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SUMMARY

Min-protein oscillations in Escherichia coli are char-
acterized by the remarkable robustness with which
spatial patterns dynamically adapt to variations of
cell geometry. Moreover, adaption, and therefore
proper cell division, is independent of temperature.
These observations raise fundamental questions
about the mechanisms establishing robust Min oscil-
lations, and about the role of spatial cues, as they are
at odds with present models. Here, we introduce
a robust model based on experimental data, consis-
tently explaining the mechanisms underlying pole-
to-pole, striped, and circular patterns, as well as
the observed temperature dependence of the oscilla-
tion period. Contrary to prior conjectures, the model
predicts that MinD and cardiolipin domains are not
colocalized. The transient sequestration of MinE
and highly canalized transfer of MinD between polar
zones are the key mechanisms underlying oscilla-
tions. MinD channeling enhancesmidcell localization
and facilitates stripe formation, revealing the poten-
tial optimization process from which robust Min-
oscillations originally arose.

INTRODUCTION

Robust spatial patterning was crucial just from the beginning of

cellular evolution and is key to the development of multicellular

organisms. The oscillatory pole-to-pole dynamics of MinCDE

proteins prevent improper cell divisions apart from midcell

(Lutkenhaus, 2007; Raskin and de Boer, 1999). Due to its critical

role for the cell cycle, a robust regulation of Min oscillations is

of fundamental importance. As origin of robustness, an efficient

mechanism, only depending on a few central molecular

processes seems most likely. Indeed, experimental evidence

supports a mechanism based on nonlinear reaction-diffusion

dynamics. The Min proteins diffuse through the cytoplasm and

the ATPase MinD attaches in its ATP-bound form to the cell

membrane, where it recruits MinE, MinC, and MinD-ATP from

the cytosol (Hu et al., 2002). MinC inhibits cell division, but plays

no role in establishing oscillations (Lutkenhaus, 2007; Raskin
and de Boer, 1999). MinE, which is present as a dimer (Shih

et al., 2002; Ghasriani et al., 2010; Loose et al., 2011a; Park

et al., 2011), hydrolysesMinD on themembrane and thereby initi-

ates detachment. As consequence, pole-to-pole oscillations

arise in wild-type cells, and striped oscillations in filamentous

cells (Raskin and de Boer, 1999), revealing the presence of

an intrinsic spatial wavelength. Experiments indicate that the

temporal and spatial properties of patterns are established inde-

pendently of each other, as temperature variations strongly

affect the oscillation frequency, while leaving the spatial wave-

length unchanged (Touhami et al., 2006). Thereby, proper cell

division is ensured in a wide temperature range. In nearly spher-

ical mutant cells one observes predominantly pole-to-pole oscil-

lations along themajor or an irregularly wandering axis, aswell as

circular waves on the membrane (Shih et al., 2005).

Numerous computational models have been proposed to

elucidate Min-protein patterns (Kruse et al., 2007; Loose et al.,

2011b).Mostmodels are either based on recruitment of cytosolic

proteins to the membrane (Huang et al., 2003; Fange and Elf,

2006; Loose et al., 2008; Arjunan and Tomita, 2010), differing

mainly in their assumptions about the involved recruitment

processes, or employ phenomenological nonlinearities (Mein-

hardt and de Boer, 2001; Howard et al., 2001; Meacci and Kruse,

2005) to reproduce the observed dynamics. The sheer number of

conceptually different models accounting for specific observa-

tions underlines the generic nature of oscillatory dynamics in

nonlinear systems, but leaves the actual underlying mechanisms

ambiguous. The only known model that reproduces oscillatory

patterns in cells with different shapes is based on recruitment

(Fange and Elf, 2006). It was initially formulated in cylindrical

geometry by Huang et al. (2003), and solely assumes experimen-

tally verified or suggested reactions. However, in this model,

striped oscillations only emerge for a nucleotide exchange rate

below the experimentally determined lower bound (Meacci

et al., 2006), and even then only for specific initial conditions

that cannot account for the dynamic transition out of pole-to-

pole oscillations (Touhami et al., 2006). Furthermore, the model

could not provide the necessary robustness against parameter

variations to account for temperature variations (Touhami et al.,

2006; Di Ventura and Sourjik, 2011), therefore failing to explain

proper cell divisions above room temperature. Finally, in contrast

to pole-to-pole oscillations, patterns in spherical cells could only

be explained by stochastic effects (Fange and Elf, 2006) or addi-

tionally included saturation terms (Huang and Wingreen, 2004).
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Themodels’ sensitivity to initial conditions and parameter vari-

ations raised doubts about the validity and completeness of

recruitment-based models in general (Touhami et al., 2006).

Moreover, striped patterns rather seem to arise in a small param-

eter set as a special case of the models possible dynamics,

without being of any obvious biological relevance for the wild-

type division cycle itself. One may therefore wonder why striped

patterns arise at all. For the extension of present models, nucle-

ation of MinD polymers at periodically distributed domains

enriched with anionic phospholipids was suggested (Touhami

et al., 2006). This would introduce a predetermined spatial

template, which might stabilize Min-protein patterns by sepa-

rating spatial organization from temporal dynamics. Indeed,

some models assert Min oscillations to be induced by the nucle-

ation of MinD filaments at the cell poles (Drew et al., 2005;

Cytrynbaum and Marshall, 2007). This line of thought is based

on the preference of MinD to bind in regions enriched with cardi-

olipin (Mileykovskaya et al., 2003; Mileykovskaya and Dowhan,

2009), an anionic phospholipid that clusters in domains of high

negative membrane curvature (Renner andWeibel, 2011; Huang

et al., 2006; Mukhopadhyay et al., 2008), like the cell poles.

However, no colocalization of MinD stripes with cardiolipin

domains has been reported so far, leaving the actual role of

cardiolipin domains as spatial cue elusive.

As it is ubiquitous in many intracellular biochemical systems,

the interactions between Min proteins are restricted to the lipid

membrane, raising interesting questions about the role of cell

geometry and spatial organization in spatiotemporal pattern

formation. However, so far, a theoretical investigation of a

model’s dynamics is restricted to numerical simulations of a

few single parameter configurations, leaving the overall param-

eter and geometry-dependent pattern-forming abilities largely

elusive.

Here, we present a robust minimal model based on recruit-

ment (Huang et al., 2003) that respects cellular geometry and

allows broad parameter studies by linear stability analyses along

with the incorporation of membrane diffusion. Employing a

nonlinear reactive bulk-boundary coupling and distinct diffusion

processes for the cytosol and the membrane, we reformulated

the reaction-diffusion system in elliptical coordinates. The use

of elliptical geometry was crucial, as it accounts for the various

aspect ratios, and captures axial and circular patterns simulta-

neously, while still being amenable to linear stability analyses.

In contrast to one-dimensional reductions (Loose et al., 2008),

this ansatz allows the important distinction between circular

waves and pole-to-pole oscillations.

The model reproduces all transitions between oscillatory

patterns in wild-type, filamentous, and nearly spherical cells,

as well as the temperature dependence of the temporal period.

We find that the pattern-forming process neither adapts to

spatial templates given by inhomogeneous MinD attachment,

nor does it depend on variations of the hydrolysis rate or on

initial conditions. In contrast, transitions between patterns

are mediated by variations of the cell geometry alone. From

the linear stability analysis and extensive numerical simulations,

we find that the molecular key mechanisms behind Min

oscillations are the transient sequestration of MinE proteins at

the cell membrane, and a highly canalized transfer of MinD
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from old to new polar zones. We argue that robust formation

and stabilization of patterns is completely defined by the

system’s nonlinear bulk-boundary couplings and geometric

parameters and suggest that localized nucleation of MinD poly-

mers is the secondary process guided by the spontaneous

oscillations.
RESULTS

Bulk-Boundary Couplings in Cellular Geometry
To correctly account for membrane-cytosol exchange dynamics

in cellular geometry, we attribute pattern formation to a reactive

coupling of distinct species diffusing trough the spatially

extended cytosol and the cellular membrane. Previous compa-

rable analytical approaches were restricted to circular geome-

tries and linear bulk-boundary couplings, with spatial patterning

relying on bulk degradation (Levine and Rappel, 2005). Here, we

advance these methods to elliptical geometries and nonlinear

reactive boundary conditions, which generally account for

possible multimolecular reactions between cytosolic and

membrane-bound species. Moreover, we adapted the system

parameters to meet recent experiments (Meacci et al., 2006;

Loose et al., 2011a), and disregarded cooperative recruitment

of cytosolic MinD (Huang et al., 2003) or MinE (Loose et al.,

2008) by MinDE complexes, as both processes lack experi-

mental verification (Loose et al., 2011a). The resulting reaction

scheme is based on four molecular processes: attachment,

detachment, recruitment, and nucleotide exchange. It is

described in Figure 1A. Total particle numbers are conserved,

as synthesis and degradation of proteins does not affect the

oscillation in vivo (Raskin and de Boer, 1999). We chose orthog-

onal elliptical coordinates, given by the normal m and tangential n

components at the boundary, see Figure S1. The ensuing set of

reaction-diffusion equations reads:

vtuDT =DDV
2uDT + luDD (1)

vtuDD =DDV
2uDD � luDD (2)

vtuE =DEV
2uE (3)

vtud =DdV
2
nud + uDT ðkD + kdDudÞ � kdEuEud (4)

vtude =DdeV
2
nude + kdEuEud � kdeude; (5)

with nonlinear reactive boundary conditions stating that the

reactions equal the flux onto (�) and off (+) the membrane

DDVmuDT

�
�
m=m0

= � uDT ðkD + kdDudÞ (6)

DDVmuDD

�
�
m=m0

= kdeude (7)

DEVmuE

�
�
m=m0

= kdeude � kdEuEud: (8)

Here, uDT, uDD, and uE denote the bulk concentrations of

MinD-ATP, MinD-ADP, and MinE, respectively, and ud, ude the
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Figure 1. Minimal Model Dynamics and Dynamical Instabilities

(A) Cytosolic MinD-ATP attaches to the membrane with a rate kD, where it recruits further MinD-ATP and MinE from the cytosol with rates kdD and kdE,

respectively. Recruitment of MinE leads to the formation of MinDE complexes, which disintegrate to cytosolic MinD-ADP and MinE with the temperature-

dependent hydrolysis rate kdefexpð�EA=RTÞ. Finally, MinD-ADP exchanges nucleotides with rate l. The scheme highlights the possibility of local MinE cycling,

given a sufficiently high density of membrane bound MinD.

(B) Schematic illustration of even and odd modes in elliptical geometry.

(C) Phase portrait for both recruitment processes illustrates the condition on the recruitment rates (Equation 9) for dynamical instabilities with kde = 0:65s�1. In the

gray domain, the system is stable below cell lengths of 2mm. The colored region showswhere only evenmodes (blue) or even and oddmodes (red) are unstable at

cell lengths below 2:8mm. Numerical simulations determined that only pole-to-pole oscillations are selected in the red domain.
membrane concentrations of MinD and MinDE complexes. The

limit of instantaneous nucleotide exchange is obtained by re-

placing both cytosolic MinD species with uD = uDT + uDD. We

will also study the implication of this limiting case, as it was

assumed in some previous models (Kruse et al., 2007; Loose

et al., 2008). In elliptical geometry, patterns along the major or

minor axis are expressed by even and odd modes, respectively,

see Figure 1B. The even modes correspond to pole-to-pole

and striped oscillations. Which modes grow or oscillate can be

determined by linear stability analysis, see Supplemental

Information for the technical details.

Conditions on the System Parameters for Spatial
Pattern Formation
The model parameters are as far as they are available fixed by

experimental data: We use the diffusion constants (Meacci

et al., 2006; Loose et al., 2011a) DD = 16mm2=s;DE = 10mm2=s;

Dd =Dde = 0:013mm2=s, and a nucleotide exchange rate

l= 6s�1 to meet the lower bound (Meacci et al., 2006) of 3s�1.

Regarding particle numbers, we assume a linear scaling with

cell size that corresponds to a total number of ND = 2000 MinD

monomers and NE = 700 MinE dimers in a wild-type elliptical

cell of 5mm length and 1mm width (Shih et al., 2002; Unai et al.,

2009) which yields a MinD/MinE ratio of 2.86. We note that all

discussed observations can be reproduced equally well for

MinD/MinE ratios of 1.43, whereMinD andMinE are both consid-

ered as dimers, see Supplemental Information for discussion

and Figure S2.
Lacking further in vivo measurements, the remaining parame-

ters were adjusted to reproduce all experimentally observed

oscillatory patterns (Raskin and de Boer, 1999; Shih et al.,

2005; Touhami et al., 2006). Based on our analytical approach

in elliptical geometry, we were able to identify pattern-forming

instabilities through linear stability analysis already on timescales

below 0.1s. This is by order of magnitudes faster than what can

be achieved by full simulation runs, which usually take tens of

minutes for single parameter configurations. This technical prog-

ress allows us to investigate large parameter spaces and thereby

make general assessment about a model’s validity. By sampling

parameter space for pole-to-pole oscillations at cell lengths

about 2mm, we were able to determine that, for spatial patterns

to emerge in general, MinE needs to be recruited faster to the

membrane than MinD (Figure 1C), while being lower in total

particle number:

kdD<kdE ; (9)

NE<ND: (10)

While the specific ratio of recruitment rates and particle

numbers up to which oscillations persist depends on all system

parameters, the above conditions were always fulfilled. The

implications on the specific mechanism of pattern formation

will be discussed in the next section. The model parameters

were further refined by accounting for temperature variations

and testing the model for striped and circular patterns with
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Figure 2. Key Mechanisms Underlying Min Oscillations

(A) Locally sequestratedMinE constitutes theMinE ring, whichmoves toward the left pole through local cycling. DetachingMinD rebinds predominately at the left

pole and initiates a weak polar zone at the right end. The delayed reattachment due to nucleotide exchange is indicated by dashed lines. The numerical data

below correspond to the time step t = 12s in Figure 2C (densities are scaled by a factor 2:5310�3mm�1, fluxes by a factor 1:8310�2mm�1s�1). The accentuation

shows regions of dominant MinD attachment (light) or MinE attachment (dark). These adjoin to regions (gray) where MinD accumulation is suppressed due to

dominant MinE detachment.

(B) MinE depletes the old polar zone of MinD, until only MinDE complexes are left, then reassembles at the rim of the new polar zone, formed by redistributed

MinD. The numerical data correspond to the time step t = 22s in Figure 2C (densities are scaled by a factor 2:6310�3mm�1, fluxes by a factor 2:2310�2mm�1s�1).

(C) Top: kymographs at T = 22:5+C: membrane densities of MinD+MinDE (turquoise), MinDE (red), and the fraction MinDE/MinD in logarithmic color scale.

Bottom: Fractions of total cytosolic particles, MinD (blue) and MinE (red). Accentuated regimens correspond to transient sequestration (light) and rapid reloc-

alization (dark) of MinE.

cf. Movie S1.
numerical simulations. Regarding the temperature dependence,

we assume an Arrhenius law for the hydrolysis rate kde, with

an activation energy EA = 16:7kcal=mol and normalization

kdeð20+CÞ= 0:4s�1. The remaining parameters are

kD = 0:1mms�1; kdD = 0:108mm2s�1; kdE = 0:435mm2s�1: (11)

These values will serve as reference in further discussions of

the model’s parameter dependencies.
Min Oscillations Are Caused by Transient Sequestration
of MinE
How do patterns emerge in the minimal model defined by the

above reaction-diffusion Equations 1–8? The conservation of

particle numbers ascribes formation and growth of any spatial

pattern to a global redistribution of membrane-bound proteins

through cytosolic diffusion. MinD is driven off the membrane

upon binding MinE through stimulation of ATPase activity.

Thereby MinE counteracts the accumulation of MinD at the

membrane and drives the displacement of MinD. Polar zones

can grow if the local MinE density is sufficiently low, and MinD

particles are gradually transferred from MinDE domains to the

polar zone. Figure 2 illustrates how the formation and separation
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of MinD and MinDE domains follows from the conditions on

particle numbers and recruitment rates, Equations 9 and 10,

stated above. The higher particle number of MinD (Equation 10)

enables complete sequestration of MinE in membrane-bound

MinDE complexes, still leaving a fraction of MinD available to

initiate a new polar zone. Given a sufficiently high MinD

membrane concentration andMinE recruitment rate kdE, detach-

ing MinE rebinds immediately, forming the prominent MinE ring

(Lutkenhaus, 2007; Raskin and de Boer, 1997; Derr et al.,

2009), see Figures 2A and 2C and Movie S1. Continuous MinE

cycling locally depletes the membrane from MinD, leading to

a slow movement of the MinE ring along the gradient of

membrane bound MinD, whereupon a fraction of detaching

MinD initiates a weak polar zone in the opposite cell half, see Fig-

ure 2A. The new polar zone grows due to steady redistribution of

MinD, while most MinE remains sequestrated in the old polar

zone (Figure 2B) until the remaining MinD are converted into

MinDE complexes (Figures 2B and 2C). Once this state is

reached, the Min proteins rapidly detach, diffuse through the

cytosol and rapidly reattach at the new polar zone (cf. Movie

S1), leaving behind a region of high MinDE/MinD ratio, where

immediate reformation of polar zones is inhibited, cf. Figure 2C.

Due to the faster recruitment of MinE (Equation 9) the MinE ring



A

B

C

Figure 3. Canalized MinD Transfer and

Regulation of Spatial MinD Reattachment

by MinD Recruitment

(A) Temporal period as function of MinD recruit-

ment kdD and nucleotide exchange l in cells of

4mm length at T = 25+C. With instantaneous

nucleotide exchange, oscillations only exist at

low MinD recruitment rates (gray). Beyond this

threshold, the nucleotide exchange and recruit-

ment rates become control parameters for the

spatial distribution of MinD reattachment. At

high but finite nucleotide exchange rates the

oscillation period increases with the MinD recruit-

ment rate asMinD reassembles in front of the polar

zone, cf. Figure 3B below. At low nucleotide

exchange rates the oscillation period decreases

with MinD recruitment as the pole-to-pole particle

transfer becomes canalized between both cell

halves, cf. Figure 3C below.

(B) Kymographs for l= 50s�1 showing the total

MinD membrane density ud + ude and MinD flux

DDVmðuDT +uDDÞjm=m0
on (blue) and off (red) the

membrane for stepwise increasing MinD recruit-

ment rates. At higher MinD recruitment rates MinD

is not depleted but reflected at the cell poles. In

this case MinD reattaches in front of a moving

MinD wave.

(C) Analogous kymographs for l= 5s�1. Here,

MinD reaccumulates at the opposite cell pole.

Increasing MinD recruitment accelerates the

growth of new polar zones toward midcell and

synchronizes depletion and formation of polar

zones at opposite cell ends by canalizing the MinD

flux from old to new polar zones.
reassembles at the rim of the new polar zone, which provides the

crucial separation of MinD and MinDE maxima. Otherwise, MinE

would diffuse into the polar zone and accumulate at the MinD

maximum, deplete it, and suppress further formation of MinD

domains. Moreover, we observed that the MinE recruitment

rate kdE regulates the width of the MinE ring and the timescale

of polar zone recovery after disintegration. For higher MinE

recruitment rates MinE rings narrow and the recovery timescale

increases asMinD reaccumulation is stronger suppressed by se-

questrated MinE. The sequestration of MinE is transient, and the

system oscillatory, if detaching MinD gradually leaks from polar

zones. But how is MinD leakage established and regulated?

Cytosolic MinD Transfer Is Regulated by MinD
Recruitment
It was argued that oscillations are sustained by the delayed

MinD-ATP recovery (Huang et al., 2003), while the exchange

rate l itself has small impact on the oscillatory dynamics

(Touhami et al., 2006). Indeed, our analysis confirms that the

oscillation period depends rather weakly on the exchange rate

l (Figure 3A). However, while the system stays oscillatory at

high MinD recruitment rates kdD even for unrealistically fast but
finite exchange rates, it becomes stationary polarized in the

limiting case of an instantaneous exchange, if the MinD recruit-

ment rate exceeds a certain low threshold, cf. Figure 3A. This

threshold increases with the MinD attachment rate kD and

decreases with cell length. These results can be understood by

considering the spatiotemporal regulation of MinD reattachment

by MinD recruitment and recovery.

TheMinD recruitment rate kdD defines the ‘‘stickiness’’ of polar

zones for cytosolic MinD-ATP. In contrast, a finite nucleotide

exchange rate l uncages MinD from polar zones as MinD only

binds to the membrane in its active ATP form. The faster

the nucleotide exchange, and the stronger the recruitment, the

less particles leak from polar zones. This is evident from the

slowing down of the oscillation with increasing nucleotide

exchange and MinD recruitment rates, depicted in Figure 3A,

and agrees with previous findings (Huang et al., 2003; Touhami

et al., 2006). With fast nucleotide exchange, MinD does not reac-

cumulate at the bare membrane before the old pole is depleted,

whereas the MinD recruitment rate mainly regulates the reaccu-

mulation position (Figure 3B). On the other hand, for nucleotide

exchange rates close to the experimentally determined lower

bound of 3s�1, reaccumulation always starts in the opposite
Cell Reports 1, 741–752, June 28, 2012 ª2012 The Authors 745



cell half, and the recruitment of MinD regulates how fast the new

polar zone grows toward the old one (Figure 3C). Now, the period

peaks at a low MinD recruitment rate kdD = 0:015mm2=s and

decreases with MinD recruitment from 41:2s to 35.6 s at the

global minimum around kdD = 0:1mm2=s, cf. Figure 3A. This

minimum marks parameter configurations where the redistribu-

tion of MinD from old to new polar zone is highly canalized,

i.e., the total MinD flux is directed toward the opposite cell half

immediately after the polar zones starts to shrink (Figure 3C).

Thereby, growth and depletion of polar zones become synchro-

nized. This leads to the characteristic triangular shape observed

in MinD kymographs (Loose et al., 2011b), where new polar

zones start growing toward midcell while old polar zones shrink

toward the cell pole, cf. Figure 3C. As rebinding of MinD to the

old polar zone is inhibited by delayed ATP recovery, and the

growth of new polar zones is promoted by strong MinD recruit-

ment, the oscillation period decreases as a function of the

MinD recruitment rate due to a faster redistribution of MinD.

Recall that the recovery of polar zones is suppressed by MinE

recruitment, which highlights the interdependence of both

recruitment processes. Although the system’s dynamics is diffu-

sive, which, per se, is an undirected process, the coupling of bulk

diffusion and nucleotide exchange with nonlinear recruitment to

the membrane enables regulation of the pole-to-pole particle

transfer. While the uncaging effect of nucleotide exchange has

been noticed previously (Huang et al., 2003), the role of MinD

recruitment has been unknown, so far. Neglecting explicit nucle-

otide exchange as in earlier models (Loose et al., 2008) restricts

the parameter space to low MinD recruitment rates. In this case,

new polar zones do not grow until old polar zones are disas-

sembled, cf. Figures 3B and 3C. The following sections will

reveal that canalizing MinD transfer enhances the biological

function of Min oscillations and enables robust stripe formation

in the first place.

Canalized MinD Transfer Improves the System’s
Efficiency and Midcell Localization Accuracy
The functional purpose of Min oscillations is the inhibition of

Z-ring assembly apart from midcell by ongoing consumption of

ATP. In this regard it is favorable to establish a high and perma-

nent MinD membrane occupancy at the cell poles, ideally with

the smallest number of attachment events during each oscilla-

tion cycle. For the localization of Z-ring assembly to be most

precise, the mean MinD density should show a pronounced

minimum at midcell with a high contrast to the cell poles. As

shown in Figure 4A, the mean MinD density is always minimal

at midcell, but its particular shape strongly depends on the

MinD recruitment rate kdD. Since the typical environment of

Escherichia coli is the lower intestine of warm-blooded organ-

isms, oscillations are considered at body temperature. The cell

length is set to 5mm.

To measure the optimality of Min oscillations, we introduce

two quantities. First, and most important, we ask for the accu-

racy of midcell localization. This depends on the accentuation

of midcell in the MinD density profile. We distinguish between

the width and the depth of the mean MinD density minimum at

midcell, cf. Figure 4B. If the ratio between width and depth of

the minimum is smallest, midcell is most distinctly accentuated.
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We find a well-defined and unique optimal value for the MinD

recruitment rate kdD (Figure 4C), which, in addition, is very close

to the fitted value (cf. Equation 11). The optimum coincides with

the value where the MinD transfer is highly canalized. Increasing

the MinD recruitment rate accelerates the growth of polar zones

toward midcell, such that the mean density decreases at the cell

tips, and increases at midcell, cf. Figure 4A. If the MinD recruit-

ment rate is too low, i.e., much lower than the MinE recruitment

rate, recovery of polar zones is suppressed by the predominant

rebinding of cytosolic MinE, such that polar zones form at late

stages of the oscillation cycle and therefore are constrained to

the cell tips, cf. Figure 3C.

In a previous approach (Kerr et al., 2006), the precision of

midcell localization, depending on the MinD/MinE density ratio,

has been investigated for the model by Huang et al. (2003). An

acceptable precision could only be obtained at unrealistically

high MinD/MinE ratios. Comparing the deterministic data with

our results, we find that precision is substantially increased in

the present model, even at the protein density ratios determined

by experiments.

The secondmeasure describes the efficiency with whichMinD

occupies the membrane, hence relates the mean membrane

occupancywith theATPconsumption per oscillation cycle.While

reducing ATP consumption alone might be rather subordinate,

a higher MinD membrane density directly affects the probability

of recruiting the division inhibitor MinC to the membrane. Again,

we find an optimal value for the MinD recruitment rate kdD that

corresponds to highly canalizedMinD transfer (Figure 4D). Lower

kdD values reduce the mean MinD membrane density, while

higher kdD values increase the number of (re-)attachment events

during polar zone disassembly but do not increase the mean

MinD membrane density much more due to saturation effects.

From the evolutionary perspective, adjusting the pole-to-pole

transfer of particles is beneficial and distinguishes favorable

configurations out of the large parameter space. A refinement

of MinD recruitment increases the accuracy of midcell localiza-

tion and optimizes the system’s ability to occupy the membrane

with MinD. Since Min oscillations are highly robust against vari-

ations of the recruitment rates (cf. Figure 1C), it seems plausible

that the system was optimized through gradual refinement of the

recruitment process.

MinE Sequestration Explains the Persistent Binding
of MinE Observed In Vitro
Recent experiments revealed a persistent binding of MinE at the

rear of MinD domains in vitro (Loose et al., 2011a), even without

direct MinE membrane interactions. With the transient seques-

tration of MinE, our model provides an explanation for this obser-

vation: The lower particle number ofMinE enables sequestration,

while fast MinE recruitment confines sequestration spatially,

thereby inducing growth of MinD domains. Subsequently,

continual leakage of MinD from the polar zones renders seques-

tration transient, hence the system oscillatory. In particular, the

sharp decrease in protein densities at the end of the oscillation

cycle is the result of spontaneously suspended sequestration

(Figure 2C). Albeit an extension by explicit MinEmembrane inter-

actions was suggested (Arjunan and Tomita, 2010; Hsieh et al.,

2010; Park et al., 2011), additional sequestration of MinE by
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Figure 4. Optimization of Pole-to-Pole Oscillations by Canalized MinD Transfer at T=37:5+C

(A) Mean MinD membrane density during one oscillation cycle as function of the MinD recruitment rate kdD. With increasing MinD recruitment, polar zones grow

dynamically toward midcell, reflected in a decreased distance between the maxima in the density profile.

(B) Characterization of themeanMinDmembrane density by thewidthw and depth h of theMinD densityminimum atmidcell. The axial coordinate x is rescaled by

the cell length L. The density is rescaled by its value at x = 0.

(C) Optimal midcell localization, defined as the minimum of w / h as a function of the MinD recruitment rate. Optimum at kdD =0:103mm2=s. The solid line shows

the interpolation of the numerical data (triangles).

(D) Efficiency of pole-to-pole oscillations, defined as the ratio of ATP consumption per cycle and the mean MinDmembrane occupancy as a function of the MinD

recruitment rate. Optimum at kdD = 0:106mm2=s. The solid line shows the interpolation of the numerical data (triangles).
transient membrane bonds would merely amplify the argued

mechanism, while introducing additional experimentally unde-

termined parameters. However, by implementing the recently

proposed ’’tarzan of the jungle’’-mechanism (Park et al., 2011)

in our model, we found that delayed MinE detachment from

the membrane can weaken the condition on the particle

numbers, Equation 10, while additional cycling of MinE on the

membrane by rapid recombination with MinD cannot replace

the condition on the recruitment rates, Equation 9. As a conse-

quence, cytosolic cycling remains the key process, showing

that the minimal model dynamics comprise a suitable skeleton

model where future extensions can be build upon. In this respect

it would be highly beneficial to obtain the exact ratio of MinD and

MinE densities in vivo up to which regular Min oscillations

persist, as well as the quantitative aspects of MinE interactions

on and with the membrane.

Striped Patterns Dynamically Emerge Out
of Pole-to-Pole Oscillations
Next we demonstrate that the set of four molecular processes

(Figure 1A) suffices to reproduce all oscillatory patterns, see
Figure 5 and the Supplemental Information for the corresponding

movies. First, we consider the transition of pole-to-pole to

striped oscillations. As observed in vivo (Raskin and de Boer,

1999, 1997), if the cell length exceeds a certain threshold an

additional polar zone with an accompanying MinE ring emerges

out of pole-to-pole oscillations such that MinD oscillates

between both cell poles and midcell. The transition from pole-

to-pole to stripe oscillations occurs dynamically as the cell

grows, cf. (Loose et al., 2011b). Hence, for the emergence of

stable stripe states, one important precondition is that pole-to-

pole oscillations become unstable first. Otherwise, either no

transition would occur at all, or one could expect stochastic

switching between both patterns. However, the transition to

stripes is very robust and even independent of system tempera-

ture (Touhami et al., 2006). These observations are at odds with

previous theoretical studies that found that the formation of

stripes depends on initial conditions (Touhami et al., 2006), or

that stochastic fluctuations lead to switching between traveling

waves and striped oscillations (Tostevin and Howard, 2006).

Therefore, we chose a pole-to-pole wave solution peaking in

one cell half as initial condition, and determined the rate
Cell Reports 1, 741–752, June 28, 2012 ª2012 The Authors 747
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Figure 5. The Temperature Dependence and the Dynamic Adaptation of Spatial Patterns to Cell Geometry

(A) Temperature-dependent periods of pole-to-pole (open rectangles) and striped (open triangles) oscillations with their according Arrhenius fits

ðEA = 18kcal=molÞ, see Supplemental Information for discussion. Cell lengths are 5mm and 12mm, respectively. Filled rectangles and triangles show experimental

data by Touhami et al. (2006) for cells of 4mm� 5mm and tens of mm length, respectively. Inset shows temperature-dependent hydrolysis rate.

(B) Kymographs of membrane densities MinD+MinDE (turquoise) and MinDE (red) for pole-to-pole (top) and striped oscillations (bottom). cf. Movies S2, S3, S4,

and S5.

(C) Example of stripe formation out of traveling waves. cf. Movie S6.

(D) Kymographs of membrane densities in the upper cell half for nearly spherical cells (2:4mm length, 2:2mmwidth) show switching between predominant pole-to-

pole oscillations (dark) and circular waves (light). cf. Movie S7.

See also Figure S2.
constants (Equation 11) that yield transitions into stable stripes.

This choice of initial conditions was crucial, as the choices

made in previous studies (Fange and Elf, 2006) proved insuffi-

cient for parameter refinement, see Supplemental Information.

We confirm that stable stripes are absent in a reduced one-

dimensional geometry with reflecting boundaries (Huang et al.,

2003). However, we did find stable striped oscillations in the

analogous two-dimensional rectangular geometry with reflecting

polar caps, indicating that the spatial separation of bulk and

membrane is essential for stripe formation. In terms of the

scheme in Figures 2A and 2B, increasing the cell length

promotes the simultaneous formation and depletion of two

MinD domains through continuous redistribution of MinD and

MinE, leading to colliding unidirectional traveling waves and ulti-

mately the striped pattern, see Figure 5C and Movie S6. We

found that stable stripes emerge out of pole-to-pole waves,

only if weak polar zones are enhanced early on by sufficiently

strongMinD recruitment, kdD>0:1mm
2=s. Hence, stripe formation

and the optimization of the wild-type oscillation cycle are based

on the samemechanism. Since striped patterns are irrelevant for

the wild-type division cycle per se, and are only supported in

a small subset of the oscillatory parameter regimen (cf. Fig-

ure 1C), they seem to result from an evolutionary optimization

of wild-type oscillations.

An Arrhenius Law for the Hydrolysis Rate Accounts
for Temperature Variations
The reproducibility of temperature dependencies poses a further

critical test on the model’s robustness. Figure 5A shows

the period of pole-to-pole and striped oscillations as a function
748 Cell Reports 1, 741–752, June 28, 2012 ª2012 The Authors
of temperature, implemented through the hydrolysis rate

kdefexpð�EA=RTÞ, with the activation energy EA = 16:7kcal=mol,

the gas constant R, and the absolute temperature T. In agree-

ment with experiments (Touhami et al., 2006), the period-

temperature relation is given by an Arrhenius law. Over the

complete temperature range, and for all initial conditions, the

final patterns stayed qualitatively unchanged, see Figure 5B

and Movies S2, S3, S4, and S5. This result highlights the impor-

tance of a systematic parameter refinement, as even recent

expositions report a loss of oscillations with varying hydrolysis

rate (Di Ventura and Sourjik, 2011). In contrast, our model reveals

a strong robustness over a large range of hydrolysis rates.

Increasing the temperature leads to faster local cycling of Min

proteins between membrane and cytosol. With each cycle,

a fraction of MinD leaks from the polar zone. As a consequence,

the temporal period decreases due to a faster redistribution of

particles, but the spatial wavelength remains unaffected, as it

does not depend on the detachment process. However, oscilla-

tions can be lost with increasing hydrolysis rate kde if either

attachment or recruitment of MinD is chosen too low. In these

cases, an accumulation of MinD at the membrane is impeded

by rapid detachment. This provides a possible explanation for

the parameter sensitivity observed in previous accounts

(Touhami et al., 2006; Di Ventura and Sourjik, 2011). Note that

the polar zones and MinE rings narrow with increasing tempera-

ture (cf. Figure 5B). This can be explained by the decreased

residence time of membrane-bound proteins, which reduces

the distance proteins diffuse on the membrane before detach-

ment. Accordingly, we find that the narrowing effect vanishes if

membrane diffusion is either turned off, or increased sufficiently
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Figure 6. Effect of Spatial Cues on Spatiotemporal Pattern Formation

(A) MinD attachment is restricted to the cell poles. Following polar MinD attachment, MinD diffuses toward midcell.

(B) Even without direct MinD attachment, a MinD zone forms at midcell due to slow membrane diffusion and fast MinD recruitment from the cytosol.

(C) Kymographs of Min oscillations in filamentous cells with spatially restricted MinD attachment, MinD (blue), MinE (red/green). Left: restricting MinD attachment

to the cell poles does not jeopardize stripe formation. Right: adding further attachment domains corresponding to the next striped pattern does not promote

additional stripe formation.

See also Figure S2.
along with temperature. Since all diffusion constants depend

on temperature, the narrowing of polar zones and MinE

rings might be too weak to notice experimentally, or even

completely compensated by faster diffusion. Regarding possible

temperature dependencies of the remaining parameters the

system remains robust: To account for temperature increase

ðkde = 2:5s�1Þ, all other system parameters, i.e., diffusion

constants and kinetic rates, can be increased jointly up to a factor

of about eight without changing the spatial wavelength. If the

upscaling of the diffusion constants is limited to a factor two,

the kinetic rates can be increased jointly up to threefold. Due

to this robustness, we did not include explicit temperature

dependencies for the remaining parameters.

Striped Patterns Do Not Adapt to Cardiolipin Domains
The results above demonstrate that spatial cues are not neces-

sary to ensure robust patterns. However, as MinD preferentially

binds to anionic phospholipids like cardiolipin found at the cell

poles (Mileykovskaya et al., 2003; Mileykovskaya and Dowhan,

2009), we asked if oscillatory patterns adapt to spatial templates.

We considered two different templates for filamentous cells

by restricting MinD attachment to predefined parts of the

membrane, see Figure 6C. First, a template for the pole-to-

pole oscillation, where direct MinD attachment is restricted to

both cell poles, and second, a periodic template corresponding

to the next stripe state given by four separate attachment

domains. In both cases, and for various initial conditions, the

patterns finally evolved into the original striped oscillation, i.e.,

no adaption could be observed, see Figure 6C. We find that

slow diffusion of membrane-bound MinD, which is followed by

fast recruitment, suffices to promote the formation of robust

MinD domains even without foregoing MinD attachment, cf.

Figures 6A and 6B. This observation demonstrates that the initial

position of MinD attachment does not categorically determine

the final position of MinD stripes. In contrast to recruitment, the

MinD attachment process does not amplify membrane bound
patterns, but merely increases the MinD membrane density

throughout the cell. Accordingly, we find for the model with

spatially homogeneous MinD attachment, that varying the

attachment rate kD rather leads to the loss of instability than to

a qualitative change of the spatial pattern.

So, which processes do regulate the characteristic wave-

length? From the discussion of the channeling mechanism, we

know that the interplay between MinD recruitment and finite

nucleotide exchange affects the growth rate of new MinD

domains toward the old ones. On the other hand, the MinE

recruitment rate kdE defines a minimal distance between MinD

stripes, as it determines the width of the MinE ring, and thereby

the zone where the accumulation of MinD is suppressed, cf.

Figures 2A and 2B. Of course, the distance between detachment

and re-recruitment also depends on the bulk diffusion coeffi-

cients. In contrast, being pronounced membrane-bound struc-

tures, MinE rings and MinD stripes widen independently of

the recruitment rates with increasing membrane diffusion. In

summary, it is the interplay of all processes, and not a specific

one, that defines the characteristic wavelength: from the kinetic

rates it is the recruitment processes that affect the pattern’s

spatial properties most, but, in general, varying these rates alone

does not suffice to drive the system into a regular higher order

striped state without increasing cell length.

Geometry Selects Patterns in Nearly Spherical Cells
Patterns in nearly spherical cells result from the additional desta-

bilization of odd modes, see Figure 1B. For instance, in cells of

2:4mm length and 2:2mm width we observed predominant pole-

to-pole oscillations along the major axis over a period of about

535 s that fade to circular waves and oscillations along a rotating

axis for about 175 s, until pole-to-pole oscillations are reestab-

lished again, see Figure 5D and Movie S7. Additionally, as

a random switching of the traveling direction was observed for

circular waves in vivo (Shih et al., 2005), it occurs between

consecutive phases of circular waves in the deterministic model.
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After the division of nearly spherical cells, one observes a shift of

the oscillation axis by 90� toward the cell’s new long axis (Shih

et al., 2005). We employed a deformed mesh technique to

increase the cell’s width dynamically beyond its length, and like-

wise observed a shift toward themajor axis, seeMovie S8. Taken

together, our findings indicate that this variety of patterns is

primarily caused by weak aberrations from spherical symmetry,

and not by stochastic effects or unstable higher order modes,

as presumed previously (Fange and Elf, 2006; Huang and

Wingreen, 2004).

DISCUSSION

Our analysis identifies transient MinE sequestration to be the key

mechanism behind Min oscillations. Sequestration of MinE is

based on a lower particle number of MinE or, alternatively, on

direct interactions between MinE and the lipid membrane. We

find that the faster recruitment of MinE confines sequestration

to the rim of polar zones and continual leakage of MinD from

old to new polar zones renders sequestration transient. The

cellular geometry imposes a nonlinear bulk-boundary coupling,

which is key for the selection and stabilization of spatial patterns.

How do MinD filaments, cardiolipin domains, and irregular

patterns fit in this picture? Several models accounting for Min-

protein filaments assert the nucleation of MinD polymers to be

mediated, and thereby localized, by cardiolipin domains at the

cell poles (Drew et al., 2005; Cytrynbaum and Marshall, 2007).

Consequently, all patterns in filamentous cells ought to be deter-

mined by a dynamic periodic template of cardiolipin domains

with an intrinsic spatial wavelength. However, neither a presence

of periodic templates, nor a colocalization of MinD and cardioli-

pin domains has been reported in filamentous cells so far. More-

over, as cardiolipin adapts to membrane curvature, so should

MinD, but, based on the limited available data, bending filamen-

tous cells does not seem to affect the spatial MinD patterns

(cf. e.g., Raskin and de Boer, 1999; Touhami et al., 2006). The

mechanism presented in this paper is independent of, and, in

fact, robust against spatial cues. This suggests a different origin

for MinD nucleation: MinD filaments have been reported in two

different setups. In vivo, helical MinD filaments only appear along

with Min oscillations (Shih et al., 2003). In particular, MinD settles

in a homogeneous membrane-bound state without any addi-

tional ordered structure, if the cell is lacking MinE, and therefore

oscillations. This observation immediately follows from our

model, asmembrane diffusion removes any potential inhomoge-

neities caused by spatially restricted MinD attachment. Helical

MinD filaments were also observed at high MinD concentrations

in vitro (Hu et al., 2002). In presence of ATP and phospholipid

vesicles, MinD assembles in helical structures. Taking both

observations together, nucleation of MinD filaments could be

promoted at high local MinD densities in vivo. In this case,

the nonlinear dynamics described by our model provide the

primary mechanism, necessary to induce MinD nucleation at

the polar zones, suggesting that MinD polymerization is the

consequence and not the origin of spontaneous pattern forma-

tion. This scenario resembles the directed assembly of actin

cables guided by polar caps of the GTPase Cdc42 in yeast

(Wedlich-Soldner et al., 2003).
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Irregular patterns, like stochastic pole-to-pole switching in

short cells (Fischer-Friedrich et al., 2010), or aberrant oscillations

in cells mutant for MinE (Hsieh et al., 2010), imply the loss of

robustness. In our model, robustness and oscillatory patterns

share the same origin. Formation and growth of polar zones

and MinE rings is impelled by strong recruitment of MinD and

MinE and only constrained by the finite number of available

particles. The character of Min oscillations is highly nonlinear,

with the cell length acting as natural parameter driving the

system from dynamical equilibrium toward highly stable limit

cycles corresponding to the individual patterns. Therefore,

irregular patterns can only arise in regimens where the system

dynamics are moved close to primal bifurcation points. In these

regimens close to threshold the system is highly susceptible to

fluctuations, such that stochastic dynamics, spatial irregularities,

and additional molecular processes that were irrelevant for the

regular pattern-forming process might play a crucial role. For

instance, stochastic pole-to-pole switching were only observed

in short cells with lengths below 2:7mm (Fischer-Friedrich et al.,

2010), which is close to the onset of dynamical instability in our

model. An investigation of these phenomena, however, is only

possible in a stochastic model.

Another example for irregularities is given by the appearance

of aberrant oscillations in cell mutant for MinE (MinE C1) (Hsieh

et al., 2010). As these mutant MinE lack the ability to bind to

the lipid membrane, direct MinE membrane interactions were

suggested as an important process for robust Min oscillations.

However, the C1 mutant also shows a reduced interaction

strength with MinD. Reducing the MinE recruitment rate in our

model drives the system toward dynamical equilibrium, suggest-

ing that the reduced MinE-MinD interaction and not the loss of

MinE-membrane interactions might have disturbed the oscilla-

tory dynamics in the first place. This example emphasizes that

conclusions drawn from irregular dynamics do not necessarily

hold for regular Min oscillations, as critical regimens might be

dominated by mechanisms not included in the minimal model

due to their weak influence on the regular dynamics. Accord-

ingly, further experiments should be performed in close contact

with theoretical modeling. In particular, experiments with the

MinE-C1 mutant could validate the sequestration mechanism,

as the model predicts that patterns vanish when the MinE

concentration approaches the MinD concentration.

Beyond that, a multitude of predictions immediately follows

from our results on MinD channeling. For instance, striped

patterns should vanish, and accurate cell divisions be compro-

mised, if the MinD recruitment rate could be significantly

reduced. Moreover, patterns should vanish, if the MinE recruit-

ment process is weakened severalfold.

The model also predicts an Arrhenius law for the hydrolysis

rate with an activation energy about 16:7kcal=mol. Quantitative

knowledge about the temperature dependencies of the various

reactions involved in Min-protein dynamics would improve

further theoretical investigations substantially.

Reaching for a complete and coherent account to the Min

system as a whole, the next step is to apply the model to in vitro

dynamics (Loose et al., 2008, 2011a) and to verify the sequestra-

tion mechanism experimentally. As a preliminary result, we note

that the current model sustains bands of synchronous traveling



waves as observed in vitro (Loose et al., 2008, 2011a), even

without extending the reaction scheme (Figure 1A) by the sug-

gested nonlinear detachment (Loose et al., 2011a) of Min

proteins or cooperative MinE recruitment (Loose et al., 2008).

On a broader perspective, the presented theoretical formalism

enables the investigation of protein dynamics in vivo and in vitro

with explicit account for the underlying system geometries

and nonlinear bulk-boundary couplings. Examples are intra-

cellular polarization mechanisms driven by reaction-diffusion

processes, e.g., in Caenorhabditis elegans (Goehring et al.,

2011) or Saccharomyces cerevisiae (Johnson, 1999).

EXPERIMENTAL PROCEDURES

Numerical Simulations and Initial Conditions

All time-dependent computations were performedwith finite elementmethods

on a triangular mesh using Comsol Multiphysics 3.5a. As initial conditions,

linear profiles along the cell’s long axis with varying slopes and small random

fluctuations at each mesh site were chosen. In these cases all particles were

initially located in the bulk. The traveling wave initial condition used in simula-

tions with filamentous cells was obtained by choosing a low MinD recruitment

rate about kdD = 0:03mm2=s and picking the traveling wave solution at a time

step where the total MinD concentration was maximal in one cell half.
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