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Abstract

We propose two approaches for the spatial analysis of cancer incidence data with
additional information on the stage of the disease at time of diagnosis. The two for-
mulations are extensions of commonly used models for multicategorical response data
on an ordinal scale. We include spatial and age group effects in both formulations,
which we estimate in a nonparametric smooth way. More specifically, we adopt a
fully Bayesian approach based on Gaussian pairwise difference priors where additional
smoothing parameters are treated as unknown as well. We apply our methods to data
on cervical cancer in the former German Democratic Republic. The results suggest
that there are large spatial differences in the stage-proportions, which indicates spatial

variability with respect to the introduction and effectiveness of screening programs.

Key words: cancer screening; cervical cancer; cumulative model; disease mapping; or-
dered categorical response; pairwise difference prior; sequential model; stage-specific cancer

incidence data



1 Introduction

There has been much development for the spatial analysis of observational disease data within
the last ten years. The work can be categorized into two groups, methodology for data where
the exact location of each case is known, and methodology for aggregated data, where the
total number of cases is given in predefined administrative areas. Bayesian approaches for
the second type of data includes the seminal work by Besag, York and Mollié (1991) who
propose a Markov random field model for the spatial smoothing of disease rates. This model
is nowadays widely used for “disease mapping”, the study of spatial variation in disease risk,
for reviews see for example Clayton and Bernardinelli (1992), Knorr-Held and Becker (2000)
or Wakefield et al. (2000).

Probably the most prominent application is the statistical analysis of (age-standardized)
cancer mortality rates, as such data are routinely collected throughout the world. A spatial
analysis may help to identify a “spatial signal”, which is particularly important for rare
diseases, where the raw rates exhibit too much variation and are not particularly helpful
in order to judge the variation of the underlying disease risk. The estimated spatial pat-
tern may give hints to relevant unobserved risk factors, although some general problems of
interpretation can remain due to the observational type of the data.

In this paper we extend the methodology to the analysis of cancer incidence data with
additional knowledge on the stage of disease at time of diagnosis. Our aim can be described
as (a) to adjust the crude observed data for effects which can be attributed to age, and (b)
to assess whether there is any spatial variation left in the (adjusted) stage proportions. This
is of clear public health importance for diseases for which screening programs have been
implemented and spatial variation in stage proportions might indicate heterogeneity in the

effectiveness of cancer screening.



We propose two formulations based on regression models for categorical data on an
ordered scale (for a review see Fahrmeir and Tutz, 2001, Ch. 3). In the first approach we
model cumulative probabilities of disease risk, whereas in the second we model conditional
probabilities. More specifically, in the latter approach we consider the probability that a
person is diagnosed with the disease in a specific stage, given that she is diagnosed in this
or in a higher stage. In each formulation, the log-odds of these (cumulative or conditional)
probabilities are decomposed additively into age group and spatial effects. Note that we
work directly on data stratified by age, which is in contrast to ordinary disease mapping
methods (without stage-stratification), where the data are typically standardized by age in
advance in order to calculate the expected number of cases, which are then used as an offset
in a Poisson regression approach.

In Section 2 we outline the two different formulations for ordinal disease risk data, and
Section 3 illustrates the two approaches in an application to incidence data on cervical cancer
in the former German Democratic Republic (GDR) in 1975. Here we compare our estimates
with those obtained from a corresponding Maximum Likelihood approach with unrestricted
age group and spatial effects. The results suggest that there are large spatial differences
in the (age-adjusted) stage-proportions, which indicates spatial variability in the time of
introduction and effectiveness of prevention programs. We close with some comments and

possible extensions in Section 4.

2 Model

Let n;; denote the number of person-years at risk in district 7 = 1,...,I and age group
j =1,...,J. For each cell (i,7) let y;;s denote the number of diagnosed cases of disease
in stage s = 1,...,5. We assume that the stages are ordered by severity of the disease



with stage S being the most severe. Finally let y;;0 = n;; — Zf:1 Yijs be the number of all

person-years at risk, which have not being diagnosed with the disease (“stage 0”). We now

assume that y;; = (Yijo, Yij1, - - -, Yijs)’ follows a multinomial distribution with parameters n;;
S

and probability vector m;; = (7 0, Tij1, - - -, Tijs) where Y 7, = 1.
s=0

2.1 The cumulative model

In the cumulative model we factorize the log odds of the cumulative probabilities p;j; =
Tijo + -« -+ Tijs into an intercept term pg, a spatial effect 6, and an age group effect ¢,, that

is

Dijs D i=0 Mijt
1og< >:10g<7>zus+esi+sos- s=0,...,5—1). 1
1 — pijs S ot Tijt ’ ( ) @

Equivalently this model can be formulated in terms of ascending cumulative probabilites
1 — pijs; the corresponding log-odds are simply —(j5 + 65 + ¢5;). Hence the estimates from
model (1) can easily be transformed to those corresponding to an analysis of the data with
the category order reversed.

The probabilities 7,5 entering the multinomial likelihood can be derived from (1) as

logit™" (ko + boi + ©oj) (s=0)
Tijs = § logit ' (s + O + ©Dsj) — logit ™ (g1 + Os_1i+¢s1y) (s=1,...,5-1) (2)

1 — logit™ (pg—1 + Os—1, + ©5-1;) (s=29)

where logit™'(u) = 1/(1 + exp(—wu)). To ensure that all these probabilities are positive, the

parameters j, # and ¢ have to fulfill the constraints
prs—1+ 0515 + 0515 < ps + bsi + @55 (3)

foralli=1,....,1,7=1,...,Jand s=1,...,5 — 1.



2.2 The sequential model

The sequential approach to ordinal data considers the conditional probability that an indi-
vidual in cell (4, j) gets diagnosed of the disease in stage s, assuming that she gets diagnosed
of the disease in stage s or higher, i.e. ¢;;s = m;js/(mijs + ... + Tijs). Again we decompose
the log-odds of these conditional probabilities into an intercept term pg, a spatial effect 6,

and an age group effect ¢,, which can be written as

Qijs Tijs
1og< >:10g<7>zus+esi+sos- s=0,...,5—1). 4
L — gijs S ot Tijt ’ ( ) @

Note that, formally, the only difference to the cumulative model (1) is that ;;, replaces the
cumulative probability m;;0 + ...+ 7;;, in the nominator.

The probabilities 7;;, can now be derived as

logit ™ (110 + Oo; + ©o;) (s=0)

s—1
Tijs = < logit ™" (ps + Os; + ©sj) * t];[(){l — logit™ (1 + 0y + wi)} (s=1,...,8—=1) , (5)

T {1~ Togit™ (1 + 00 + ) (s=5)

e.g. Fahrmeir and Tutz (2001, p. 94). Note, that here the 7;;, are defined through products of
probabilities, not through differences of probabilities as in the cumulative model. Therefore
no constraints have to be imposed on the parameters u, # and ¢. A further difference to
the cumulative model is that a sequential model applied to the data but with the category
order reversed is not equivalent to model (4), except for the degenerate binomial case S = 1.

Indeed, the sequential model can be derived from an underlying mechanism where categories

can be reached successively, but only in one specific direction, see Fahrmeir and Tutz (2001).

2.3 Prior assumptions

The two alternative models proposed above are now completed by assinging prior distribu-

tions to all unknown parameters. For both the spatial and the age group parameters we



will use priors which favour a nearly constant pattern, implied by a high prior mass on very
small values of the corresponding variance parameter. However, the priors we use for these
variance parameters are highly dispersed, hence the formulation will be flexible enough to
capture spatial or temporal gradients or trends if there is evidence in the data for it.

More specifically we use Gaussian pairwise difference priors (Besag et al., 1995) for the
district and age group-specific parameters. These models neither impose stationarity nor
assume a specific parametric form; in fact they are closely related to non- and semiparametric

smoothing methods, see Fahrmeir and Knorr-Held (2000) and Hastie and Tibshirani (2000).

We separate the spatial parameters into independent sets 6, ...,0s5_1 and assume that,
for each category s = 0,...,5 — 1, 6 follows a Gaussian Markov random field model (Besag
et al., 1991)

p(6:[20,) o< Ay - exp {— S (s - emV} (6)
i ~is

where the sum in the exponent goes over all pairs of adjacent areas i; and i5. For some
motivation for I — 1 instead of I degrees of freedom for the precision (the inverse variance)
Mg, in (6) see Knorr-Held (2001).

For each unknown precision parameter \g,, s =0,...,S — 1, we adopt a gamma prior
p(Ag,) o< AgTH - exp(—bAg,)

with suitably chosen constants a and b. The S sets of Markov random fields 6y, ...,60s_; are

assumed to be independent. Alternatively one could specify a multivariate MRF model

1 )
p(9|A9) x |A0|(171)/2 - exp {—5 Z (021 — 022) Ag(eil — 022)} (7)

1112

with a Wishart prior on its precision matrix Ay, i.e.

p(Ag) o [A|@ D2 exp {—tr(B - A)},



again with suitably chosen constants a and B, where a is a scalar and B is a S X S-matrix.
This might be appropriate if the MRF’s 6y, ...,60s_; are expected to be correlated a priori.
In particular in the cumulative model, one might want to assume that the spatial pattern
are similar. However, we do not expect any major differences between the two formulations
and therefore stick to the simpler form with a priori independent MREF’s.

The formulation proposed in Besag et al. (1991) is more elaborate with additional pa-
rameters for unstructured spatial heterogeneity. It is computationally convenient to employ
a reparametrized version (e.g. Carlin and Louis, 1996, p. 308), where f; is independent
Gaussian with mean u,; and precision v, say, and a GMRF prior is now placed on the latent
vectors ug, just like in (6) for 6. Of course, this model could also be formulated in a multi-
variate way with possibly dependent parameters u; or 6;. We have tested in our application
both models with and without the additional unstructured parameters.

For the age-group specific parameters, we assume in similar lines that, for each category
s, the parameters ¢, follow a simple Gaussian random walk in time with variance /\;Sl, with
a flat prior for the initial value ¢, ;. Such a formulation is the exact temporal analogue of

model (6) as the prior can be written as

) Mg, &
p(pslAg,) o ATV exp {— 52 (Psg — sos,j—1)2} : 8)
i=2
We assume prior independence for the sets of parameters y,...,vs_1, which again can

easily be relaxed by adopting a multivariate Gaussian random walk model. Also, we use
again gamma hyperpriors for the precision parameter A, , s =0,...,S — 1. Finally, for each

intercept parameter py, ..., us_1 we adopt a flat, locally uniform prior.



2.4 Model choice and parameter interpretation

At this point it might be worth noting, that the posterior distribution of the conditional
probabilities can of course easily be derived from the cumulative model as well, as they are
just simple functions of the posterior distribution of the m;;,’s. Similarly, the posterior distri-
bution of the cumulative probabilities could be calculated from the sequential model. Indeed,
both formulations allow the exploration of every functional of the posterior distribution of
the m;;,’s. The difference between the two formulations is the different parametrization of
the m;;,’s with different quantities being the focus for smoothing, either the cumulative or
the sequential conditional probabilities. Preferences for one or the other model can either
be based on interpretation issues or on more formal model choice criteria.

We are particularly interested in spatial disease risk estimates, adjusted for age. In both
models, exp(—6y;) corresponds to the adjusted relative risk in district i, regardless of the stage
of the disease. In model 1, it is convenient to interpret exp(—6y;) as the adjusted cumulative
relative risk. In model 2, exp(—0y;), s = 1,...,S can be interpreted as the (adjusted) odds
ratio with respect to the corresponding conditional probabilities. Similarly we prefer to
display —¢; (rather than ), the age group effects on the cumulative probabilities 1 — p;;s
in model 1 and on the (conditional) probabilities 1 — ¢;;; in model 2. This has the advantage
that higher values in the figures displaying age effects, and darker colours in the spatial maps,
can be associated with a higher (cumulative or conditional) risk of a more severe stage of
the disease at diagnosis.

For assessment of the model fit, we routinely monitor the posterior distribution of the

saturated deviance
I J

D=> > d (9)

i=1 j=1



with the multinomial squared deviance residual

d2—2-5 sl Yijs
iy T Zyz]s Og

5—=0 NijsTijs

(using the convention that 0log0 = 0). Each squared deviance residual can be seen as
a (standardized) measure of fit, comparing the observed number of cases y;;, with fitted
number of cases n;;sm;;; for all stages s = 0,...,S. For a well fitting model, D should be
asymptotically (with increasing data in each cell (7, 7)) around I - J - S, see Spiegelhalter,
Best and Carlin (1998) (the factor S appears here due to the multinomial response with S

“free” categories).

2.5 A comparison of the two models

As an illustration, we now consider a simple example with S = 2 categories and no further
stratification with respect to age or space (i.e. I =.J = 1).

The difference between the two models is a different parametrization of the multinomial
probabilities m = (g, 71, m2)": The cumulative model parametrizes the model with respect to
cumulative probabilities py = w9 and p; = my + 7 with py < p;. The sequential model uses
go = mo and the conditional probability ¢; = 7 /(1 — 7). Suppose now we use independent
flat Beta(1,1) priors for py and p; in model 1, or ¢y and ¢; in model 2 respectively (similar
results can be obtained for other priors, e.g. flat priors on the logit scale). In principle these
priors will be assumed to be independent, but note that the order restriction (3), which
reduces here to py < p1, already implies a dependence between py and p; in the cumulative
model.

It can now easily be seen that, conditional on the data, ¢y and ¢, are still independent,

because the posterior is proportional to the multinomial likelihood

p(q0, 1]y) o ¢¢° (a1 (1 — q0))" {(1 — qo) (1 — q)}* = ¢° (1 — qo)"* ™ - ¢¥" (1 — 1)**  (10)

9



which can be factorized into independent Beta terms. Therefore ¢ and ¢; are independent

in the posterior with marginal distribution
Qly ~ Beta(yo + 1,41 + y2 + 1) and q1|y ~ Beta(y: + 1,52 + 1).

In the cumulative model, however, the posterior

p(po, P1]y) o< P&° (1 — po)?* (1 — p1)¥? for pg < p; and 0 elsewhere

cannot be factorized. Furthermore, although py = ¢y = 7y, the marginal posterior distribu-

tion of pqg

1

poly o< ot [ (o1 = po)” (1= p1)*dpy
bo

is different from the posterior for ¢y and cannot even be calculated analytically. However, we
can easily sample from the posterior p(po, p1|y), for example by Markov chain Monte Carlo,
and compare the corresponding multinomial probabilities 7 with the one obtained from the
sequential model. In some empirical comparisons we have found slight differences for the
posterior distribution of 7y and stronger discrepancies for 7 and 7.

This simple examples transfers to the general case: Although both the cumulative and
the sequential model specify the same model for the probability m;;, of not developing the
disease, we will not get exactly the same posterior distribution of s, 6p; and ¢g; (except for
the binomial case S = 1), even if we have apparently the same prior models for the param-
eters, because of the different parametrization of the remaining multinomial probabilities
(Tij1y - -5 Tijs)-

Note however that the maximum likelihood estimates of 119, 8y; and ¢g; will be the same in
both models due to the invariance property of ML estimates with respect to reparametriza-
tion (e.g. Cox and Hinkley, 1974). For example, in the above example the (obvious) ML
estimate for py and qq is yo/(yo + y1 + y2), while p; is estimated by (yo + y1)/(yo + y1 + y2))

and ¢, is estimated by y1/(y1 + y2).

10



As a final point we note that the factorization (10) holds also in the general sequential
model and implies that we could - equivalently to the joint multinomial approach defined by

(4) and (5) - estimate S binomial regression models

Yijo ~ B(n,logit™ (uo + Oo; + ¢o;))

Yisi ~ B+ ...+ yijs, logit™ (i1 + 01 + ¢1;))

Yiis—1 ~ BYijs—1+ Vijs, logit ™ (ps_1 +0s 1, + ©s-1;5))

completely separately. Of course, this is only valid because all parameters are stage-specific
and all pairwise difference priors are assumed to be independent. A separate modelling
approach might be advantageous if one is mainly interested in the variation of the stage-
specific proportions, but not in the overall disease rate. Note that then the actual number of
person-years n;; is not even needed for the analysis. On the other hand the factorization (10)
of the posterior implies that the posterior of p, 6y; and ¢g; will be exactly the same as the
one obtained in the usual disease mapping approach, where the disease cases are aggregated
over all different stages (using a binomial instead of the Poisson model). Note that this

would not be exactly the case in the cumulative model.

2.6 Computational issues

Inference has been carried out using C++ routines developed by the first author. We have
used Markov chain Monte Carlo (MCMC) to sample from the relevant posterior distributions,
applying univariate Gaussian Metropolis random walk proposals for all components of § and
¢, while Gibbs steps have been used for the remaining precision parameter. The spread
of each Metropolis proposal was tuned in an automatic fashion - prior to the collection of

the posterior samples - so that the corresponding acceptance rate for each parameter was

11



between 35 and 45%. Samples from wu;, can be generated by simple Gibbs steps, due to
a Gaussian full conditional. Note that in the cumulative model one needs to check the
additional restriction (3). If the Metropolis proposal did not fulfill the restriction it was
simply rejected (formally due to a zero prior term in the nominator of the acceptance ratio).

Both formulations impose an identifiability problem on the overall mean parameter p, as
those can also be absorbed by both 6, and ;. We have recentered both 6, and ¢, after each
iteration with a corresponding adjustment to u, for s =0,...,5—1. This is a valid approach
as long as we assume a locally uniform prior for us, because it neither changes the value
of the likelihood, nor of the prior (all pairwise difference priors have an implicit flat prior
on the overall level), hence not of the posterior. Furthermore, it enables us to explore the
posterior distribution of the age and spatial effects. Alternatively, one could impose a sum-
to-zero restriction directly in the prior for each block 6, and s, s =0,...,S — 1. However,
one would need to implement a block updating algorithm, as for example suggested in Rue
(2001), because single-site updating would be impossible due to degenerate full conditionals.
Block updating would also be helpful for sparse data, where similar models are known to
have convergence and mixing problems (Knorr-Held and Rue, 2001). However, the data we
considered in our application is not particularly sparse and MCMC mixing was fine for the
single-site scheme we have implemented.

We finally note that Albert and Chib (1993, 2001) have suggested to use a latent variable
appraoch for Bayesian inference by MCMC both in the cumulative and sequential model.
This can be advantageous in many applications when the number of observations is small or
moderate. However, in the current context the number of latent variables will be equal (in
the cumulative model) or even a multiple (in the sequential model) of the number of person-
years at risk. This seems to be prohibitive; for example, in our application the number of

person-years exceeds seven millions.
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3 Application

We now describe an application of the methodology described above to incidence data on
cervical cancer in the former German Democratic Republic (GDR). The data is available
on a yearly basis; here we present results for the year 1975, shortly after the introduction
of Pap smear screening programs. We will denote the cumulative model by model 1 and
the sequential model by model 2. The extended formulations with additional unstructured
spatial effects are called model 1b and 2b respectively. We have used the values ¢ = 1.0 and
b = 0.001 as a default choice for the gamma hyperprior of all precision parameters, which
corresponds to an extremely dispersed distribution for the variances with infinite mean and
variance and a prior mode at 0.0005.

The data is stratified by I = 216 administrative districts and J = 14 age groups (20-24,
25-29, ..., 80-84 and 85+). There were no cases below age 20. The original records give
information on the stage of the detected lesion in 6 categories: (I) dysplasia, (II) carcinoma
in situ (both premalignant) and (III-VI) malignant cancer of increasing severity. Effective
screening shifts (a) the stage of the detected lesion towards earlier stages, preferentially to
a premalignant condition, and (b) the time of detection towards younger age groups. Here
we focus on the effect of stage shift and combine for simplicity the premalignant categories
I and II into stage s = 1. Similarly we aggregate the malignant categories III-VI into stage
s = S = 2. We have deleted 35 cases (0.5%) with missing information on the stage of
the disease. The total number of cases sum up to 3,466 in stage 1 and 3,540 in stage 2;
the corresponding total female population in the 14 age groups is 7,262,311. The median
number of cases per district (regardless of the stage) is 20.5 (range 3-759). Stage-specific
medians are 9 (0-433) for stage 1 and 11 (1-326) for stage 2.

In a first assessment of the model fit, the posterior median deviance turns out to be 5,820

13



(5,770-5,875) and 5,403 (5,353-5,457) for model 1 and 2 respectively (90% credible intervals in
brackets). This is a remarkably good fit of both models to the data - compared to the actual
number of cells times the number of stages (/-.J-S = 216-14-2=6,048) - and indicates that
neither interactions of age with space nor additional unstructured parameters are needed in
both formulations. Indeed, the more complex formulations with additional parameters for
unstructured heterogeneity (model 1b and 2b) gives only a minor improvement in model fit,
as can be seen from Figure 1, which compares the posterior distribution of the deviance of
the four models. There seems to be evidence, however, that model 2 fits the data better
than model 1 as the median posterior deviance is smaller and the ranges of the posterior
deviance samples of the two models are well separated.

In the following we therefore restrict our attention to model 1 and 2 without additional
parameters for unstructured heterogeneity. We first discuss the estimated age effects in both
models. Figure 2 displays posterior median estimates within 90% pointwise credible intervals
of —ps, s = 0,1, obtained from model 1 (top row) and model 2 (bottom row). There is a
decreasing precision of the estimates (with increasing s) due to the decrasing number of cases
in the relevant likelihood in both models. For model 1, one can see a fairly similar inverse
“bathtub” pattern of the two curves. Note that the slope of the curves is slightly increasing
with s increasing. This reflects the fact that a higher stage of cervical cancer is more likely to
be diagnosed in older age groups, as the cancer needs time to progress (undetected) through
stage 1. The second curve, which describes the age pattern relevant for being diagnosed with
a malignant form of the disease has a nearly constant slope for age between 30 and 70 and
lower risk outside, especially for age below 30.

The estimates of —pg in model 2 (bottom left plot) are directly comparable to the cor-
responding ones obtained with model 1 (top left plot), as both correspond to the overall

log relative disease risk (keep in mind, however, that the estimates don’t have to be exactly
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identical, as commented earlier). Here there is virtually no difference to see. The bottom
right plot in Figure 2 displays the age effect on the conditional risk of the malignant disease
stage 2, given a diagnosis in stage 1 or 2. As expected, an increasing conditional risk with
increasing age can be seen, which is remarkably linear on the logit scale.

Figure 3 now displays the observed and estimated spatial incidence pattern of the dis-
ease, regardless of the stage. The first map shows Standardized Morbidity Ratios (SMR’s)
calculated by internal standardization through joint maximum likelihood (ML) estimation;
see Breslow and Day (1987), chapter 4. More specifically, we obtained the SMR’s by ap-
plying a standard logistic regression procedure to the aggregated cases in stage 1 and 2 as
responses, using age group and district-specific parameters (each of them restricted to sum
up to zero). Displayed are the exponential of the estimated spatial parameters, which can
hence be interpreted as (age-adjusted) relative risk estimates.

The other two maps display the corresponding (posterior median) relative risk estimates
exp(—0y;) from model 1 and 2. Compared to the ML estimates, one can see a fairly similar
pattern with the expected smoothing effect, slightly more pronounced for model 1. This
might be caused by the additional order restrictions (3) on the parameters in the cumulative
model. As in the usual disease mapping context this indicates that the ML estimates have
too much variation to be reliable estimates of the overall disease risk. Note that we have used
the same scale from 0.4 to 2.5 in all maps, which covers the estimates from model 1 (range
0.64-2.39), but not all of the SMR’s (0.35-3.19) nor of the estimates obtained from model
2 (0.49-2.68). The range was chosen in order to make the spatial pattern in the smoothed
maps more visible.

Figure 4 now displays - on the same scale as Figure 3 - estimates of the relative risk of a
tumour diagnosis in the malignant stage 2 of the disease. The left map gives ML estimates,

calculated just as in Figure 3, but only with the cases in stage 2 as responses. The other
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map displays the posterior median estimates from exp(—6;;) in model 1. There is less spatial
structure compared to the cumulative relative risk estimates from exp(—6y;), with a slightly
higher risk east of West-Berlin (the hatched region in the middle of the map).

Finally, Figure 5 gives the estimated odds ratio for the probability of a diagnosis in a
malignant stage of the disease, conditional on a diagnosis in stage 1 or 2. The left map
displays ML estimates, which shows considerably more variation than those obtained by
model 2 (right map). In fact, the district-specific ML estimates did not even exist for 7 out
of the 216 districts, due to no observations in stage 1. The smoothed map shows higher
conditional risk of stage 2 in the south-west, and lower conditional risk in the north-east and
some other parts of the country. This corresponds roughly to what is known about the local
introduction of cervical cancer screening programs: Cervical cancer screening by Pap smear
has been first introduced in the former GDR as a pilot project in two specific regions in 1974:
East-Berlin and Mecklenburg-Vorpommern (northern coastal region). Available information
on the number of lab tests indicates that in the 1970s the highest number of tests have been
carried out in these two areas, while in Saxony-Anhalt and Thuringia (the south-east of the
GDR) the lowest numbers were observed (Quaas and Heinrich, 1998).

The maps fit roughly into this pattern: in the north-west (initially high number of tests)
they show totally a higher proportion of identified premalignant and malignant cancers (Fig-
ure 3), but among them low proportions of malignant cancers (Figure 5). In the south-west
of the country (initially low numbers of tests) totally a lower proportion of identified prema-
lignant and malignant cancers can be seen, but among them high proportions of malignant
cancers. In detail, the pattern is more complicated: not the entire area of Mecklenburg-
Vorpommern shows the low proportion of malignant cancers, and areas with initially low
frequencies of testing show nevertheless low proportions of malignant cancers (e.g. Saxony

in the south-east). These findings may be due to the fact that several factors influence the
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effectiveness of a screening programme: (a) availability of the programme, (b) quality of
the programme, (c¢) attendance of the eligible population and (d) quality of outcome report
to the cancer registry. These factors may affect the outcome differently in the different
regions of the country. The maps show only the overall effect of these factors. Thus, the
method might be valuable to provide indicators to areas with unsatisfactory performance
of the screening whatsoever the reasons are. Their elucidation would need more detailed

epidemiological investigation.

4 Discussion

In this paper we have demonstrated the application of Bayesian disease mapping methods
for cancer incidence data with additional knowledge on the stage of the disease. Throughout
we have used Markov random field models in order to acknowledge the spatial structure of
the data. Of course, other models for spatial correlation can be used as well, for example the
recently developed adaptive smoothing methods based on partition (Knorr-Held and Rafier,
2000, Dension and Holmes, 2001) or mixture models (Green and Richardson, 2000). We are
currently investigating the applicability of partition models to such data.

An obvious extension of the two models considered is the inclusion of relevant covariates
in order to reduce (“explain”) the observed spatial pattern. Depending on the covariate and
on the model, the effect could be assumed to be independent of the stage, or stage-specific.
For example, if the number of lab tests would be available on a district-specific level, it could
be included in the sequential model for stage 2.

Finally we note that the incidence data from the GDR cancer registry is actually available
for all years between 1961 and 1989. An interesting problem would be to construct space-

time models that will capture the increasing number of cases in the pre-malignant stage and
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their temporal effect on the number of diagnosed malignant cases some time later. Here the
specification of the time lag between the pre-malignant and malignant stage is not obvious

and could possibly even be estimated from such data as well.
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Figure 1: Boxplots of posterior samples from the deviance for the four different models
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Figure 2: Estimated median age effects within 90% pointwise credible intervals from the cumulative

(top row) and the sequential model (bottom row)
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Figure 3: Relative risk estimates for diagnosis of the disease regardless of the stage by ML (left
map), model 1 (middle map) and model 2 (right map).
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Figure 4: Relative risk estimates for diagnosis of the disease in stage 2 by ML (left map) and
model 1 (right map).
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Figure 5: Conditional odds ratio estimates for diagnosis in the malignant stage 2, given diagnosis

in stage 1 or 2 by ML (left map) and model 2 (right map).
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