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Abstract

This paper considers the problem of linear calibration and presents
two estimators arising from a synthesis of classical and inverse calibration
approaches. Their performance properties are analyzed employing the
small error asymptotic theory.Using the criteria of bias and mean squared
error, the proposed estimators along with the traditional classical and
inverse calibration are compared. Finally, some remarks related to future
work are placed.

1 Introduction

The technique of statistical calibration plays an important role in improving
the precision of an instrument or some measuring device. It essentially involves
relating the readings obtained from two different instruments or measuring de-
vices and then employing the estimation relationship for the prediction of mea-
surements of one instrument or device on the basis of readings obtained from
the other instrument or device. Generally, one instrument or device provides
measurements that are accurate but with one or more limitations like highly
expensive, time consuming, irksome, complex and destruktive. Such limitations
are usually either not present or not so pronounced in the other instrument or
device, and taking observations is relatively cheaper, quicker, not so irksome
and easier but less accurate. Thus one instrument or device is taken as stan-
dard and the observations obtained from it are popularly referred as true values
while the observations arising from the other instrument or device are known
as readings. Such a framework of calibration has been used in numerous appli-
cations in physical, social, medical and engineering sciences. At the same time,
it has posed several challenging issues in statistical inference; see, e.g., Osborne
(1991) for an interesting review of statistical developments.

As an illustration, let us consider the example of a simple bathroom scale
used for finding the body weights of human beings. The circular scale on this



instrument is constructed by putting marks on the scale corresponding to some
known weights and then calibrating it. Now a person with unknown body weight
stands on it and his/her estimated weight is determined from the reading on
scale. This kind of measurement technique is based on controlled calibration.
Recording temperature, determining the power of eye-sight, analyzing the chem-
ical compositions of substances, finding the level of blood sugar are some other
simple examples of controlled calibration.

In this paper, attention is restricted to the problem of controlled calibration
in which the true values and readings are linearly related. Further, only the
problem of point estimation of the true value corresponding to a given reading
is considered though the problem of interval estimation is no less important. In
Section 2, we describe the two basic approaches stemming from classical and
inverse regression methods and present two estimators arising from a synthesis
of the two approaches. In Section 3, the relevance of small error asymptotic
(SEA) theory is discussed and SEA approximations for the biases and mean
squared errors are derived. Comparison of estimators is presented in Section 4.
Finally, some concluding remarks are placed in Section 5.

2 The Proposed Procedures

Suppose that y1,y2, ..., yn are the readings corresponding to n true values
T1,T2, ..., Ty assumed to be fixed and known.These observations are used for the
purpose of calibration.

Assuming a linear relationship the readings and true values, we can write

y; = a+ Bx; + ouy, i=1,2,...,n (2.1)

where « , § and o are unknown parameters and u; denotes the error term.
Next, let Y be the reading on the calibrated scale corresponding to an un-
known value X. Thus we can express

Y=a+pX+0oU (2.2)

Where U is the error term in the regression relationship.

The errors uy,us, ..., u, are assumed to be independently and identically
distributed following a normal probability law with mean zero and variance
unity.

For the point estimation of X, there are basically two approaches, viz., classi-
cal and inverse. In the classical approach, the parameters a and 3 are estimated
from (2.1) by the method of least squares and the resulting estimators are used
in (2.2) to get the following classical calibration estimator of X:

Xo =7+ 222V - ) (23)
Say
where
1 1
r = ; Ti, Sz = E Z(Z’Z — i’)g (24)
1 1
y = n Yis»  Say = EZ(xz_f)(yz_g)



In the inverse approach, the regression of z; on y; is run using n observa-
tions and the estimated relationship is employed to get the following inverse
calibration estimator:

X =7+ 25 - ) (2.5)
Syy
where
1 _
Syy = Z(yz —)>. (2.6)

It may be noticed that the classical calibration approach utilizes the re-
gression of readings on the true values for predicting a true value, outside the
sample, corresponding to a given reading. Obviously it is inappropriate, and
one should predict the true value corresponding to a reading by considering
the regression of the true value on the readings. This is followed in inverse
calibration approach but then the regression of true values on readings is not
meaningful because true values influence the readings and not vice-versa. Thus
both the approaches are not very appealing as such.

Various types of interpretations, justifications and modifications to the two
basic approaches have appeared in the literature; see Osborne (1991) for an
interesting summary. If we look at the distributional properties of classical and
inverse calibration estimators, both are found to possess some qualification and
some limitations; see Osborne (1991) for details and also Kubokawa and Robert
(1994) regarding the issue of admissibility from a decision theoretic perspective.

In both the classical and inverse calibration methods, it may be observed
that the parameters are first estimated from n observations and the thus ob-
tained estimated relationship is then used to develop an estimator of unknown
. Alternatively, we may employ all the (n + 1) observations assuming X to be
known for a moment and run the regression of true values on the readings in
the spirit of inverse calibration. This provides the following regression equation
of z on y:

o nEtX SJT?J_{—%]( ny+Y> e
= Y —2)2 — . .
n+l1 3yy+(n+y1) n+1

Using to predict X corresponding to the reading Y (i.e. , y* =Y), we obtain
the following expression:

% nr + X Szy + (Xifllffig) n _
T Tht1 V=7 nr1) Vo) (2.8)
Syy +

Obviously, the expression for z* as a predictor or estimator of X has no
utility owing to involvement of unknown X on the right hand side. However, we
can deduce feasible versions of it as follows. Relax the specification that X is
known and replace X on the right hand side of (2.8) by some estimate for which
there are two natural choices, viz., X; and X,.. If we set X = X; in (2.8), the
resulting expression of X* reduces to X , on the other hand, if we put X = X,
we get the following expression for a feasible calibration estimator of X:

nz + X, Sey + W n )
I. = Y —7)2 (Y - y) (29)
n+1 Syy + s n+1




Similarly, if we follow the classical calibration approach and accordingly run
the regression of readings on the true values assuming X to be known and thus
employing all the (n + 1) observations, we find the regression relationship of y
on x as follows:

X-Z)(Y—75
.. ng+Y Sy + E=20) ﬁl 7) .. nE+X
n+1 5., 4 X7 n+1
T n+1

Now if we put y** = y and invert the relationship, we find

_ (X-2)*
n + X Sga + n
X = ntl Y -3 2.11
n+1 + Suy + (X—i)i(lY—ﬂ) (n + 1> ( y) ( )

which has again no utility like (2.8). Now if we relax the assumption of known
X and put X = X, on the right hand side of (2.11), we find the resulting
feasible estimator as identically equal to X.. If we employ the inverse calibration
estimator X for replacing X, we et the feasible calibration estimator as follows:

T (X1—%)*
_ nr + XI Sgz + Tl n _
Cr= n+1 * gy 4+ ELDE =) | \p 41 ¥ -7). (212)
y n+1

It may be noticed that the estimators defined by (2.9) and (2.12) arise from
a synthesis of classical and inverse calibration approaches.

3 Asymptotic Properties:

In order to study the performance properties of calibration estimators, we em-
ploy the small error asymptotic (SEA) theory in preference to large sample
asymptotic theory. The main reason for such a choice is that the application of
SEA theory places no constraint on the number of observations in the calibra-
tion experiment. Owing to considerations like cost and practical difficulties in
execution, the number of observations may not be sufficiently large to warrant
the application of large sample asymptotic theory. In fact, small sample size
is a rule rather an exception in many calibration experiments. In such circum-
stance, the inferences drawn from the results based on large sample asymptotic
theory may be invalid and often misleading. On the other hand, the SEA the-
ory contends that errors are not ‘meant to be largeY and accordingly requires
errors to be small. This is ensured by assuming that standard deviation ¢ is
small and tends to zero. Such a specification is reasonable and tenable because
calibration experiments are generally conducted under controlled protocol and
identical conditions, and every care is taken to reduce the errors as far as possi-
ble in order to attain a high level of accuracy and precision. Thus SEA theory
in comparison to traditional large sample asymptotic theory for studying the
properties of calibration estimators appears to be more relevant as well as ap-
pealing; see Srivastava and Singh (1989). Let us now introduce the following
notation:

SJE.'L'

Sze + (n+1)"1(X — 7)2’




d = (X -1,
1
v = nsmﬂZ(m—i‘)ui, (3.1)
- (U/gU)’
1 2 2
vs = 7 (u; —@)” — vy

By virtue of normality of errors wy,us, ..., u,,U we observe that vy, v, and
vz are stochastically independent. Further v; and v, are normally distributed
with same mean zero but variances (1/(ns;,/%)) and (n + 1)/n3? respectively.
Similarly, ns,,/3%vs has x? - distribution with (n —2) degrees of freedom. From
(2.1) and (2.2), we observe that

-9 = (d+ov)pB
Say (1 + le)ﬁszz (32)
Syy = [14 2001 + 0*(v] +v3)]6% 840
Using these in (2.3) and (2.5), we have
X, = Z+(d+ov)(l+ov)? (3.3)
Xr = 4+ (d+ov)(1+ov)[l+ 2001 + (V7 +v3)]. (3.4)

When errors are small, i.e., ¢ is small and tends to zero, we can expect the
quantities on the extreme right of the equations (3.3) and (3.4) in increasing
powers of ¢. This provides the following expressions:

o(vy — dvy) + O,(0?) (3.5)

Similarly, using (3.2) in (2.9)

U(U2 - dUl) + Op(O'Q)

and (2.12), we get

_ nr+ X, n (Xe — X)(d + ova)
I. = i +<n+1>(d+ov2) {1+av1+ (0 Dss
[ . d+ ovy)? -t
142 2(v? [d+ov2)” .
_ + 2001 + 07 (vi +v3) + RSP (3.7
nT + X; n (X;—x)?
- 14 L7 .
Cr i +<n+1>(d+avg){ +(n+1)8“ (3.8)
_ _ 1
14 ov + (X5 —Z)(d+ ovs) .
i (n+ 1)szz

Substituting (3.5) and (3.6) in the above expressions and expanding in in-

creasing powers of o, we find

(Ic _X)

(C1 = X) = ovy — dvy) + Op(0?).

(3.9)

We thus observe from (3.5), (3.6) and (3.9) that all the four calibration ex-
timators X., Xy, I, and C] are asymptotically equivalent according to SEA



theory in the sense that they share the same asymptotic properties. They are
all consistent when o is small. Further, if we consider 0~! times the estima-
tion error, the asymptotic distribution in each case is normal with mean 0 and
variance

n+1

E(’U2 — d’Ul)2 = W

(3.10)
We thus need to consider higher order approximations for studying the su-
periority of one estimator over the other. Proceeding in the same way and

retaining terms up to order O,(c?), we obtain the following expressions from
(3.3), (3.4), (3.7) and (3.8):

(X, —X) = o(vg—dvy) —0*(va — dvy)vy + 0°(vg — dvy v}
+0, () (3.11)
(X1 —X) = o(va —dvy) — 0*[(va — dv1)v1 + dus] (3.12)
+0%[(v2 — dvy)v] — (va — 3dv;)vs] + Op(a?)
0d
(Ic — X) = 0'(1}2 — dUl) — 0'2 |:(U2 — dvl)ul + nn+ 1U3:| (313)
0(1— 26 0(1+ 20)d
+03 |:(U2 —dvl)v% + n 1(1_{_ 1 )U2U3 i (n+1 ) vlvg]
+0,(c*)
(C[ - X) = 0’(’[}2 — dUl) — 0'2 |:(U2 - d’Ul)Ul + (]. - ’nn——f1> dU3:| (314)
0(1 — 26
+03 |:(U2 — dvy )v? + <1 — %) Va3
2n6?
- <3+ - 1) dvlv3} + 0, ().

Employing the distributional properties of vi,v2 and wvs, it is easy to see
from (3.11) that the expression for bias of X, to order O(c?) is given by:

B(X.) = BE(X.-X) (3.15)
= 0E(vy —dv) — 0®E(vivy — dv?)

L[ d
7 <n3mmﬂ2>

while its mean squared error to order O(c?)is

M(X,) = E(X.-X)? (3.16)
= 0?E(vy — dvy)? — 20°E(vy — dvy)?vy
+30* E(vy — dvy )?v?

5 (n+1 4(n+1)(3-26)
7 <n0,32>+30 nbs,. B

In a similar manner, we can obtain the expressions of bias to order O(c?)
and mean squared error to order O(o?) for the remaining three estimators. The



results for bias are as follows:

B(X;) = —02% (3.17)
B(I) = o° {1 - "(Z;f)e] nsiﬁ2 (3.18)
B(C;) = o {n 3 "(Z;f)e} nsiﬁz' (3.19)

Similary, the mean squared error differences to order O(o*) are given by

D(X;,X.) = E(X.-X)-E(X;-X)? (3.20)
_ n+1)(n—-2)
= ot T [(n—6)8 — (n —8)]

D(I.,X.) = E(X.-X)?-E(,—X)? (3.21)

B (n—2) 1 -0)
= ot v—T [2(2 0) Tl ]

D(C1,X.) = E(X.-X)’-E(C;—-X)? (3.22)
_ (n+1)(n—2) 0
= g [2 <2‘ n+1> *

n \’
1-— 1-6)]|.
" < n + 1> ( )]
It may be remarked that the results (3.15), (3.16) and (3.20) have been
obtained by Srivastava and Singh (1989) but their expression for the mean
squared error on X; is incorrect and consequently the inferences based on it

are wrong. Moreover, our derivation is comparatively more simple and straight
forward than their derivation.

4 Comparison of Estimators

From the expressions for bias to the order of our approximation, we observe that
the sign of bias crucially depends upon the sign of d, i.e. whether X is above
or below z. Comparing the estimators with respect to magnitude of bias, we
see from (3.15) and (3.17) that [B(X.)]? is less than [B(X[)]? when n exceeds
4. Similary, it follows from (3.15), (3.17) and (3.18) that the estimator I has
invariably smaller magnitude of bias than X; so long as n exceeds 4. Further,
Ic has smaller bias in magnitude than X, when

2(n+1)

N2 (4.1)

Similarly, comparing C; with X, and X; with respect to magnitude of bias,
we find that C7 is better than X, when

(n+1)(n—4)

o (4.2)



and C7 is better than X; when

2(n+1)(n —3)

b n(n — 2)

(4.3)
From (4.2) and (4.3), it thus follows that C1 has smaller magnitude of bias than
both the estimators X, and X7 so long as (4.2) is satisfied.

If we compare (3.18) and (3.19), it is seen that I has smaller magnitude of
bias than Ct for n exceeding 4.

Thus the estimator I emerges out to be superior to the remaining three
estimators with respect to the criterion of absolute bias when n is greater than 4
and (4.2) holds true. Notice that this condition reduces, for instance, to 8 < 0.4
for n = 5 and 0 < 0.9 for n = 15, and is likely to be satisfied when X is away
from Z in either direction. Further, if n is sufficiently large, the inequality (4.2)
will always be satisfied. Next, let us compare the four estimators with respect
to the criterion of mean squared error to order O(c?).

From (3.20), we see that X7 is better than X, when n does not exceed 8,when
n exceeds 8, this result continues to remain true provided that

n—3_8
0 . 4.4
> (23 (.4
The reverse is true, i.e., X, is better than X; when the inequality (4.4)
holds true with a reverse sign (i.e., § < 0.5 if n = 10 and 6 < 0.85 if n = 20, for
example). Notice that 6 lies between 0 and 1.

Looking at the expression (3.21), we find that the estimator I. is superior
to the traditional classical calibration estimator X, when

n? < 2(2—6)
nl 81—0)

(4.5)

which is satisfied for all values of 8 provided that n does not exceed 12. For
n > 12, the range of 6 is constrained. As an illustration, the condition (4.5)
holds true for n = 20 when 8 < 0.25 or 6 > 0.86.

Similarly, using (3.20), the estimator I, is superior to the inverse calibration
estimator X; when

2

{n2 —Tn — 6+ <2 - n"+91> nG] 1-6) > 2. (4.6)

which is likely to happen for large values of n and small values of §. For example,
this holds true when at least as long as § < 0.5 for n =10, 8 < 0.8 for n = 20
and 0 < 0.9 for n = 30.

From (3.22) we observe that the estimator Cj is inferior to the classical
calibration estimator X, for all values of n and 6. It thus follows that I. will be
superior to Cy at least so long as I, is better than X, meaning thereby that as
long as (4.5) is satisfied.

5 Some Remarks

Synthesizing the classical and inverse calibration approaches, we have presented
two estmatores I. and C7, and have analyzed their performance properties em-
ploying the SEA theory. Our investigations have revealed that the estimator I.



is superior to C; as well as X, and X; with respect to the criterion of absolute
bias when n exceeds 4 and the condition (4.2) holds. Interestingly enough, this
condition always holds true when n is sufficiently large.

If the performance criterion is mean squared error(to the order of our ap-
proximation), the estimator I, is found to be superior to X, and C; at least so
long as (4.5) holds true. Similarly, it is superior to X; when the condition (4.6)
is satisfied.

Our technique of synthesizing the classical and inverse calibration approach
suggests two iterative estimatores also. For instance, consider the estimator
I.. Now if we replace X on the right hand side of (2.8) by I., we get another
feasible estimator. This, in turn, can be used in (2.8) for replacing X so as
to formulate yet another feasible estimator. This process may be continued
till the estimates stabilize. A similar iterative estimator can be defined using
(2.11). It will be interesting to find conditions of convergence and to compare
the speed of convergence of the two iterative procedures. Analyzing the bias
and mean squared error properties of estimatores in successive iterations will be
an exercise that may provide some useful guidance to practitioners.

We have studied the performance of calibration estimatores under the as-
sumption that errors are normally distributed. Such a specification can be
relaxed and asymptotic approximations for the bias and mean squared error
can be derived following Lwin and Maritz (1982, Appendix).

We have assumed that merely one reading is taken for estimating X. Our
investigation can be easily extended when two or more readings corresponding
to X are recorded.
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