leads to

Proposition 7.2. Let g € C*(IR). The inequality (¢°)., +
2(g;)? > 0 holds for all z € IR iff the function |g|?® is convex on
IR. Moreover, if |g|? is strictly convex on some interval (a, 3)
then

>0,

ST (X) +2 (%(X))2

where X ~ N(p,,02).

Thus if h; does not depend on Z and satisfies the conditons of Propo-
sition 7.2, then a;; > 0, for small enough 2.

7.2 Polynomial regression

The polynomial regression is a particular case of the model (41), (42),
with

hj = h;(X) =X, j=0,1,...,k. (47)

It has found extensive treatment in the literature, see Cheng and Schneeweiss
(2002). We mention that, in the polynomial case, Bcs is called the ad-
justed least squares estimator (34rs), see Cheng and Schneeweiss (1998),
BSQS is called the structural least squares estimator (BSLS), see Kukush
et al (2001a), and By is the ordinary least squares estimator (BOLS).
From (46), we get the following result.

Proposition 7.3. In the polynomial model (41), (42), (47)
we have for a;j; of (45) as 02 — 0:

age = O(oy),

aj; = j(3j —1)olo?EW¥ )+ 0(0y), j=1,....k
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Thus for small enough o2, aj; > 0, j = 1,...,k, in accordance with
Proposition 7.1 or Proposition 7.2. Now, for k£ > 2 we consider the leading
term of the matrix S(Zcs — Xn)S, see (44):

1
M = St o B{(hh)ee + 2hahl}.

Due to Proposition 7.3, Mgy = 0 and M;; > 0, j = 1,...,k. But the
matrix M is not necessarily positive semidefinite. E.g., if W ~ N(0,1),
then

Moo Moy Mo 0 0 1
Mg My My | =o0202-| 0 2 0 |,
Moy Moy Moo 1 0 10

and the determinant of this submatrix is negative; so in this case M is
not positive semidefinite. Therefore, for the polynomial model it is not
true that Ycg > X in a matrix sense.

We mention that, for the polynomial model, (44) holds also true when
h is evaluated at the point (X, Z) instead of (W, Z) and S is replaced
with Sp. Similarly, in Proposition 7.3, E(W?2/~2) may be replaced with
E(X?/72). A corresponding remark applies to the matrix M, see Kukush
et al (2001a).

7.3 Poisson regression

The Poisson regression is one of the better known, and often applied,
Generalized Linear Models, see, e.g., Cameron and Trivedi (1998) and
Winkelmann (1997).

Suppose that Y |¢ has a Poisson distribution with parameter A = e,
and & = B+ 1 X, where 8 = (89, 81)? is the parameter of interest. Again
X ~ N(pg,02), and W = X + U is the surrogate covariate, where U is
independent of X and Y, and U ~ N(0,02) with 02 known. We observe
independent realizations (Y;, W;),i = 1,...,n. This is a particular case of
the model of Section 2, with C'(¢) = € and known ¢ = 1. A measure m
which dominates the distribution of Y is the counting measure.

We suppose that O is a convex compact set in IR?, and the true value
of 3 is an interior point of ©g. The statements of Theorem 4.3, Theorem
4.4, Theorem 5.1, Theorem 6.1, and Theorem 6.2 hold true for the Poisson
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regression. Note that BSQS is defined by (11) only, (12) is not needed; for
details see Thamerus (1998) and Kukush et al (2001b).
Now, let 8 be the true value of the parameter of interest, and let

9= puw t 0121;/31- (48)

Theorem 7.1. In the Poisson model the following statements
hold as 02 — 0.

a) By = Bs a.s., as n — oo, and

B, = P+ i02AB.+0(oh), (49)
MG = Dh(u+g,-2) (50)

b) ESQS =Ycs + 0(0'3)

952 7=
¢) Tos—En = i—gexp{—(ﬂo+ﬂlﬂw+%ﬂ%‘ﬁv)} < gg 1g )

+0(o?) (51)

In contrast to the expansion (44) in the polynomial case, we see that the
term of order o2 in the expansion (51) is a positive semidefinite matrix.
Moreover, we conclude from (51) that for small enough o2, the asymptotic
variance of Bl, ~ is less than the asymptotic variance of ﬂALC s,andif g #0
the same holds true for the estimators of fFy.

We mention that (51) also holds true if everywhere W is replaced with
X, see Kukush et al (2001b).

8 Asymptotics when both errors are small

Hereafter we consider again the general model presented in Section 2.
Again we deal with a series of such models, but now we suppose that only
the parameters 3, u,, and o2 stay fixed, while the dispersion parameter
¢ and the variance o2 tend to zero simultaneously. As to the relation

between ¢ and 02 we consider two cases:

(xiv) x? := p/o2 = const.
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(xv) For positive constants C; and Cs, C; < ¢/02 < Cb.
Let
vo(W, Z, Bo) == x> + C" &2, (52)

where C" = C"(€), and £ and &, are taken at the point (W, Z, 5y). Below
& and &g are also taken at this point.

Theorem 8.1. Assume (xiv) and let 02 — 0.
a) Under the conditions of Theorem 4.4,
Ssqs = 0, [B(C"EsE5v0 )] 7! + O(oy).
b) Under the conditions of Theorem 5.1,
Ses = 058 E(C"EsEhv0)S T + O(oy,).
¢) Under the conditions of Theorem 6.2,
YN = Xeos + O(od).

Remark 8.1.: In Theorem 8.1, one can replace S with Sy and also
the variable W with X in the argument of ¢ and its derivatives without
changing the statement of the theorem. See also Remark 4.3 and the
remark at the end of 7.2. The next result compares ¥sgs to Xcg for
both errors small.

Theorem 8.2. Let the conditions of Theorem 5.1 hold. As-
sume additionally that L(C"€2) with arguments (W, Z, 3;) has
no atoms. Then:

a) under (xiv), the difference

lim (052205) — 121H1 (UJZESQs)
—0

2
o —0 2

ist positive semidefinite and does not equal zero.
b) under (xv),

liminf[oy, *Amaz (Ecs — Ls0s)] > 0 (53)
a2 —0
and
liargi%f[o;zAmm(Eos - Ysgs)] >0, (54)
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Theorem 8.2 states that, for small errors, when ¢ and o2 have the same
order and under normality assumptions, the SQS estimator is asymptot-
ically more efficient than the CS estimator. Note that part a) can be
formulated in a similar way as part b) by writing (53) and (54) with
”lim” in place of ”lim inf”.

Remark 8.2. In the polynomial model of Subsection 7.2. with degree
k > 2, and By # 0, L(C" &%) has no atoms, and both the results of Theorem
8.1 and Theorem 8.2 hold true. Thus in a polynomial model of degree
k > 2 in the case of small 02 and o2, the SQS estimator is asymptotically
more efficient than the CS estimator.

9 Simulation results

In order to check the theoretical results we performed some Monte Carlo
simulation studies with two special models: a quadratic regression model
and a Poisson regression model, see Sections 7.2 and 7.3. In the quadratic
model we studied both limiting cases: (a) 02 — 0,9 = o2 fixed, and
(b) 02 = 0,x* = 02/0? fixed. In the Poisson model only case (a) was
investigated; case (b) does not exist, as ¢ = 1. For the quadratic model,
we took 3 = (0,1,-0.5)", X ~ N(0,1), and for case (a), o2 = 0.05 and
02 = 20, while for case (b), 02 = 0.01 and 02 = 0.002 so that x? = 0.2. For
the Poisson model, we took 8 = (—1,0.5)', X ~ N(2,1), and o2 = 0.05.

In both models the sample size was taken to be n = 800 so that
one could hope that the asymptotic theory would apply. The number of
replications was N = 1000.

In the quadratic model the CS estimator was modified to an estimator
(MCS) which has the same asymptotic properties as CS but is much
stabler for small n, see Cheng et al (2000), where MCS was called MALS.

We computed bias and standard error of the three estimators N, CS
(or rather MCS), and SQS from the 1000 replications and compared them
to the theoretical approximation values as computed from (37), (21), and
(40), respectively. The resulting values are presented in the following ta-
bles 1 to 3 under the heading ”theory”.
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Table 1: Standard deviations and differences of covariance matrices for
a polynomial model in case (a): B = (0,1,-0.5)", pu; = 0,02 = 1,02 =
20,02 = 0.05

Standard Deviations
n = 800 | Naive Naive MCS SQS CS or SQS
theory simulation | simulation simulation theory
Bo | 0.1941 0.1911 0.1948 0.1944 0.1973
B | 0.1549 0.1555 0.1636 0.1633 0.1628
B2 | 0.1069 0.1050 0.1161 0.1158 0.1181

22,598  0.240 —30.746
—-30.746 —-0.348  39.329

:—Z(EMCS—ZN):( 0.240 41505 —0.348

n

52
UU

2.281 —0.638 —1.691
(Swmes — Ssos) = | —0.638  1.496  0.871
~1.691 0.871 1.106

Table 2: Standard deviations and differences of covariance matrices for
a polynomial model in case (b): 3 = (0,1,—0.5) u, = 0,02 = 1,02 =
0.002,02 = 0.010

Standard Deviations
n = 800 | Naive or CS Naive MCS SQS
theory simulation simulation | simulation
Bo 0.0064 0.0063 0.0064 0.0048
(1 0.0072 0.0072 0.0073 0.0059
B 0.0062 0.0062 0.0064 0.0044

o 0.059  0.000 —0.073
— (Smes — EN) = 0.000 0.128 —0.045
Tu —0.073 —0.045 0.128

1.464  0.827 —1.569
—-1.569 —0.875 1.686

n
U_Q(EMCS —Ysgs) = ( 0.827 1.481 —-0.875
u
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Table 3: Standard deviations and differences of covariance matrices for
the Poisson model: 8 = (—1,0.5)",puz = 2,02 = 1,02 = 0.05

Standard Deviations
n = 800 | Naive Naive CS SQS CS or SQS
theory simulation | simulation simulation theory
Bo | 0.0883 0.0888 0.0928 0.0929 0.0918
B | 0.0328 0.0334 0.0351 0.0351 0.0343

n
— (Zcs —En) =
Uu

11.6419 —4.6875
—4.6875  1.8869
n —0.3536  —0.0161
— (Zcs —Tsqs) = ( —0.0161  0.0201 )

u

It is seen that our theoretical results are nicely corroborated by our
simulation study.

10 Conclusion

We studied the relative asymptotic efficiency of two consistent estimators
of the parameters of a nonlinear regression model with Gaussian measure-
ment errors in one of the covariates. The error variance o2 is supposed to
be known, the response variable has a density belonging to an exponential
family, and the error-ridden covariate has a Gaussian distribution. We are
thus faced with the so-called structural variant of a measurement error
model.

For this variant a structural quasi score (SQS) estimator can be con-
structed. The SQS estimator is consistent if the assumption of a Gaus-
sian covariate holds true, otherwise it is biased. On the other hand, the
corrected score (CS) estimator does not depend on any distributional as-
sumptions for the covariates and is consistent whatever this distribution
looks like. It thus belongs to the so-called functional variant of the model
and is more robust than the SQS estimator with regard to the shape of
the covariate distribution.

However, if the normality assumption does, in fact, hold true, the SQS
estimator, which utilizes this extra information, might be thought to be
more efficient than the CS estimator, which does not use this information.
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It turns out, however, that for small error variances this is not true. On
the contrary, both estimators are approximately equally efficent for small
o2, more precisely: their asymptotic covariance matrices coincide up to
the order of o2.

A different picture is seen if together with o2 also the dispersion pa-
rameter ¢ of the exponential family goes to zero in constant proportion
to o2. In this case, the SQS estimator is, in a sense, more efficient for
small o2 than the CS estimator.

In deriving the asymptotic covariance matrix of the SQS estimator, we
took account of the fact, that before setting up the estimating equations
for the regression parameters, the parameters of the normal covariate
distribution (i.e., mean and variance) have to be estimated. This fact
implies that additional terms have to be incorporated into the formula
for ¥ 505, which would not appear if the parameters of the covariate
distribution were known. In deriving these additional terms we used a
general approach, which might be helpful also in other situations where
the estimates of the parameters of interest depend on nuisance parameters
to be estimated aforehand.

We also included in our investigation the so-called naive estimator,
which is the ML estimator of the model computed without regard to mea-
surement errors. The naive estimator is inconsistent, but its asymptotic
covariance matrix may still be of interest in particular if it turns out to
be smaller, in a sense, than those of the consistent estimators. For the
polynomial and the Poisson regression models this can, in fact, be shown
when o2 becomes small. When both ¢ and o2 become small, the naive
estimator is as efficient (up to the order of ¢2) as the CS estimator, and
the SQS estimator is more efficient, in a sense. These results are corrob-
orated by the results of a small simulation study which was carried out
for the polynomial and the Poisson regression model. More simulation
results can be found in Kukush et al (2001a), (2001b).

Simulations performed by Schneeweiss and Nittner (2001) for a poly-
nomial model show that, for large o2, SQS seems to be more efficient
than CS. It is an open problem to prove this theoretically. For the Pois-
son model, however, it can be shown that SQS is more efficient than CS
for whatever o2, Shklyar and Kukush (2002).
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11 Proofs

All random variables appearing in the model of Section 2 are defined on a
common probability space (2, F, Py) where Py is the law under the true
parameter values o, @0, 42, 02- The operator "E” always denotes ex-
pectation under Py and ”a.s.” is an abbreviation for ” P - almost surely”.

11.1 Proof of Theorem 4.1, part a)

To simplify the following arguments we slightly modify the estimating
1

equation (12) by replacing the term — with 1. The right hand side
of the modified equation (12) differs from the original one by a term of
order L a.s. The estimator resulting from the modified equations (11),
(12) therefore has the same asymptotic properties as the one coming from
the original equations (11), (12).

The score function corresponding to the (modified) equations (11),

(12) is then

Y —m)y—tdm
6w, zitma) = (o O ) 69

where m,v, A1, and A, are functions of W and Z as well as of the
parameters 8 = (8%, ), iy, 02, which may differ from the true values
8o, pwo, 02. We shall sometimes use the abbreviation 7 := (%, ju,, 02%)!

with 79 being its true value. Given an i.i.d sample (Y;,W;,Z;), i =

1,...,n, the estimating function is defined by
2 1 ¢ 2
G0 s 73,) = ;;G(E,Wi,zi;e;uw,aw). (56)

The (modified) estimating equations (11), (12) can then be written as
Gn(0; 1, 62) =0, €O :=05x [ar, by]. (57)

Fix finite intervals (fy1, tw2) and (as,bs),as > 0, that contain p,o and
a2, respectively. Now, we list some properties of the functions (56).

(a) Almost surely Gy, (0; pw,02) = Goo(0; i, 02,) uniformly in ©,, :=
O X [faw1, fhw2] X [az, b2, with
Gos (03 b, 03) = EGu(0; p, 03,) = EG(Y, Z,W:6; pw, 07,
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This property is based on three facts. First, for any fixed argument
n € 0,, Gn(n) = G (n) a.s. due to the strong LLN.

Second, the functions G, (n) are equicontinuous in n € ©, a.s. For
instance, for the first component GL(n), see (55), we have by the
strong LLN a.s.

G, - AG (Y;, Wy, Zs;
sup :L < Z sup (Y3, tz: i31m) H
nee, || On n < ce, on
1 Y. 7Z-
— E sup oG (Y, W, Z;m) ,I/It/, ’n)H<oo,
neO, 877

where G*(Y;, Wi, Zizn) = (Yi — mi)o; ' B, mi = m(Wi, Zi, B),

and v; = v(W;,Z;,0). (To derive this result we used the expo-
nential bounds of the conditions of Theorem 4.1) It follows that

SUp,>1 SUP,co, ||%|| < 00 a.s., and therefore the functions G2 ()
are equicontinuous on ©, a.s. Similar arguments can be applied to
G ().

Third, Goo(n) is continuous in n € 6, see (b) below.

These three facts imply the existence of Q¢ C Q with P(Qp) =1
such that Vw € Qo,Vn € Oy : Gn(n) = Geo(n)- Indeed, let O} be a
countable dense subset of O, and for any 7; € O let Qo; C Q with
P(Qp;) = 1 be such that Yw € Qo; : G, (1;) = Goo(n). Then take
Qo = N2, Qo;. For any n € O, and w € Qy we then have |G () —
G| < |Goo(n) = Goo ()| + G oo (i) — Gr(i)| +1Gn(n:) — Gr ()],
which becomes arbitrary small if 7; us chosen close to 77 and n is
sufficiently large.

Again using these three facts and the further fact that ©,, is com-
pact, we can now prove that G,(n) = G (n) uniformly on ©,, for
all w € Qo. Indeed for any 1o € 0, and all 5 in a J-neighborhood of
1o the difference |G, (1) — Goo(n)| can be made less than any £ > 0
if 6 = d(e,no) is chosen sufficiently small and n > N(g,n0). As a
finite set of such d-neighborhoods covers ©,, an N = N(g) can be
chosen such that Vn > N,Vn € 0, : |Gn(n) — Go(n)] < €.

Almost surely G, (0; flw, %) = Goo (85 piw,002) uniformly in ©.

This property follows from property (a) and from the fact that fi,
and 62 are strongly consistent.
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(€) Gooln) = (G ()", GZ ()", with

_10m
% ’

Gc2>o (’I]) = E[(mo — m)2 + A10 + (,001420 — A1 — (pAQ], (59)

GLm) = B|(me—mo (58)

where mo = m(W7 Z7 ﬂo):AIO = AI(W7 Z: ﬂo)vAQO = AQ(Wa Z7 ﬂo)

with f1, = pwo and o2, = 02, and m, v, Ay, A2 are as before.

(d) The matrix

G (n)

06t (60)

I() =

=10

is non-singular.
This property follows from the relations

0G5 (n) _ g (,10mom
ot - o 9pt ’
n="no n=no
0Gsm) _
Oy o
2
8GOO (77) — —EAQ ,
Oy
n="no n=no

where the matrix of the first relation is negative definite due to (viii),
and —EA,; < 0 because C"(&) > 0, see (8); therefore det Iy # 0.

Next, we want to apply Theorem 12.1 from Heyde (1997) to the sequence
(56) of estimating functions, see also Aitchison and Silvey (1958). Set

H,(0) = —I,'G,(0; i, 62), 0€O. (61)

The functions H,(#) are continuous in #. We have to show that for all
small § > 0 a.e. on the set 2

gs := limsup,, ... { sup (0 —6o)'H,(0)} <O. (62)
16— 6o]/=
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Indeed, due to property (b) we have

G = sup (000 {15 Goolt pruo, 020)}- (63)
10—00]|=5
Now, G (00; pwo,02y) = 0, which is easily seen from (58), (59). There-
fore, using the definition (60) of Iy, we get the expansion

(0 = 00)' {1y ' Goo (03 1w, 030) } = =116 = bol|* + o([|6 — 6o]”)

as 8 — 6y. From (63) we obtain that, for all small 6 > 0, the inequality
(62) holds. Thus, by the above mentioned theorem from Heyde (1997),
the equation H,(#) = 0 has a solution eventually. This proves statement
a) of Theorem 4.1.

Remark 11.1. Now we can give a more rigorous definition of the SQS
estimator. For those (small) n for which (11), (12) has no solution we set
ﬂASQS = ﬂf, @SQS = ©f, where ﬂf € @5 and Py € [al,bl] are arbitrary
but fixed values. If n is such that (11), (12) has many solutions we choose
one of them for every w € € in such a way that Bst(w) and ¢sgs(w)
are measurable. This is possible due to, e.g., Pfanzagl (1969).

11.2 Proof of Theorem 4.1, part b)

Owing to property (b) in the proof of part a), there is a set g of prob-
ability 1 where G, (0; fiw,62) = Goo(0; ttwo, 02,) uniformly in ©. Fix
w € Qp. The sequence én(w) of SQS-estimators lies in the compact set
©. Consider an arbitrary convergent subsequence én(k) (w) = 6. The
sequence Gy, (én(k);ﬂw,&?ﬂ) converges t0 Goo (0x, fwo, 02), Which is zero
because Gn(én(,@);ﬂw,&ﬁj) = 0 eventually. Hence 6, = 6y because ob-
viously 6, is the unique solution to G (0; pwo,02,) = 0, see (58), (59)
and assumption (vii). This implies the convergence of the whole sequence
6, (w) to the true value 6y, and strong consistency is proved.

11.3 Proof of Theorem 4.1, part c)

We apply an approach due to Foutz (1977) based on the Inverse Function
Theorem. Due to property (b) from the proof of part a), the functions H,
of (61) converge a.s. uniformly in © to He(8) = —I5 G oo (8; pwo, 020),

and Hy(6g) = 0. Moreover, by similar arguments, 8%559) converges a.s.
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uniformly in O to M%ét(e), and, because of (60), M%ét(g) = —Igy1,

=00
where Ijy; is the (K + 1) x (k + 1) unit matrix. Now, we fix a sequence

6, of SQS estimators such that
H,(6,) =0 eventually. (64)

Such a sequence exists according to part a), and according to part b)

~

0, > 6y as. (65)

Applying the arguments from Foutz (1977) we obtain the following result:
if {8,,} is another sequence satisfying (64), (65), then 6,, = 6,, eventually.
This proves part c).

Remark 11.2. The approach of Foutz gives not only uniqueness, but
also existence of the estimator with properties (64), (65). Therefore, in
Subsection 11.1, we could have referred to Foutz instead of to Heyde. But
our version of the proof shows that the stonger the convergence properties
of H,,(6) are, the better are the properties of the resulting estimators: just
uniform convergence of H, () implies only existence, while additionally
uniform convergence of the derivatives Bgzt(e) implies uniqueness of the
solution.

11.4 Proof of Theorem 4.2, part a)

In a similar way as in Subsection 11.1 it can be shown that the functions
Sy, of (13) converge a.s. uniformly in O3 x O3 x [a1, b1] to

Sl 9) = B [0 7. Zi, ) om0, 2, 60) — (3, 2,0y LA

Moreover, %ZT; — 885[3? in the same sense, and
aSoo(ﬁaa7(p) _ —E Ufl(W, Z,a,g&)am(W, Z:ﬁ) am(Wa Z;ﬁ) ,
ap* B=Po 9B ap* B=Po

which is negative definite due to (viii). We then find, as in Subsection
11.1, that eventually there exists a solution 3, (a,¢) to

Sn(ﬂ,a,@) = 07 ﬂ € Gﬁa (66)
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for all (a, ) € ©. But owing to (vii)’ the limit equation S (8, a,¢) =0
has the unique solution 8 = y. Therefore we see, like in Subsection 11.2,
that the solution to (66) has the property that uniformly in (a,¢) € ©,
as n — oo,

/3’”(04, ®) = Bo a.s. (67)

Moreover, applying again the arguments of Foutz (1977) as in Subsection
11.3, this solution is seen to be unique eventually.

11.5 Proof of Theorem 4.2, part b)

According to part a) of Theorem 4.2 there exists g C Q with P(Qy) =1
such that, for all w € Q¢ and n > N(w), Bn(a, @) satisfies (66). Let us fix
w € Qy and n > N(w), and let us drop the index n for notational ease.
Denote the function 3,(c, 8) by s(c, 8). Then

BUTYD = 5(80) | o)),
and because of (15) we get
puUt = 5{5(1)713 ° h(ﬂ(j))} —. F(ﬂ(j))_

We show that, for large n, F(-) is a contraction on Og, i.e., F : O3 — Op
and [|F(81) — F(B2)|| < A||B1 — Bz2]|, where A < 1 and A does not depend
on A1, 32. We have the identity

S{F(B),8,P oh(B)} =0,
where S = S,, from (66). Let 81 # B2 and | := F(81) — F(f2) # 0. Then
a5* a5* a5*
8ﬂtl+ltw(ﬁl _ﬁ2) +lt 6@

where the asterisk indicates that the derivatives are taken at an interme-
diate point between the points (F'(5;), i, P o h(5;)),i = 1,2. Denote by
C the convex hull of F(03). From (68) we get with ¥ = (a, ¢),

)

2w

lt

(Poh(B1) —Poh(B)) =0, (68)

IIlIISIIﬂl—ﬂQII{ inf Amin(

BeC,9€0
95(8,9)
dat H +

s
Oy P

BEBs

05(8,9) ‘

X sup
BeC,¥e0 BeC,9€0
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Here Apin(-) is the minimal eigenvalue of a symmetric matrix. Let us
consider the various terms of (69). First, due to uniform convergence
(67), C C B(fo,d) for n > ng(d,w), where B(fy,d) is a ball with center
Bo and radius J. Second, the derivatives of S(3,19) converge uniformly to
the derivatives of S (3,1), and 0Sxo(B0,9)/0S! is positive definite, see
Subsection 11.4. Therefore, for large n and small enough d, 8S(3,9)/03¢
is positive definite on B(fp,d) and hence

o (2500

BeC,9€O opt

is positive and bounded away from 0. Third, the derivatives of S, at the
point (3o, @, ) with respect to ¢ and a equal 0, and so sup [|0S/da?|]
and sup ||0S/0y|| in (69) tend to zero with n — oo and § — 0. Fi-
nally supgce, ||§’—ﬂ’.’t|| = O(1). Taking all these results together, (69) now
implies:

I1E(B1) = F(B)Il < An - {181 = Bell,

where A\, — 0,n — oo. Thus, for large n, F is a contraction. Then by
Banach’s contraction theorem, for sufficiently large n, /) converges to a
fixed point fr of the mapping F as j — oo, and @) = P o h(30)) —
pr = Poh(BF) as j — oco. The limit values 8, pr satisfy (14), (15). But
ﬁ5Q5,¢5Q5 also satisfy (14), (15) eventually. As ¢sgs — o a.s. and
@o € (a1,b1), therefore psgs € (a1,b1) eventually, and then Poh(ﬁst) =
h(ﬁsQ 5). Since the solution to (14), (15) is unique eventually, therefore
Br = /3’5@5 and ¢r = Psgs eventually. This completes the proof.

11.6 Proof of Theorem 4.3

We reparameterize the score function G of (55) and the estimating func-
tion Gy, of (56) by replacing the nuisance parameters (p,,02) in the
arguments with v = (v1,72)? without changing the notation of G or G,
i.e., we write, e.g., in (56), G,(6,7) instead of G, (8, i, 02,) and similarly

for G in (55). The estimators Gsgs and ¢sgs satisfy the equation
Gn(Bs50s, Ps50s; fws 0°) = 0. (70)

We want to derive the asymptotic covariance matrix of ﬁ sos with the help
of Lemma A1 of the Appendix. Let us check the conditions of Lemma
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Al. By Theorem 4.1, 6 = (Bngs,@SQs)t is consistent. The random field
Gn(0,7), 0 € ©, 7 € Oy = [l ; fluws] X [1 1 ], has C'-smooth paths

b2 as
a.s. So conditions a) and b) are satisfied.
Counsider condition c) of Lemma Al. Set H; := W; — p,,. We have:

X 1 —
frw = EZW,-_W, (71)
=1
| R — —
62 = n_lz(Hi—H)QzHQ—i—Op(—), (72)
i=1
and
52 2
Y o Oy—0os, 1 — 9 1
6,° — oy, ——W——%(HQ—UU))—%OP <E> (73)

From (56), (71) and (73) we get

np (Yo, Y0 _ L Wi — I L
(e )=mol Ve Jro(g) o

w

Two

Note that
EG(Y7 W7 Z: 00770) = E[E{G(Y7 W7 Z: 00770)|W7 Z}] = 07

see (55), (5), (6) and (8). From (74) we have by the CLT for i.i.d. random

vectors:

(VG (60,70), V(B — 70)")" 3 N(0, %)

with
G(Ya W7 Z: 007 70)
Y = cov W = pwo . (75)
_ (Wf;uwo)z*a'fu
0.4
w0
Obviously

Y= diag(211701200720'1;é)7 (76)
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where

zn:< ¢ “2>, (77)

021 022

® comes from (viii), 012 and 091 = Jfg are unspecified vectors, and oo, is
a scalar.
Now pass to condition d) of Lemma Al. By the LLN

aG(Y7 WJ Za /307 $o, 70)
(B, p) '

Let us decompose G in accordance with (55): G = (G}, G2)!. Then, with
derivatives taken at the true parameter values,

V,=E

6G1 aGl
Bl =g, EZl=g
opt ’ Oy ’
E% = —EA2 = —y22.
¥
Introduce also ®12 := —E%g?. By condition (viii) ® is positive definite,
and by (8) 22 = EC" > 0. Therefore V; is non-singular, and
_ o1 0
“1=—<_;@m¢4_L>' (78)
Y22 P22

Let us now pass to condition e) of Lemma Al. We have

VQ — EaG(Ya W7 ZQﬂO;‘PO;’YO) ]
oyt

In particular, again taking derivatives at the true parameter values,

Gy _ E <U_1 om 6m>

E i
ot 0B o

=: V21, (79)

introduce also
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Then

Vy = < x; > . (80)

Finally, condition f) of Lemma A1l can be shown to hold. For 6 and v
in the e-neighborhood of 6y and 7o,

9Gn(0,7)  0Gn(6o,7)
(6t A1) a(0t,+t)

0%G(0,7)
o(0,7)o(6",~")

B

‘ < sup
16—=00][<e,llv—0lI<e

and, because of the exponential bounds conditions,

aZG(YJ W7 Z7 07 ,Y)
E sup < o0,
Ho—oo||ge,\wwous6” 9(0,7)0(6",~") |

for sufficiently small e. Now condition f) follows by applying Chebyshev’s
inequality in the form: P(|X| > d) < %.
So all the conditions of Lemma A1l are satisfied, and hence

ﬁ( Psas — fio ) 4 N(0,%9),
$sQs — ¥o
Yo = Vit (Iig1, V2)E(Tgy1, Vo) V!

Introduce the k x (k+ 1) selection matrix Pg := (I}, 0). According to (78)
we have for the asymptotic covariance matrix ¥sgs of 8sgs:

Ssqs = PSPy = (@1, 0)(Ix11, Vo) S(Irs1, V) (@71, 0)7,
where 0 is k x 1, and with (80), (76) and (77):

Ysos = (®71,0;® 1Vy)diag(Ti1,020,20,0) (@71, 0; @ 1Vy)!
= &'+ & 'V, diag(oly,20,5) V&L

Now by (79) Va1 = —(F1, F»), where the Fj,,p = 1,2, are given in (16).
We thus finally have

Yoos =P+ (02 FiF! 4+ 20t Fy FL)® L

34



11.7 Proof of Theorem 4.4

We divide the proof into several steps.

(a) Expansion of the conditional mean. We want to derive an expansion
of m(W,Z,3) in (7) in terms of powers of o2. We use the following
representation of m(w, z, ) with non-random w and z, remembering that
X[W ~ N{p(w), 7%}:

m(w,z, 8) = BC'[{{n(w) + ¢, 2, B}] (81)

with ¢ ~ N(0,1). We start, however, with a slightly more general situa-
tion. Let f € CW(IR), and for some A > 0

|F O (w)| < const - el weR, i=0,1,...,4. (82)
Let ¢ ~ N(0,1) and consider the following expansion as o2 — 0, see (9),

(10):

Ef{p(w) + 7} =Ef (w +7¢ - Z—é(w - ,,w)> =

3 ; i
Z O (w o2
" i=0 Z'( )<T§—Ua(W—Hw)> )=
= f(w) — f’(w)—g (w — p) + _f”;w)Tz + O(o?) + Ers. (83)

2
U
2
w

Here, with some A € [0,1],

%u

2
ry= 3 {w a <T< T - m)} (rc - %

Now, from (82) and (10) we get a bound for 73 when o2 < 1:

(w—uw)>4-

rs| < const - ot eAlwleAK

with some A > 0, and hence

|Ers| < const - oteAlvl

In (83) the term O(ol) can be bounded with a similar bound. Thus, again
with the help of (10), we obtain

Bffu(w) +70) = )+ 503 (20 @ 214 prw)) 59

N | =
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+ Ui - rest,

lrest| < const-eAlvl. (85)
If f=f(w,2),w€ R,z €E., f(-,z) € C*(IR), and
|Di, f(w, z)| < const(e®! 4 eAlZl) 0 <i <4,

then for the expectation Ef{u(w) + 7(, 2z} the expansion (84), with sup-
pressed dependence on z, still holds, where the derivatives are taken with
respect to w and

[rest| < const(e?1®! 4+ eAll#l), (86)

Now, we specialize to the function f = C'{{(w,z, )} and derive an
expansion for m(W, Z, 8) in (81). We use the bounds in (ii) and (vi) and
obtain for 02 < 1:

1 W —
m(W7 Z, ﬂ) =C" + 50'3 <_2Tﬂwcufm + Cl’ézz + Cl”éi) (87)
w
+ ob - rest,
[rest| < const(eAW] 4+ AlZIly, (88)

The function ¢ and its derivatives are taken at (W, Z, 3).
(b) Ezpansion of conditional variance. First we expand A; defined in
(8). We have with (84) specialized, respectively, to f = C'? and to f = C’

AW, Z,8) = E [C*{E(X, 2, YW, Z] — {B[C"{&(X, Z, B)}|W, 2]}

2
2 o,

2 _
— CIQ + U_U |:_4 (W i lu’w)clcllé-m + 2(0/[2&-3 + Clcli!fi + Clcufzz)]
2

2
. {Cl + Ty |:_2(W_,uw)cugz +C"n +C///£§:|} +03 - rest,

2
2 o

where rest satisfies (88). After simple transformations we get

2
AW, Z,B) = 02—“20”253 + ol - rest.

Here and in the sequel the function ¢ and its derivatives are taken at
(W, Z,). Next, As, as defined in (8), is expanded in the same way. We
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receive the same expression as the right hand side of (87), but with C(¢+1)
in place of C i = 1,2, 3. Finally we get from (8)

+ ﬁ 20”253 F O + C(4)§2 _9 (W _2/lw) e,
2 @ * o2
+ o - rest, (89)

where rest satisfies (88).
(¢) Ezpansion of %—’E(W, Z,3). We can differentiate both sides of (81)

with respect to 8 and then use (84) with f = C"¢3. We obtain

Z—Z(W, Z,B) = C"¢&g+ 103T1 + 03 - rest, (90)
(W - :Ufw)
T = - T(C"fm)g + C”fmmg
+ O (Epubp + 26,605) + CWE2E, (91)

and rest satisfies (88).
(d) Ezpansion of (v/¢)~t. We write (89) as

2
o ho(W,Z,8) =C" + U—“Tg + ot . rest. 92
2 u

From condition (iv) and (8) we have

1
(,0<

v A_2
But by condition (iv) and the independence of Z and X
Ay > const e_A”ZHE(e—A\XHW).

Now write X = u(W) + 7¢, where { ~ N(0,1) and ¢ is independent of
W, see (9) and (10). Then

E(efA‘X||W) > e~ AltW) g e—AT[¢]
62 62
—A|F WA 3 pw
= conste w w
> const e_A‘Wl,
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where ”const” depends on j,, and 2. Thus
o/v < const - eMNWIeANZI < const(e2AIW] 4 241211 (93)

Now, according to (92) the leading terms of the expansion of /v will

O-‘M

have the form %(1 — 20—,,T2). Therefore consider the difference

p 1 &
v o (1‘ 201/T2>‘

o2 1 o2
= % 1— (C” + 7“T2 + ok .rest> rel <1 — 2é‘llT2> ‘
2
o | oi12 ol |rest| - (1 + 20—",,|T2|)
< v 40?2 + o : (94)

Using (93) and (iv) and the fact that owing to (i) and (vi) we have similar
exponential bounds for T, we obtain from (94) the expansion

1 o2
plv = el <1 - 2é‘,,T2> + ol - rest, (95)

and rest satisfies (88).
(e) Proof of (20). From (81) we have

OB _plenoe (% 4 7). (96)

where £ and &, are functions of u(w) + 7¢, z, 5. If p =1, then v1 = pu,
and by (9) and (10)

outw) ot or _
6’71 0'120’ 6’71 ’
and if p = 2, then 75 = 0,2, and
Op(w) 9 or 1 072 o
o = Ou(w — ), v 97 B 91 — 02 o2)1/2
0o Ove 27 O 2(1 —o02/02)1/
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Therefore from (96) we get that for 02 <1

‘ om(W, Z, )

< ollrest 97
52 < otlrest, (o

where rest satisfies (88) because of (i) and (vi). Now, from (16), (90)
(93) and (97) we have

and (20) follows from (17).
(f) Proof of (21). In the sequel rest is a quantity which always satisfies
(88). From (90) we have

aa—gg—gz = C"2¢sL + %030"@153]5 + ot - rest. (98)
Hereafter [-]s means symmetrization, i.e., for a square matrix M,

[M]s := M + M".
Now, (98) and (95) imply that

om Om 1
2Om O — o"eseh + JoRTiEHls ~ GET) + o -rest

Taking expectations at 3 = [y, we derive the following expression for @,
as defined right after (viii), with S from (19):

1
o® = 5 + SORE(TiEhs — EE4T3) + O(oh),
and by inversion we get, according to (20),
1
0 805 =871 + 5035‘1E(§5§f3Tg — [1&ls)S™ + O(oy).  (99)

To simplify (99), we use integration by part in the form

W —

2
Ow

E

h(W,Z,ﬁ) :Ehw(Wazaﬁ)a (100)
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where W ~ N (uy,02),h: Rx Ez x ©5 — IR is measurable, h(-, Z,3) €
C*(RR), and

\W(W, Z, B)| + |he (W, Z, B)| < const(eAW] 4+ eAlIZ1), (101)
We have by (100) (with T3 being the term in brackets of (89))
B(gs&hTn) = B{207 C"E¢s¢, (102)
+ C"(=2(6E5Eh)s + Eaabplly) — CEIEREL ).
Next, with 77 from (91),

mesls = 2 ) aome gt 1 O feasebls) + O"lnnnthls

w

+ C”I(szzgﬁf,g + 2590 [fz,@fé]s) + 20(4)53555,%:
and applying (100) again we get
E[Tlffa]s = E{C”(_4§zﬁgiﬁ - [fzzﬁgfj’]S) (103)
+ O~ 4(E€pEh)s + 2aabath] — 201V (E2€5¢5}.
From (99), (102) and (103) and letting 8 = [y we finally obtain (21).

11.8 Proof of Theorem 5.1

We divide the proof into several steps. In the sequel £ and its derivatives
are considered as functions of W, Z, 3.
(a) Ezpansion of ¢.. From (26) to (28) we get

¢c(y7waza/8) =Y <£ﬁ - %Uié-:cw,8> - Cléﬁ

1
+ 503(01511,8 + C”fzzfﬁ + 20"&&5 + Cl”égéﬁ)
+ ol rest, (104)
where
Irest]] < const(|y] + 1)(eA1! + eAll=l

INIA

const - 2(y* + 24wl 4 24l (105)
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As to (105), note that, for a > 0, |yle® < 2(y? + ¢?*) and e* < ¢?*. Now,
from (104) and (87) we have

1.
VW28 = (¥ =m) (6 - 30%enn) (106
W —

2
Ow

+ %0'12;, |:2C” (fzfz,@ + fzzfﬁ -

4
+ o, rest,

Haw fzfﬁ) + QCIII§§§B:|

where rest satisfies (105).
(b) Expansion of B.. Substituting (106) in (32), we get at the true
parameter values 8 = By, p = ¢o

1.
B, = Bu(€ath ~ 30%leuunthls) +O(0h).
Using expansion (89) and integraton by part, (100) and (101), we get

‘1071Bc

E{C"€ath — 303IC" Euwntbls
C’”(Z(éwéﬁfé):c - é-:c:cé-ﬁgé) (107)
CWEeaeh — 2071 C"EEEL]} + O(a).

(¢) Exzpansion of A.. Remember that A. = Sp, see (33). Define the
function F(-) = C"(§)&s¢), € = &(+,Z,B), so that A, = EF(X). As
W = X + U, we have the expansion

+ +

FW)=FX)+F(X)U+ %F”(X)Uz +O(U?).

We can replace F"'(X) by F"(W) because F"(W) = F"(X) + O(U?).
Therefore

EF(W) =EF(X) — %oiEF”(W) +0(c?).

Now

F”(W) C”(gﬁgg)x:c + C”’{Z(éwgﬁéﬁi)z - fzzéﬁéé}

CWELEL + O(ay).

+
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As always C) = 0 (¢), and ¢ and its derivatives are taken at (W, Z, ).
It follows that

1

A, = EF(W)—iaiEF”(W)—%O(oi),
1.
Ae = E{C”é,ef,é—505[0”(£ﬁ€é)zz (108)

+ C"(2&8pED)s — Eaabply) + CVEEEL]} + Ooy).
(d) Ezpansion for (34). We represent (107) and (108) in the form

¢ 'B.=S- %O’iAB + O(od),
A.=85- %U;ZLAA +0(o?),

where S is given in (19). Note that S and AA are symmetric matrices.
From (34) we now obtain

1
0 ' Seg=85""+ 5035—1(2AA —AB)S™' 4+ O(al). (109)

A simple calculation now shows that the right hand sides of (109) and
(21) are identical. This completes the proof of Theorem 5.1.

11.9 Proof of Theorem 6.1, part a)

Consider the limit estimating function in (36)
Q(ﬂ:ai) = E[m(Wa Zv 60)55 - Cl(é)gﬁ]v ﬂ € 657 O'i > 0.

If 02 = 0, then Q(3y,0) = 0 because o2 = 0 implies W = X and

u

m(X, Z,00) =E(Y|X,Z) = C'(€). We also have

9Q(8,03)

o5 = —So, (110)

B=P0,02=0

where Sp is given in (18). The matrix Sy is non-singular due to (ix).
Therefore, by the implicit function theorem, a unique solution 3 to the
equation Q(3,02) = 0 exists in a neighbohood of By if 02 < 02 with some
o5 > 0. Obviously (. = B.(02).
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But this solution is unique not only in a neighborhood of 3y but on
the whole convex set ©3. Indeed, suppose we had two solutions 3; and
B2 such that Q(81) = Q(B=2), where we suppressed the dependence on
o2. Let B(t) = tf1 + (1 —t)B2,0 < t < 1. Then B(t) € Og. Let
q(t) = (b1 — B2)'Q[B(t)]. Then ¢(0) = g(1) = 0, and there exists a
#,0 <t <1, such that 4(f) = 0. But

oQ
(B — ﬂQ)ta_,Bt(ﬂl —B2) <0
unless 31 = B2 because, due to the linearity of £(3), see (xiii), {gg: = 0
and thus

dg _
dt

a 70—5 "
. ! (1)

which is negative definite for all § € ©g by assumption (ix).

11.10 Proof of Theorem 6.1, parts b) and c)
We want to apply Theorem 12.1 from Heyde (1997). Consider

1 n
ps = lim  sup (5—ﬂ0)tﬁ;¢(y¢,Wz‘7Z¢,ﬂ)

0|30 ||=6
As (@) is the limit of % > 1, see Subsection 11.9,
ps=_sup (B~ /) Q(S,0y)
| 8—Boll=5

We have to show that p; < 0 for some small § > 0. Let Cy be the
compact set Cp := {B] ||3—Bo|| = §}. Because Q(8,02) tends to Q(f3,0)
uniformly on Cy as 02 — 0, therefore Q(3,02) = Q(B,0) + R; with
supg, ||R1|| < 8% for o7 < of with some sufficiently small of = o5 ().

Now, because Q(8o,0) = 0, see Subsection 11.9, we have with (110)

Q(3,0) = o6 (8= Bo) + Ry =—=50(8 — Bo) + R

- t
98 B=00,02=0
with supg, ||Rz|| = O(6%). Therefore,
ps = sgp [—(/3 — B0)'So(B — /30)] +0(6%), as 6—0.
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By assumption (ix) Sy is positive definite. Hence, ps < 0 for small enough
d and 02 < 03, and by Theorem 12.1 from Heyde (1997), for 02 < o2, the
equation (35) eventually has a solution By .

By arguments similar to those of the proof of Theorem 4.1, part b), we
can now prove that, for 62 < o2, Bx converges a.s. to the unique solution
Bi«(c?) of the limit estimating equation (36).

11.11 Proof of Theorem 6.1, part d)

Let 3, be the (unique) solution to equation (36). Substituting (87) in (36)
we obtain

1 W — iy
{|:Cl 2 i < 2 0_ l’l“ C”é-,z +C”£zz +C”I£ >:| é-ﬁ _Cl(g*)éﬁ}
+0(ct) = 0. (112)
Here £,&,,&,, are taken at the point (W, Z, ) and C9 = C¥(¢),i =
1,2,3, while & = &(Z, W, ). Note that &g is independent of 3 by as-
sumption (xiii). We expand C'(&,) at 8 = fp with A := B, — B, taking
account of the linearity of £(53):
C'(&) = C" + C"e5AB +rest - [|AB)?, (113)

where, due to (ii) and (vi),

[rest| < const(e1™] 4+ eAlZ1l,

We substitute (113) in (112) and obtain
E{%Uﬁ |: WU Hw e+ C"Ew + Cluég &5 — C”é@ngﬁ}
+0(oy) + O(1)||AB|I* = 0. (114)
Now, due to the implicit function theorem (see Subsecton 11.9), Ag =
AB(c?) and AB € C'([0,02]) for small enough 02. Also AB(0) = 0 and
hence AB(02) = O(02) and [|AB(02)| = O(c?).
Therefore we get from (114) with .S from (19)

1 . — Huw :
Af=50uST'E _2W072MC”& + e + C"E2| €5 + O(ol).

w

Now, integration by part according to (100) yields (37) and proves the
statement.
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11.12 Proof of Theorem 6.2
We expand firstly B., see (38). From (22) we have

d}(Y; W7 Z; /6*) = (Y - m)éﬁ + (m - C*)£ﬁ$ (115)

where m = m(W, Z, 8p) and C, := C{{(W, Z, B.)}; note that &g is inde-
pendent of 3. Therefore,

B, = E(v€sh + (m — C})?Ep¢). (116)
The difference m—C;, = (m—C{)+(Cy—C.), where C) = C'"{&(W, Z, o) },
is of the order 02, see (87) and note the fact that according to Theorem
6.1, part d) ||8« — Bo|| = O(02). Therefore
B. = E(v€s€}) + O(0r).
Using (89) and again (100), we get with .S from (19)

¢ 'B.

S+ 30UB{2p P8 + (O e — CIEESES
ZClll(éwfﬂéfB)z} + 0(03)
.S+ %oiAB* + O(0y), (117)

where ¢ and its derivatives are taken at (W, Z, Bp).
Next we consider A.. From (38) we have, using again Theorem 6.1,
part d),

" " 1 1"
A =BCUgss = E{(C"+ 050" €hAB)EsEh} + 0o

S+ 303B{O" (€4 AB)EsES) + O(oh). (118)

Then by (39), (117), and (118)

¢ 'y =851+ %5*1[—2E{C'"(§;BA,3*)§B§;} +AB.S ™ + O(0y,)(119)

Now, (119), (21), and Theorem 5.1 imply (40).
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11.13 Proof of Theorem 7.1
We apply Theorem 6.1 and evaluate (37). We have

£: /60 +ﬁ1W7 é-z = /317 5,3 = (17W)t7 6:6,3 = (Oal)ta
- 1w\ (1 g
S_E65<W W2>_d<g g2+a%v>’

where g is given in (48), and

1
d := exp(Bo + B1ftw + 5/3%%2&

Here we used the following identities (except for the last one, which we
shall need below)

Eet =d, EWe® =gd, EW?e* = (¢° +02)d, EW?3e* = (3g02 + ¢°)d.

Next,

2 2
S =0 2d ( g fg”W 19 ) . (120)

By (37)
AB. = =STIE[C" &3 65 + 20", bup] = =S T ES BT (L, W) + 261(0,1)']

a2 g B
= —SNd(57, Bg +261)" = 3w +9,-2)",
and part a) is proved. Part b) follows from Theorem 5.1. In order to show

(51), we have to evaluate the right hand side of (40). The expectation in
(40) equals

1 11 8 W W
E{C4<8 ?) + 4C mW(&, W2>+2C(4)ﬂf<&/ W2>
+aememas) (s )
e{efi(07) = (V)i (w v )

W
i_gl(ﬂw+g—2W) ( v%/ V% >H

w

+
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_ 00 0 1 Brg (1 g
_4d[<01>+ﬁ1<12g> + U&<992+aa
B 9 9° + o,
o2, 9>+ 02 390l +g?

0 0
Cu(80),
Next, with (120),

—1 00 A2 g
s 4d<0 1)5 o ol G (121)

w

From (121) and (40) we get (51).

11.14 Proof of Theorem 8.1, part a)
We first consider ® from condition (viii). From (89) we have
oo =C" + X202 + o2 - rest, (122)

where, as usual, here and in the sequel, rest satisfies (88). Similarly, by
(98),

gm om

9B 95"
(122) and (123) imply

= C'"¢peh + o, - rest. (123)

"2 8m 8m X2C”£ﬁ£é 2 2 C”&‘ﬁé‘é

— _ 2
;%a—ﬁt—m‘FUu'Test—X Yo +0'u'1“€8t
with vg from (52). Hence
9@ = X*E(C"¢s¢hv 1) + O(07). (124)

We now turn to Fp,p = 1,2, defined in (16). By (97)

om

<p-lrest], p=1,2
M

47



where rest satisfies (88). With (93) it follows that ‘la—m also satisfies

v Oy
(88). Therefore
F,=0(1). (125)
Now applying (125) to (17), we get
¢ 8s0s = (9@) 7 + O(yp), (126)

and the statement follows by substituting (124) in (126), and taking ac-
count of (xiv).

11.15 Proof of Theorem 8.1, parts b) and c)
From (107) we have

¢~ B. = EC"&&5(1 + x2C"EL) + O(o7). (127)
From (108) we get
A, =S +0(d2). (128)
Therefore
o 'Ses = A N9 B)A = STIECEsEL (14 X 2C"E2)S T + 0(0%)(129)

Multiplying by ¢ and taking account of (xiv) and (52), we get the desired
result.

For ¥y, we have the same expansion (129) because the expansions (127),
(128) are valid for A, and B, too, see (117), (118).

11.16 Proof of Theorem 8.2

We apply the expressions for £ggs and ¥¢g from Theorem 8.1 a) and
b). Note that by our assumptions the distribution of v, = x? + C"¢>
as a function of (W, Z, 3y) has no atoms. Note also that according to
Remark 4.3 S can be assumed as nonsingular for small enough o2. Let
w = S Y2/C"¢3. Then Eww' = I, and part a) of Theorem 8.2 follows
from Lemma A2 (see Appendix).
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To prove (53), consider the difference
D(02,%x%) = 0,° Amaz (Ecs — Bsqs)

as a function of o2 and x?. From Theorem 8.1 and by the continuity of
Amaz () we have

D(07,X%) = Amac {E(S ' C"€584v0S™") — [B(C"EsGve )]} + O(07).

Denote the first term on the right hand side by D(0, x?); i.e.,
D(03,x*) = D(0,x%) + O(a7).

D(0,x?) does not depend on o2. It follows that

lim inf(UEHO,CHSXQSCz)D(O'ivX2) = c <i£2f<c D(OaXZ)-
1<x2<0s

But D(0, x?) > 0 for all x? because the difference in the argument of 4.
is positive definite by Lemma A2, as proved in part a). As x? is restricted
to a closed interval and D(0, x?) is continuous in x?, we finally have

inf  D(0,y?) >0
o i (0,x7) >0,

wich implies (53). (54) is proved in a similar way.
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12 Appendix

12.1 Asymptotic normality of an estimator in the pres-
ence of nuisance parameters

Counsider a sequence of random fields G,,(6,v),n = 1,2,... with values
in R?,0 € Oy and v € O.,, where Oy and O, are open sets in IR? and
IR*, respectively. We may think of G,,(6, ) as score functions constructed
from an observed sample.

Let 6y € Og and v € O, be the true values of the parameters. Suppose
that a consistent estimator 4, of v is given. We define an estimator 6,,
of 6y as a measurable solution to the equation

Grn(6,9,) =0, 6 ¢€ 0,.

More precisely, we suppose that the equality G,,(6 n,vn) = 0 holds with
probability tending to 1 as n — co.

Lemma A1l. Let the following conditions hold.

~

a) 6, is consistent, i.e., 6,, — 6 in probability.
b) Gn(6,7) € C'(Oy x O,), as

c) (\/\/EECE:”M(Q_OWB)) 4 N(0,X), where ¥ is a positive semidefi-

nite matrix.

d) W — V1 in probability, where V] is a non-random
nonsingular matrix.

8Gn(00,7)
e) —gE
matrix.

f) For any § > 0,

— V4 in probability, where V5 is a non-random

n(e,’}/) 8Gn(90:70)
hm lim sup P su —
nﬁgo ce= 901|:\)<e gt ) 8(9t,’}/t)

[lv=v0ll<e

1>} =o0.

Then /76, —00) > N (0, ), with £p = V™ (Ig, Va) 2 (14, Vo) V!
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Proof: Let G¢ be the i-th component of the column vector G,, and let
B(6y,r1) and B(Wo, 72) be open balls in IR? and IR* with centers at 6 and
7o, respectively. Consistency of 6,, and 4 4y implies that 6, € B(6g,r1) C
©p and 4, € B(v,r2) C ©, with large probability, i.e., with probability
tending to 1 as n — 00. As Gn(fn,3m) = 0, we obtain that with large
probability

oG! ( Z;%) oG! ( Z;%)

G} (80,70) + BT (6 — 60) + T(% =) =0,

where (;,7;) are intermediate points on the line connecting (fg, o) and
(01, ¥n). It follows that

VG0, 70) + 222 i, — o)+ ZE ) s, o) 4 R, =0
where
Ry = Aav/n(8n —60) + Mav/n(u —0),
Al 8G(§9“%)—8G"(§Zj’%), J=1,2,....d
M = aG(”’)—aGib(eo’%), i=1,...,d,j=1,...,k
" 9 97;

Consequently we obtain

<W + An> V(6 — o)

= —V/nGn (6o, %) — (%ﬁ’%) + Mn) Ve =) (130)

Now, A,, — 0 in probability. Indeed, for any € > 0 and § > 0,

P([An]] 20) < P16 — 60l > & or |4 — 70|l > )
+ P sup [|An]] > 0,

118;—60l1<e,17; —v0ll<e,
d

i=1,..., )
and, due to consistency of 6,, and Yn,
limsup P(||Ap]| > 9) <limsup P( sup ||Ap|] > 9).
n—oo n—oo

116; —60l1<e,
117 =v0ll<e

o1



But because of condition f) the last expression tends to 0 as € — 0. Thus
A, — 0 in probability. Similarly M,, — 0 in probability. Then (130)
implies the desired convergence of \/n(6,, — 6o). Indeed, using c), d), and
e) we get

V(B — 80) 5 Vi (1, Va) - N(0, ),

which implies the statement of Lemma Al.

12.2 A matrix inequality

Lemma A2. Let v be a positive random variable and w a ran-
dom (column) vector with E(ww?) = I. Assume E(vlwtw) <
o0 and E(vw'w) < oo, then

A := E(vww') — [E(v " tww")] 7.

is positive semidefinite. If in addition v has no atoms, then
the difference A is not equal to zero.

Proof: Let

1 v
NG

Then Eqq® = A, which is positive semidefinite.

In Kukush et al (2000), Lemma 4, it was proved that, under the as-
sumptions of the Lemma,

¢ = B0~ wut)] 7 % — Vow.

tr E(vww') > tr[E(v tww)] L

This implies A # 0.
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