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Abstract. The functioning of animal as well as human societies fundamentally
relies on cooperation. Yet, defection is often favorable for the selfish individual,
and social dilemmas arise. Selection by individuals’ fitness, usually the basic
driving force of evolution, quickly eliminates cooperators. However, evolution
is also governed by fluctuations that can be of greater importance than fitness
differences, and can render evolution effectively neutral. Here, we investigate
the effects of selection versus fluctuations in social dilemmas.

By studying the mean extinction times of cooperators and defectors, a vari-
able sensitive to fluctuations, we are able to identify and quantify an emerging
‘edge of neutral evolution’ that delineates regimes of neutral and Darwinian
evolution. Our results reveal that cooperation is significantly maintained in
the neutral regimes. In contrast, the classical predictions of evolutionary game
theory, where defectors beat cooperators, are recovered in the Darwinian
regimes. Our studies demonstrate that fluctuations can provide a surprisingly
simple way to partly resolve social dilemmas. Our methods are generally
applicable to estimate the role of random drift in evolutionary dynamics.

New Journal of Physics 11 (2009) 093029
1367-2630/09/093029+15$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:jonas.cremer@physik.uni-muenchen.de
http://www.njp.org/


2

Contents

1. Introduction 2
2. Models and theory 3

2.1. Social dilemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. The evolutionary dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Distinguishing Darwinian from neutral evolution: extinction times . . . . . . . 5
2.4. Analytical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5. Analytical calculation of mean extinction times . . . . . . . . . . . . . . . . . 7
2.6. Edges of neutral evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Results 9
3.1. Prisoner’s dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. General social dilemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Discussion 13
Acknowledgments 14
References 14

1. Introduction

Individuals of ecological communities permanently face the choice of either cooperating with
each other, or of cheating [1]–[5]. While cooperation is beneficial for the whole population
and essential for its functioning, it often requires an investment by each agent. Cheating is
then tempting, yielding social dilemmas where defection is the rational choice that would yet
undermine the community and could even lead to ultimate self-destruction. However, bacteria or
animals do not act rationally; instead, the fate of their populations is governed by an evolutionary
process, through reproduction and death. The conditions under which cooperation can thereby
evolve are subject of much contemporary, interdisciplinary research [2], [6]–[11].

Evolutionary processes possess two main competing aspects. The first one is selection by
individuals’ different fitness, which underlies adaptation [12]–[14] and is, by neo-Darwinists,
viewed as the primary driving force of evolutionary change. In social dilemmas, defectors
exploit cooperators rewarding them a higher fitness; selection therefore leads to fast extinction
of cooperation, such that the fate of the community mimics the rational one. A large
body of work is currently devoted to the identification of mechanisms that can reinforce
cooperative behavior [19], e.g. kin selection [15, 16], reciprocal altruism [17, 18], or punishment
[5, 8, 20]. However, the evolution of cooperation in Darwinian settings still poses major
challenges. The second important aspect of evolution is random fluctuations that occur from the
unavoidable stochasticity of birth and death events and the finiteness of populations. Neutral
theories emphasize their influence which can, ignoring selection, explain many empirical
signatures of ecological systems such as species–abundance relations as well as species–area
relationships [21]–[25]. The importance of neutral evolution for the maintenance of cooperation
has so far found surprisingly little attention [26]–[29].

In this paper, we introduce a general concept capable of investigating the effects of
selection versus fluctuations by analyzing extinction events. We focus on social dilemmas,
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i.e. we study the effects of Darwinian versus neutral evolution on cooperation3. For this purpose,
we consider a population that initially displays coexistence of cooperators and defectors, i.e.
cooperating and non-cooperating individuals. After some transient time, one of both ‘species’
will disappear [23], simply due to directed and stochastic effects in evolution and because
extinction is irreversible: an extinct species cannot reappear again. The fundamental questions
regarding cooperation are therefore: will cooperators eventually take over the whole population,
and if not, for how long can a certain level of cooperation be maintained?

We show that the answers to these questions depend on the influence of stochasticity.
For large fluctuations, evolution is effectively neutral, and cooperation maintained on a long
time-scale, if not ultimately prevailing. In contrast, small stochastic effects render selection
important, and cooperators die out quickly if disfavored. We demonstrate the emergence of an
‘edge of neutral evolution’ delineating both regimes.

2. Models and theory

2.1. Social dilemmas

Consider a population of N individuals that are either cooperators C or defectors D. We assume
that individuals randomly engage in pairwise interactions, whereby cooperators and defectors
behave distinctly differently and thereby gain different fitnesses. The population then evolves
by fitness-dependent reproduction and random death, i.e. a generalized Moran process [2, 30],
which we describe in detail in the next subsection. Here, we present the different possible fitness
gains of cooperators and defectors.

In the prisoner’s dilemma a cooperator provides a benefit b to another individual, at a cost
c to itself (with the cost falling short of the benefit). In contrast, a defector refuses to provide any
benefit and hence does not pay any costs. For the selfish individual, irrespective of whether the
partner cooperates or defects, defection is favorable, as it avoids the cost of cooperation, exploits
cooperators and ensures not to become exploited. However, if all individuals act rationally and
defect, everybody is, with a gain of 0, worse off compared to universal cooperation, where a net
gain of b − c would be achieved. The prisoner’s dilemma therefore describes, in its most basic
form, the fundamental problem of establishing cooperation.

We can generalize the above scheme to include other basic types of social dilemmas [31].
Namely, two cooperators that meet are both rewarded a payoff R, while two defectors obtain a
punishment P . When a defector encounters a cooperator, the first exploits the second, gaining
the temptation T , while the cooperator only gets the sucker’s payoff S. Social dilemmas occur
whenR> P , such that cooperation is favorable, in principle, while temptation to defect is large:
T > S and T > P . These interactions may be summarized by the payoff matrix

C D
C R S
D T P

Hereby, the entries in the upper row describe the payoff that a cooperator obtains when
encountering a cooperator C or a defector D, and the entries in the lower row contain the
payoffs for a defector.

3 Within this paper, we use the term ‘Darwinian’ to signify evolutionary dynamics mainly driven by selection, as
assumed within the modern synthesis of evolution.
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Table 1. Different types of social dilemmas. We consider a population of
cooperators and defectors, and describe their interactions in terms of four
parameters T ,R,S and P , see text. Depending on the payoff-differences S −P
and T −R, four qualitatively different scenarios arise.

S −P < 0 S −P > 0

T −R< 0 Coordination game By-product mutualism
T −R> 0 Prisoner’s dilemma Snowdrift game

Variation of the parameters T ,P,R and S yields four principally different types of games,
see table 1 and figure 3. The prisoner’s dilemma as introduced above arises if the temptation
T to defect is larger than the reward R, and if the punishment P is larger than the sucker’s
payoff S, e.g. R= b − c, T = b, S = −c and P = 0. As we have already seen above, in this
case, defection is the best strategy for the selfish player. Within the three other types of games,
defectors are not always better off. For the snowdrift game the temptation T is still higher than
the reward R but the sucker’s payoff S is larger than the punishment P . Therefore, cooperation
is favorable when meeting a defector, but defection pays off when encountering a cooperator,
and a rational strategy consists of a mixture of cooperation and defection. Another scenario is
the coordination game, where mutual agreement is preferred: either all individuals cooperate
or defect as the reward R is higher than the temptation T and the punishment P is higher
than the sucker’s payoff S. Lastly, the scenario of by-product mutualism yields cooperators
fully dominating defectors since the reward R is higher than the temptation T and the sucker’s
payoff S is higher than the punishment P . All four situations and the corresponding ranking of
the payoff values are depicted in table 1 and figure 3.

2.2. The evolutionary dynamics

We describe the evolution by a generalized Moran process [2, 30], where the population size N
remains constant and reproduction is fitness-dependent, followed by a random death event.

Let us denote the number of cooperators by NC; the number of defectors then reads
N − NC. The individuals’ fitness are given by a constant background fitness, set to 1, plus
the payoffs obtained from social interactions. The fitness of cooperators and defectors thus
read fC = 1 +R(NC − 1)/(N − 1) +S(N − NC)/(N − 1) and fD = 1 + T NC/(N − 1) +P(N −

1 − NC)/(N − 1), respectively. In the following, we assume weak selection, i.e. the payoff
coefficients are small compared to the background fitness. Note that within this limit, the self
interactions of individuals are only of minor relevance. More important, in the case of weak
selection, the evolutionary dynamics of the game depends only on the payoff differences T −R
and S −P . The different types of social dilemmas arising from these two parameters are listed
in table 1.

In the Moran process, reproduction of individuals occurs proportional to their fitness, and
each reproduction event is accompanied by death of a randomly chosen individual. As an
example, the rate for reproduction of a defector and corresponding death of a cooperator reads

0C→D =
fD

〈 f 〉

NC

N

N − NC

N
, (1)
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Figure 1. Phase space exemplified for the prisoner’s dilemma. The evolutionary
dynamics consists of a Darwinian, directed part caused by selection of
defectors (D) against cooperators (C), and a neutral, undirected part due to
fluctuations. Eventually, only one species survives.

whereby 〈 f 〉 = fC NC/N + fD(1 − NC/N ) denotes the average fitness. The timescale is such
that an average number of N reproduction and death events occur in one time step.

2.3. Distinguishing Darwinian from neutral evolution: extinction times

The evolutionary dynamics is intrinsically stochastic. Although defectors may have a fitness
advantage compared to cooperators, the latter also have a certain probability to increase. This
situation is illustrated in figure 1 for a population of four individuals and the dynamics of the
prisoner’s dilemma. Darwinian evolution, through selection by individuals’ fitness, points to the
‘rational’ state of only defectors, while fluctuations oppose this dynamics and can lead to a state
of only cooperators. In any case, upon reaching overall defection or cooperation, the temporal
development comes to an end. One species therefore eventually dies out.

The mean extinction time, i.e. the mean time it takes a population where different
species coexist to eventually become uniform, allows us to distinguish Darwinian from neutral
evolution. Consider the dependence of the mean extinction time T on the system size N .
Selection, as a result of some interactions within a finite population, can either stabilize or
destabilize a species’ coexistence with others as compared to neutral interactions, thereby
altering the mean time until extinction occurs. Instability leads to steady decay of a species,
and therefore to fast extinction [28, 29, 32]: the mean extinction time T increases only
logarithmically in the population size N , T ∼ ln N , and a larger system size does not ensure
much longer coexistence. This behavior can be understood by noting that a species disfavored
by selection decreases by a constant rate. Consequently, its population size decays exponentially
in time, leading to a logarithmic dependence of the extinction time on the initial population
size. In contrast, stable existence of a species induces T ∼ exp N , such that extinction takes an
astronomically long time for large populations [28, 29, 33]. In this regime, extinction only stems
from large fluctuations that are able to cause sufficient deviation from the (deterministically)
stable coexistence. These large deviations are exponentially suppressed and hence the time until
a rare extinction event occurs scales exponentially in the system size N .

An intermediate situation, i.e. when T has a power-law dependence on N , T ∼ N γ , signals
dominant influences of stochastic effects and corresponds to neutral evolution [34]–[36]. Here
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the extinction time grows considerably, though not exponentially, in increasing population size.
Large N therefore clearly prolongs coexistence of species but can still allow for extinction
within biologically reasonable timescales. A typical neutral regime is characterized by γ = 1,
such that T scales linearly in the system size N . This corresponds to the case where the dynamics
yields an essentially unbiased random walk in state space. The mean-square displacement grows
linearly in time, with a diffusion constant proportional to N . The absorbing boundary is thus
reached after a time proportional to the system size N . Other values of γ can occur as well. For
example, and as shown later, γ = 1/2 can occur in social dilemmas (regimes (2) in figure 3).

To summarize, the mean extinction time T can be used to classify evolutionary dynamics
into a few fundamental regimes. Darwinian evolution can yield stable and unstable coexistence,
characterized by T ∼ log N and T ∼ exp N , respectively. Power law dependences, T ∼ N γ ,
indicate neutral evolution. Transitions between these regimes can occur and manifest as
crossovers in the functional relation T (N ).

2.4. Analytical description

An approximate analytical description, valid for a large number N of interacting individuals, is
possible. The quantity of interest is thereby the probability P(NC, t) of having NC cooperators
at time t . Its time evolution is described by a master equation specified by transition rates such
as (1). For large population sizes N , the master equation can be approximately described within
a generalized diffusion approach, where the fraction x = NC/N of cooperators is considered as a
continuous variable. The temporal development of P(x, t) is then described by a Fokker–Planck
equation [27, 37, 38],

∂

∂t
P(x, t) = −

∂

∂x
[α(x)P(x, t)] +

1

2

∂2

∂x2
[β(x)P(x, t)]. (2)

Hereby, α(x) describes the Darwinian of the evolution, due to selection by fitness differences,
and corresponds to the deterministic dynamics d

dt x = α(x). The second part, which involves
the diffusion term β(x), accounts for fluctuations (to leading order) and thereby describes
undirected random drift. β(x) decreases like 1/N with increasing population size. For the social
dilemmas that we study in this article, α and β are given by

α(x) = x(1 − x) [(S −P)(1 − x) − (T −R)x],

β(x) =
1

N
x(1 − x) [2 + (S −P)(1 − x) + (T −R)x]

≈
2

N
x(1 − x).

(3)

Here, the approximation of β given in the last line is valid since weak selection is assumed.
The prisoner’s dilemma, specified by T −R= P −S ≡ c > 0 describes the situation

where defectors have a frequency independent fitness advantage fD − fC = c as compared to
cooperators. This scenario is frequently studied in population genetics [37]; we briefly discuss
it in the following. The directed part and diffusion coefficients are given by

α(x) = −cx(1 − x),

β(x) =
1

N
x(1 − x) [2 − c(1 − 2x)] ≈

2

N
x(1 − x).

(4)
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With these one can calculate the fixation probability Pfix,C to end up with only cooperators if
starting with an equal fraction of cooperators and defectors. It has already been calculated in
previous work [37, 38] and reads,

Pfix,C =
e−Nc/2

− e−Nc

1 − e−Nc
. (5)

The probability for fixation of defectors follows as Pfix,D = 1 − Pfix,C. Within the Darwinian
regime (Nc → ∞) defectors fixate (Pfix,D = 1), whereas for the neutral regime (Nc → 0) both
strategies have the same chance of prevailing (Pfix,C = Pfix,D = 1/2).

The fixation probability gives no information about the typical time needed for extinction
of one of the two species. However, this time is important to determine whether extinction
happens within the timescale of observation. We turn to this question in the following.

2.5. Analytical calculation of mean extinction times

The above analytical description, in the form of the Fokker–Planck equation (2), can be
employed for computing the mean extinction time T (x). The latter refers to the mean time
required for a population initially consisting of a fraction x = NC/N of cooperators to reach a
uniform state (only either cooperators or defectors). It is given as a solution to the corresponding
backward Kolmogorov equation [39, 40],[

α(x)
∂

∂x
+

1

2
β(x)

∂2

∂x2

]
T (x) = −1, (6)

with appropriate boundary conditions. This equation can be solved by iterative integration [39].
In detail, the mean extinction time, T = T (x = 1/2), if starting with an equal fraction of
cooperators x = 1/2 is given by

T = 2

[(∫ 1/2

0
du/9(u)

) ∫ 1

1/2
dy/9(y)

∫ y

0
dz9(z)/β(z)

−

(∫ 1

1/2
du/9(u)

) ∫ 1/2

0
dy/9(y)

∫ y

0
dz9(z)/β(z)

] [∫ 1

0
du/9(u)

]−1

, (7)

where 9(x) is given by 9(x) = exp(
∫ x

0 dy 2α(y)/β(y)). We have performed these integrals for
the general Moran process and show the results in the following.

For the special case of the prisoner’s dilemma, specified by T −R= P −S ≡ c > 0,
(frequency independent fitness advantage), equation (7) can be solved exactly. The solution
reads,

T =
1

N

[
Pfix,C

{
− ln (cN )−γ + Ei (cN/2) + ecN [Ei (−cN ) − Ei (−cN/2)]

}
+Pfix,D

{
ln (cN ) + γ − Ei (−cN/2) + e−cN [Ei (cN/2) − Ei (cN )]

}]
, (8)

where Ei(x) denotes the exponential integral Ei(x) =
∫

x−1exp(x)dx and γ ≈ 0.577 is the Euler
Mascheroni constant. Pfix,C and Pfix,D denote the fixation probabilities of cooperators and
defectors, given by equation (5). The analytical solution of the mean extinction time as a
function of N is shown and compared to stochastic simulations in figure 2. For a further
discussion of T (N ) (equation (8)) and its impact on evolutionary dynamics we defer the
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Figure 2. The prisoner’s dilemma. Defectors save the cost c of cooperation and
therefore have a fitness advantage of c compared to cooperators. (A) Exemplary
evolutionary trajectories. A high selection strength, i.e. a high fitness difference
c = 0.1 (purple), leads to Darwinian evolution and fast extinction of cooperators,
while a small one, c = 0.001 (green), allows for dominant effects of fluctuations
and maintenance of cooperation on long time-scales. We have used N = 1000 in
both cases. (B) The dependence of the corresponding mean extinction time T on
the system size N . We show data from stochastic simulations as well as analytical
results (solid lines) for T , starting from equal abundances of both species, for
different values of c (see text): c1 = 0.1 ( ), c2 = 0.01 ( ), c3 = 0.001 ( ) and
c4 = 0.0001 ( ). The transition from the neutral to the Darwinian regime occurs
at population sizes N (1)

e , N (2)
e , N (3)

e and N (4)
e . They scale as 1/c: Ne ≈ 2.5/c, as is

confirmed by the rescaled plot where the data collapse onto the universal scaling
function G, shown in the inset.

reader to section 3. Here, just note that the asymptotic behavior, of Ei(x) is given by Ei(x) ≈

log(|x |) + γ + x for x → 0, and Ei(x) ≈ ± log(|x |) + exp(x)/x for x → ±∞. With this, the
well-known asymptotic solutions for high and low population size N , T = log(2)N and
T ∼ log N are obtained.

For general social dilemmas with arbitrary payoff values T ,P,R,S, we need to rely on
some approximations. Using the drift and diffusion coefficient given by equation (3) we now
linearize the fraction α/β, i.e. we write α(x)/β(x) ≈ g(x − x∗). Hereby x∗

= (S −P)/(S −

P + T −R) denotes the fixed point of the deterministic dynamics, where α(x∗) = 0 and g =

−N (S −P + T −R)/2. As an example, in the situation S −P + T −R> 0, |x∗
| � 1/

√
g and

|1 − x∗
| � 1/

√
g, we obtain the mean extinction time

T =
N ln(2)

g
[erfi[

√
g (1 − x∗)] + erfi(

√
gx∗)]−1

×
{
erfi(−

√
gx∗)[−F (g (1 − x∗)) +F (g (1/2 − x∗))]

− erfi
(√

g (1 − x∗)
) [
F (g (1/2 − x∗)) −F (g (x∗))

]
+erfi

(√
g (1/2 − x∗)

) [
F (g (1 − x∗)) −F (g (x∗))

]}
. (9)
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Here, erfi(x) =
2

√
π

∫ x
0 dy exp(y2) denotes the complex error function and F(x) ≡ xF1,1;3/2,2(x)

involves a generalized hypergeometric function. For graphical representation of equation (8) see
figure 4(A, upper branch). As before, the correct asymptotic behavior can also be calculated for
this case. Note that the asymptotic behavior ofF(x) is given byF(x) ≈ x for x → 0 andF(x) ≈

erfi(
√

x) − log(|x |)/2 − 1 for x → ∞. For small population size, the mean extinction time
scales again like T = log(2)N . For asymptotically large system sizes, the scaling depends on the
value of the fixed point x∗. For an internal fixed point x∗

∈ (0, 1), as arises in the snowdrift game,
T scales as expected like T ∼ exp(N ).

In section 3, we analyze the properties of the analytical form of the mean extinction time,
equations (8) and (9), together with numerical simulations, and demonstrate how it defines an
emerging edge of neutral evolution.

2.6. Edges of neutral evolution

In section 3, we show that the mean extinction time, equation (9), exhibits different regimes of
neutral and Darwinian dynamics. Here, we provide further information on how the boundaries
between these regimes can be obtained analytically. For this purpose, we further approximate the
dynamics. Let us, firstly, focus on the edge of the regime, where T ∼ N emerges. We note that,
before unavoidable extinction of one species occurs, a quasi-stationary distribution may form
around the fixed point x∗. Following the generic behavior of an Ornstein–Uhlenbeck process, its
shape is approximately Gaussian [41]. Its width is given by w ∼

√
1/|g|. x∗ and g are specified

in the preceding section. Now, for small width, w � 1, the Darwinian evolution dominates the
behavior, meaning T ∼ ln(N ) or T ∼ exp(N ). In contrast, if w � 1 the dynamics is essentially
a random walk, and T ∼ N emerges. The edge of neutral evolution therefore arises at w ∼ 1.
Remembering that g is given by g = −N (S −P + T −R)/2, it follows that the edge between
both regimes for S −P and T −R is described by (T −R) = d/N − (S −P). Numerical
simulations yield a good agreement with this prediction. As discussed later (see figure 2), they
reveal that the crossover between the two regimes is remarkably sharp. The constant d which
specifies the exact position of the crossover can therefore be estimated as d ≈ 5. It follows
that the regime of T ∼ N therefore corresponds to the square circumscribed by straight lines
connecting the points (T −R,S −P) = (5/N , 0), (0,−5/N ), (−5/N , 0), (0, 5/N ) as shown
in figure 3.

A similar argument allows to determine the crossover from the other neutral regime,
with T ∼

√
N , to the Darwinian regimes. The neutral regime emerges if the fixed point x∗

is close to the boundaries, such that w ∼ |x∗
| or w ∼ |1 − x∗

| denotes the crossover to the
Darwinian regimes. From these relations, it follows that the shapes of this second neutral regime
are described by T − R ≈ −(S −P) + (S −P)2 N and S −P ≈ −(T −R) + (T −R)2 N . The
proportionality constant has again been estimated from numerical simulations. From the latter,
we have also found that the parabolic curves constitute a valid approximation to this second
edge of neutral evolution.

3. Results

We employ the analytical expression, equations (8) and (9), for the mean extinction time, as
well as computer simulations, to show how regimes of Darwinian and neutral evolution can be
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Figure 3. Social dilemmas. Depending on the sign of the payoff differences
T −R and S −P , a prisoner’s dilemma, snowdrift game, by-product mutualism
or coordination game arises. Two regimes of neutral evolution, (1) and (2)
shown in grey, intervene two Darwinian regimes, (3) and (4), depicted in white.
Coexistence of cooperators and defectors is lost after a mean time T which
discriminates the distinct regimes: In (1), we encounter T ∼ N , while T ∼

√
N

emerges in (2), T ∼ exp N in (3), and T ∼ ln N in (4). In the prisoner’s dilemma
and the coordination game, neutral evolution can thus maintain cooperation at a
much longer time than Darwinian evolution. The edges of neutral evolution, red
and blue curves, scale as 1/N (see text). We therefore show them depending on
(T −R)N and (S −P)N , where they adopt universal shapes.

distinguished. We demonstrate that neutral evolution can maintain cooperation on much longer
timescales than Darwinian, even if cooperation has a fitness disadvantage.

3.1. Prisoner’s dilemma

We start with the special case of the prisoner’s dilemma where defectors have a frequency
independent fitness advantage c compared to cooperators. The fixation probabilities,
equation (5), provides first insight into the dynamics. When the population size N is large and
selection by fitness differences dominates the dynamics, i.e. when cN � 1, the probability that
defectors ultimately take over the whole population tends to  1.  Cooperators    are   guaranteed
to eventually die out. This is the regime of Darwinian evolution; the resulting outcome
equals the one of rational agents. However, in the situation of small populations and small
fitness difference, i.e. cN � 1, both cooperators and defectors have an equal chance of 1/2 of
fixating. In this regime, fluctuations have an important influence and dominate the evolutionary
dynamics, leaving fitness advantages without effect, evolution is neutral.

New Journal of Physics 11 (2009) 093029 (http://www.njp.org/)

http://www.njp.org/


11

Further quantification of the regimes of Darwinian and neutral evolution is feasible by
considering the mean extinction time, given by equation (8). It is compared to stochastic
simulations in figure 2(B) for different costs (fitness advantages) c. The excellent agreement
confirms the validity of our analytic approach. Regarding the dependence of T on the population
size N and the fitness difference c, the mean extinction time can be cast into the form,

T (N , c) = TeG (N/Ne), (10)

with a scaling function G. Te and Ne are characteristic timescales and population sizes depending
only on the selection strength c. Analyzing its properties, it turns out that G increases linearly in
N for small argument N/Ne � 1, such that T ∼ N , cf figure 2(B). This is in line with our
classification scheme and the expected behavior. It indicates [28, 29] that for small system
sizes, N � Ne, evolution is neutral. Fluctuations dominate the evolutionary dynamics, while
the fitness advantage of defectors does not give them an edge, cf figure 2(A). Indeed, in this
regime, cooperators and defectors have an equal chance of surviving, see equation (5). The
T ∼ N behavior shows that the extinction time considerably grows with increasing population
size; a larger system size proportionally extends the time cooperators and defectors coexist.
As expected, a very different behavior emerges for large system sizes, N/Ne � 1, where G
increases only logarithmically in N , and therefore T ∼ ln N , again in correspondence with our
classification scheme of the mean extinction time. The extinction time remains small even for
large system sizes, and coexistence of cooperators and defectors is unstable. Indeed, in this
regime, selection dominates over fluctuations in the stochastic time evolution and quickly drives
the system to a state where only defectors remain, cf figure 2(A). The evolution is Darwinian.

As described above, the regimes of neutral and Darwinian evolution emerge for N/Ne � 1
and N/Ne � 1, respectively. The cross-over population size Ne delineates both scenarios.
Further analyzing the universal scaling function G, as well as comparison with data from
stochastic simulations, see figure 2(B), reveals that the transition at Ne is notably sharp. We
therefore refer to it as the edge of neutral evolution.

The crossover time Te and the crossover population size Ne, which define the edge of
neutral evolution decrease as 1/c in increasing cost c. This can be understood by recalling
that the cost c corresponds to the fitness advantage of defectors and can thus be viewed as the
selection strength. The latter drives the Darwinian dynamics, which therefore intensifies when
c grows, and the regime of neutral evolution diminishes. On the other hand, when the cost of
cooperation vanishes, evolution becomes neutral also for large populations. Indeed, in this case,
defectors do not have a fitness advantage compared to cooperators; both do equally well. Our
approach now yields information about how large the cost may be until evolution changes from
neutral to Darwinian. From numerical inspection of G, we find that neutral evolution is present
for cN < 2.5, and Darwinian evolution takes over for cN > 2.5. This resembles a condition
previously derived by Kimura, Ohta and others [38, 42, 43] for frequency independent fitness
advantages. The edge of neutral evolution arises at Ne = 2.5/c and Te = 2.5/c.

As a consequence we note that, though selection pressure clearly disfavors cooperation,
our results reveal that the ubiquitous presence of randomness (stochasticity) in any population
dynamics opens a window of opportunity where cooperation is facilitated. In the regime of
neutral evolution, for cN < 2.5, cooperators have a significant chance of taking over the whole
population when initially present. Even if not, they remain on timescales proportional to
the system size, T ∼ N , and therefore considerably longer than in the regime of Darwinian
evolution, where they become extinct after a short transient time, T ∼ ln N .
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Figure 4. Transitions and universal scaling. We show the rescaled mean extinc-
tion time, T/Te, depending on N/Ne, for different transitions emerging in social
dilemmas (cf figure 3). (A) Transition from the neutral regime (1), where T ∼ N
emerges, to the Darwinian regimes (3) (T ∼ exp N ) as well as (4) (T ∼ ln N ).
(B) From neutral dynamics in regime (2) (T ∼

√
N ) to the Darwinian

regimes (3) (T ∼ exp N ) and (4) (T ∼ ln N ). (C) Transition between the
two neutral regimes (1) (T ∼ N ) and (2) (T ∼

√
N ). Analytical calculations

are shown as black lines, and symbols have been obtained from stochastic
simulations for large ( ), medium ( ), and small ( ) values of S −P and/or
T − R. The data collapse onto universal curves revealing the accuracy of the
scaling laws. In (A), we have used S −P = T −R ∈ {−0.1, −0.01, −0.001,

0.001, 0.01, 0.1}, while S −P ∈ {−0.1, −0.01, −0.001, 0.001, 0.01, 0.1},
T −R= 1 in (B), and S −P = 0, T −R ∈ {0.001, 0.01, 0.1} in (C).

3.2. General social dilemmas

Let us now consider the influence of fluctuations within the more general form of social
dilemmas, given by the parameters T ,P,R and S. We employ the analytical form of the
mean extinction time, equation (9), as well as results from stochastic simulations. Examples
for different paths in parameter space are shown in figure 4. Again, the approximative analytical
results agree excellently with numerics.

Concerning the dependence of the mean extinction time on the population size, different
behaviors emerge, reflecting the different regimes of evolutionary dynamics. Two regimes of
Darwinian evolution form, depicted white in figure 3. The first one occurs within the snowdrift
game, where the extinction time increases exponentially in the population size, T ∼ exp N , and
coexistence of cooperators and defectors is stable. The second regime comprises parts of the
prisoner’s dilemma, the coordination game and by-product mutualism. There, either defectors
or cooperators eventually survive, and the mean extinction time of the other strategy is small,
and obeys a logarithmic law T ∼ ln N . We have encountered this regime already in the particular
case of the prisoner’s dilemma specified by T − R = P − S ≡ c > 0. These two Darwinian
regimes are separated by two regimes of neutral evolution, shown in grey in figure 3. Firstly,
for small N and small differences in the payoffs (i.e. around the point where the four types of
games coincide) a T ∼ N behavior emerges. Secondly, at the lines where the snowdrift game
turns into the prisoner’s dilemma, respectively, by-product mutualism, the mean extinction time
increases as a square-root in the population size, T ∼

√
N .
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Similar to the prisoner’s dilemma, we now aim at identifying the edge of neutral evolution,
i.e. the crossover from the Darwinian regimes to the regimes of neutral evolution. We have
calculated the boundaries of both neutral regimes, T ∼ N and T ∼

√
N analytically, see

section 2.6. They are described by straight lines for the first one and by parabola-shaped lines
for the second one, see figure 3.

Both edges of neutral evolution scale proportional to the system size N . Therefore, while
increasing the system size changes the payoff parameters where the crossovers appear, the
shape and relations of the different regimes are not altered. Concerning the dependence of the
edges of neutral evolution on the characteristic strength of selection s, meaning the average
contribution of the fitness-dependent payoff to the overall fitness, different scaling laws arise.
For the crossover from the neutral regime T ∼ N to the other regimes, Te and Ne scale as 1/s.
In contrast, a scaling law Ne ∼ 1/s2 for crossovers between the neutral regime with T ∼

√
N

and the Darwinian regimes emerges. This different scaling behavior arises, for example, for
T −R= 1 and varying s = S −P as shown in figure 4(B).

4. Discussion

Cooperation is often threatened by exploitation and therefore, although beneficial, vulnerable
to extinction. In evolutionary dynamics, this mechanism comes in through selection by
individuals’ fitness, the driving force of Darwinian evolution. However, evolution also possesses
stochastic aspects. Employing a standard formulation of social dilemmas, we have shown that
fluctuations can support cooperation in two distinct ways. Firstly, they can lead cooperators
to fully take over the population. Secondly, neutral evolution considerably increases the time
at which cooperators and defectors coexist, i.e. at which a certain level of cooperation is
maintained. To emphasize the importance of the second point, we note that in real ecological
systems the rules of the dynamics themselves change due to external [44] or internal [45]
influences, setting an upper limit to the timescales at which evolution with constant payoffs,
as we study here, applies. In particular, these times can be shorter than the times that would be
needed for extinction of either cooperators or defectors, such that it may be less important to
look at which of both would ultimately remain, but what the timescales for extinction are.

Quantitatively, we have shown the emergence of different Darwinian and neutral regimes.
In the Darwinian regime of the prisoner’s dilemma, cooperators are guaranteed to become
extinct; the same is true for the second neutral regime, where T ∼

√
N . However, in the other

neutral regime, with T ∼ N , a random process determines whether cooperators or defectors
prevail. Cooperators may therefore take over due to essentially neutral evolution. Moreover,
even if cooperators eventually disappear, they remain for a considerably longer time in the
neutral regimes than in the Darwinian regime. Indeed, in the regimes of neutral evolution,
coexistence of cooperators and defectors is maintained for a mean time T obeying T ∼ N ,
respectively, T ∼

√
N . For medium and large population sizes, this time exceeds by far the

time T ∼ ln N at which cooperation disappears in the Darwinian regimes of the prisoner’s
dilemma or of the coordination game (if defectors happen to dominate in the latter case). Neutral
evolution can therefore maintain cooperation on a much longer timescale than Darwinian
evolution. This effect is relevant as the neutral regimes considerably extend into the prisoner’s
dilemma as well as the cooperation game region. There, a form of neutrally maintained
cooperation evolves.

New Journal of Physics 11 (2009) 093029 (http://www.njp.org/)

http://www.njp.org/


14

Our results have been obtained by applying a general concept based on extinction times that
allows us to classify evolutionary dynamics into regimes of Darwinian and neutral character,
separated by an emerging edge of neutral evolution. Apart from the social dilemmas under
consideration here, we believe that our quantitative analytical approach can be versatilely
applied to disentangle the effects of selection and fluctuations in various ecological situations
where different species coexist [46]–[50]. Encouraged by our findings, we expect such studies
to reveal further unexpected effects of fluctuations on ecology and evolution.
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