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Abstract

This paper considers the problem of linear calibration and presents

two estimators arising from a synthesis of classical and inverse calibration

approaches� Their performance properties are analyzed employing the

small error asymptotic theory�Using the criteria of bias and mean squared

error� the proposed estimators along with the traditional classical and

inverse calibration are compared� Finally� some remarks related to future

work are placed�

� Introduction

The technique of statistical calibration plays an important role in improving
the precision of an instrument or some measuring device� It essentially involves
relating the readings obtained from two di�erent instruments or measuring de�
vices and then employing the estimation relationship for the prediction of mea�
surements of one instrument or device on the basis of readings obtained from
the other instrument or device� Generally� one instrument or device provides
measurements that are accurate but with one or more limitations like highly
expensive� time consuming� irksome� complex and destruktive� Such limitations
are usually either not present or not so pronounced in the other instrument or
device� and taking observations is relatively cheaper� quicker� not so irksome
and easier but less accurate� Thus one instrument or device is taken as stan�
dard and the observations obtained from it are popularly referred as true values
while the observations arising from the other instrument or device are known
as readings� Such a framework of calibration has been used in numerous appli�
cations in physical� social� medical and engineering sciences� At the same time�
it has posed several challenging issues in statistical inference� see� e�g�� Osborne
��		�
 for an interesting review of statistical developments�

As an illustration� let us consider the example of a simple bathroom scale
used for �nding the body weights of human beings� The circular scale on this

�



instrument is constructed by putting marks on the scale corresponding to some
known weights and then calibrating it� Now a person with unknown body weight
stands on it and his�her estimated weight is determined from the reading on
scale� This kind of measurement technique is based on controlled calibration�
Recording temperature� determining the power of eye�sight� analyzing the chem�
ical compositions of substances� �nding the level of blood sugar are some other
simple examples of controlled calibration�

In this paper� attention is restricted to the problem of controlled calibration
in which the true values and readings are linearly related� Further� only the
problem of point estimation of the true value corresponding to a given reading
is considered though the problem of interval estimation is no less important� In
Section 
� we describe the two basic approaches stemming from classical and
inverse regression methods and present two estimators arising from a synthesis
of the two approaches� In Section �� the relevance of small error asymptotic
�SEA
 theory is discussed and SEA approximations for the biases and mean
squared errors are derived� Comparison of estimators is presented in Section ��
Finally� some concluding remarks are placed in Section ��

� The Proposed Procedures

Suppose that y�� y�� ���� yn are the readings corresponding to n true values
x�� x�� ���� xn assumed to be �xed and known�These observations are used for the
purpose of calibration�

Assuming a linear relationship the readings and true values� we can write

yi � �� �xi � �ui� i � �� 
� � � � � n �
��


where � � � and � are unknown parameters and ui denotes the error term�
Next� let Y be the reading on the calibrated scale corresponding to an un�

known value X� Thus we can express

Y � �� �X � �U �
�



Where U is the error term in the regression relationship�
The errors u�� u�� ���� un are assumed to be independently and identically

distributed following a normal probability law with mean zero and variance
unity�

For the point estimation of X� there are basically two approaches� viz�� classi�
cal and inverse� In the classical approach� the parameters � and � are estimated
from �
��
 by the method of least squares and the resulting estimators are used
in �
�

 to get the following classical calibration estimator of X�

XC � �x�
sxx
sxy

�Y � �y
 �
��


where

�x �
�

n

X
xi� sxx �

�

n

X
�xi � �x
� �
��


�y �
�

n

X
yi� sxy �

�

n

X
�xi � �x
�yi � �y







In the inverse approach� the regression of xi on yi is run using n observa�
tions and the estimated relationship is employed to get the following inverse
calibration estimator�

XI � �x�
sxy
syy

�Y � �y
 �
��


where

syy �
�

n

X
�yi � �y
�� �
��


It may be noticed that the classical calibration approach utilizes the re�
gression of readings on the true values for predicting a true value� outside the
sample� corresponding to a given reading� Obviously it is inappropriate� and
one should predict the true value corresponding to a reading by considering
the regression of the true value on the readings� This is followed in inverse
calibration approach but then the regression of true values on readings is not
meaningful because true values in�uence the readings and not vice�versa� Thus
both the approaches are not very appealing as such�

Various types of interpretations� justi�cations and modi�cations to the two
basic approaches have appeared in the literature� see Osborne ��		�
 for an
interesting summary� If we look at the distributional properties of classical and
inverse calibration estimators� both are found to possess some quali�cation and
some limitations� see Osborne ��		�
 for details and also Kubokawa and Robert
��		�
 regarding the issue of admissibility from a decision theoretic perspective�

In both the classical and inverse calibration methods� it may be observed
that the parameters are �rst estimated from n observations and the thus ob�
tained estimated relationship is then used to develop an estimator of unknown
� Alternatively� we may employ all the �n � �
 observations assuming X to be
known for a moment and run the regression of true values on the readings in
the spirit of inverse calibration� This provides the following regression equation
of x on y�

x� �
n�x�X

n� �
�

�
sxy �

�X��x��Y��y�
n��

syy �
�Y��y��

n��

��
y� �

n�y � Y

n� �

�
� �
��


Using to predict X corresponding to the reading Y �i�e� � y� � Y 
� we obtain
the following expression�

x� �
n�x�X

n� �
�

�
sxy �

�X��x��Y��y�
n��

syy �
�Y��y��

n��

��
n

n� �

�
�Y � �y
� �
��


Obviously� the expression for x� as a predictor or estimator of X has no
utility owing to involvement of unknown X on the right hand side� However� we
can deduce feasible versions of it as follows� Relax the speci�cation that X is
known and replace X on the right hand side of �
��
 by some estimate for which
there are two natural choices� viz�� XI and Xc� If we set X � XI in �
��
� the
resulting expression of X� reduces to XI � on the other hand� if we put X � Xc

we get the following expression for a feasible calibration estimator of X�

Ic �
n�x�Xc

n� �
�

�
sxy �

�Xc��x��Y��y�
n��

syy �
�Y��y��

n��

��
n

n� �

�
�Y � �y
� �
�	


�



Similarly� if we follow the classical calibration approach and accordingly run
the regression of readings on the true values assuming X to be known and thus
employing all the �n � �
 observations� we �nd the regression relationship of y
on x as follows�

y�� �
n�y � Y

n� �
�

�
sxy �

�X��x��Y��y�
n��

sxx �
�X��x��

n��

��
x�� �

n�x�X

n� �

�
� �
���


Now if we put y�� � y and invert the relationship� we �nd

X�� �
n�x�X

n� �
�

�
� sxx �

�X��x��

n��

sxy �
�X��x���Y��y�

n��

�
	� n

n� �

�
�Y � �y
 �
���


which has again no utility like �
��
� Now if we relax the assumption of known
X and put X � Xc on the right hand side of �
���
� we �nd the resulting
feasible estimator as identically equal toXc� If we employ the inverse calibration
estimator XI for replacing X� we et the feasible calibration estimator as follows�

CI �
n�x�XI

n� �
�

�
� sxx �

�XI��x��

n��

sxy �
�XI��x���Y��y�

n��

�
	� n

n� �

�
�Y � �y
� �
��



It may be noticed that the estimators de�ned by �
�	
 and �
��

 arise from
a synthesis of classical and inverse calibration approaches�

� Asymptotic Properties�

In order to study the performance properties of calibration estimators� we em�
ploy the small error asymptotic �SEA
 theory in preference to large sample
asymptotic theory� The main reason for such a choice is that the application of
SEA theory places no constraint on the number of observations in the calibra�
tion experiment� Owing to considerations like cost and practical di�culties in
execution� the number of observations may not be su�ciently large to warrant
the application of large sample asymptotic theory� In fact� small sample size
is a rule rather an exception in many calibration experiments� In such circum�
stance� the inferences drawn from the results based on large sample asymptotic
theory may be invalid and often misleading� On the other hand� the SEA the�
ory contends that errors are not �meant to be large�Y and accordingly requires
errors to be small� This is ensured by assuming that standard deviation � is
small and tends to zero� Such a speci�cation is reasonable and tenable because
calibration experiments are generally conducted under controlled protocol and
identical conditions� and every care is taken to reduce the errors as far as possi�
ble in order to attain a high level of accuracy and precision� Thus SEA theory
in comparison to traditional large sample asymptotic theory for studying the
properties of calibration estimators appears to be more relevant as well as ap�
pealing� see Srivastava and Singh ��	�	
� Let us now introduce the following
notation�

� �
sxx

sxx � �n� �
���X � �x
�
�

�



d � �X � �x
�

v� �
�

nsxx�

X
�xi � �x
ui� ����


v� �
�U � �u


�
�

v� �
�

nsxx��

X
�ui � �u
� � v�� �

By virtue of normality of errors u�� u�� ���� un� U we observe that v�� v� and
v� are stochastically independent� Further v� and v� are normally distributed
with same mean zero but variances ����nsxx�

�

 and �n� �
�n�� respectively�
Similarly� nsxx�

�v� has 	
� � distribution with �n� 

 degrees of freedom� From

�
��
 and �
�

� we observe that

�y � �y
 � �d� �v�
�

sxy � �� � �v�
�sxx ���



syy � �� � 
�v� � ���v�� � v�
��
�sxx�

Using these in �
��
 and �
��
� we have

Xc � �x� �d� �v�
�� � �v�

�� ����


XI � �x� �d� �v�
�� � �v�
�� � 
�v� � ���v�� � v�
�� ����


When errors are small� i�e�� � is small and tends to zero� we can expect the
quantities on the extreme right of the equations ����
 and ����
 in increasing
powers of �� This provides the following expressions�

�Xc �X
 � ��v� � dv�
 �Op��
�
 ����


�XI �X
 � ��v� � dv�
 �Op��
�
 ����


Similarly� using ���

 in �
�	
 and �
��

� we get

Ic �
n�x�Xc

n� �
�

�
n

n� �

�
�d� �v�




� � �v� �

�Xc �X
�d� �v�


�n� �
sxx

�


� � 
�v� � ���v�� � v�
 �

�d� �v�

�

�n� �
sxx

�
��

����


CI �
n�x�XI

n� �
�

�
n

n� �

�
�d� �v�




� �

�XI � �x
�

�n� �
sxx

�
����




� � �v� �

�XI � �x
�d� �v�


�n� �
sxx

�
��

�

Substituting ����
 and ����
 in the above expressions and expanding in in�
creasing powers of �� we �nd

�Ic �X
 � �CI �X
 � ��v� � dv�
 �Op��
�
� ���	


We thus observe from ����
� ����
 and ���	
 that all the four calibration ex�
timators Xc� XI � Ic and CI are asymptotically equivalent according to SEA

�



theory in the sense that they share the same asymptotic properties� They are
all consistent when � is small� Further� if we consider ��� times the estima�
tion error� the asymptotic distribution in each case is normal with mean � and
variance

E�v� � dv�

� �

n� �

n���
� �����


We thus need to consider higher order approximations for studying the su�
periority of one estimator over the other� Proceeding in the same way and
retaining terms up to order Op��

�
� we obtain the following expressions from
����
� ����
� ����
 and ����
�

�Xc �X
 � ��v� � dv�
� ���v� � dv�
v� � ���v� � dv�
v
�
�

�Op��
�
 �����


�XI �X
 � ��v� � dv�
� ����v� � dv�
v� � dv�� ����



�����v� � dv�
v
�
� � �v� � �dv�
v�� �Op��

�


�Ic �X
 � ��v� � dv�
� ��


�v� � dv�
v� �

n�d

n� �
v�

�
�����


���


�v� � dv�
v

�
� �

n���� 
�


n� �
v�v� �

n��� � 
�
d

n� �
v�v�

�
�Op��

�


�CI �X
 � ��v� � dv�
� ��


�v� � dv�
v� �

�
��

n�

n� �

�
dv�

�
�����


���


�v� � dv�
v

�
� �

�
��

n���� 
�


n� �

�
v�v�

�

�
� �


n��

n� �

�
dv�v�

�
�Op��

�
�

Employing the distributional properties of v�� v� and v�� it is easy to see
from �����
 that the expression for bias of Xc to order O���
 is given by�

B�Xc
 � E�Xc �X
 �����


� �E�v� � dv�
� ��E�v�v� � dv��


� ��
�

d

nsxx��

�

while its mean squared error to order O���
is

M�Xc
 � E�Xc �X
� �����


� ��E�v� � dv�

�
� 
��E�v� � dv�


�v�

����E�v� � dv�

�v��

� ��
�
n� �

n���

�
� ���

�n� �
��� 
�


n�sxx��
�

In a similar manner� we can obtain the expressions of bias to order O���

and mean squared error to order O���
 for the remaining three estimators� The

�



results for bias are as follows�

B�XI
 � ���
�n� �
d

nsxx��
�����


B�Ic
 � ��


��

n�n� 

�

n� �

�
d

nsxx��
�����


B�CI 
 � ��


n� ��

n�n� 

�

n� �

�
d

nsxx��
� ����	


Similary� the mean squared error di�erences to order O���
 are given by

D�XI � Xc
 � E�Xc �X
� � E�XI �X
� ���
�


� ��
�n� �
�n� 



n��sxx��
��n� �
� � �n� �
�

D�Ic� Xc
 � E�Xc �X
� � E�Ic �X
� ���
�


� ��
�n� 



nsxx��




�
� �
�

n����� �


n� �

�
D�CI � Xc
 � E�Xc �X
� � E�CI �X
� ���




� ���
�n� �
�n� 



n��sxx��






�

�

�

n� �

�
�

n

�
��

n�

n� �

��

��� �


�
�

It may be remarked that the results �����
� �����
 and ���
�
 have been
obtained by Srivastava and Singh ��	�	
 but their expression for the mean
squared error on XI is incorrect and consequently the inferences based on it
are wrong� Moreover� our derivation is comparatively more simple and straight
forward than their derivation�

� Comparison of Estimators

From the expressions for bias to the order of our approximation� we observe that
the sign of bias crucially depends upon the sign of d� i�e� whether X is above
or below �x� Comparing the estimators with respect to magnitude of bias� we
see from �����
 and �����
 that �B�Xc
�

� is less than �B�XI
�
� when n exceeds

�� Similary� it follows from �����
� �����
 and �����
 that the estimator IC has
invariably smaller magnitude of bias than XI so long as n exceeds �� Further�
IC has smaller bias in magnitude than Xc when

� 


�n� �


n�n� 


� ����


Similarly� comparing CI with Xc and XI with respect to magnitude of bias�
we �nd that CI is better than Xc when

� 

�n� �
�n� �


n�n� 


���



�



and CI is better than XI when

� 


�n� �
�n� �


n�n� 


� ����


From ���

 and ����
� it thus follows that CI has smaller magnitude of bias than
both the estimators Xc and XI so long as ���

 is satis�ed�

If we compare �����
 and ����	
� it is seen that IC has smaller magnitude of
bias than CI for n exceeding ��

Thus the estimator IC emerges out to be superior to the remaining three
estimators with respect to the criterion of absolute bias when n is greater than �
and ���

 holds true� Notice that this condition reduces� for instance� to � 
 ���
for n � � and � 
 ��	 for n � ��� and is likely to be satis�ed when X is away
from �x in either direction� Further� if n is su�ciently large� the inequality ���


will always be satis�ed� Next� let us compare the four estimators with respect
to the criterion of mean squared error to order O���
�

From ���
�
� we see thatXI is better thanXc when n does not exceed ��when
n exceeds �� this result continues to remain true provided that

� �

�
n� �

n� �

�
� ����


The reverse is true� i�e�� Xc is better than XI when the inequality ����

holds true with a reverse sign �i�e�� � 
 ��� if n � �� and � 
 ���� if n � 
�� for
example
� Notice that � lies between � and ��

Looking at the expression ���
�
� we �nd that the estimator Ic is superior
to the traditional classical calibration estimator Xc when

n�

n� �




�
� �


���� �

����


which is satis�ed for all values of � provided that n does not exceed �
� For
n � �
� the range of � is constrained� As an illustration� the condition ����

holds true for n � 
� when � 
 ��
� or � � �����

Similarly� using ���
�
� the estimator Ic is superior to the inverse calibration
estimator XI when


n� � �n� � �

�

�

n��

n� �

�
n�

�
��� �
 � 
� ����


which is likely to happen for large values of n and small values of �� For example�
this holds true when at least as long as � � ��� for n � �� � � � ��� for n � 
�
and � � ��	 for n � ���

From ���


 we observe that the estimator CI is inferior to the classical
calibration estimator Xc for all values of n and �� It thus follows that Ic will be
superior to CI at least so long as Ic is better than Xc meaning thereby that as
long as ����
 is satis�ed�

� Some Remarks

Synthesizing the classical and inverse calibration approaches� we have presented
two estmatores Ic and CI � and have analyzed their performance properties em�
ploying the SEA theory� Our investigations have revealed that the estimator Ic

�



is superior to CI as well as Xc and XI with respect to the criterion of absolute
bias when n exceeds � and the condition ���

 holds� Interestingly enough� this
condition always holds true when n is su�ciently large�

If the performance criterion is mean squared error�to the order of our ap�
proximation
� the estimator Ic is found to be superior to Xc and CI at least so
long as ����
 holds true� Similarly� it is superior to XI when the condition ����

is satis�ed�

Our technique of synthesizing the classical and inverse calibration approach
suggests two iterative estimatores also� For instance� consider the estimator
Ic� Now if we replace X on the right hand side of �
��
 by Ic� we get another
feasible estimator� This� in turn� can be used in �
��
 for replacing X so as
to formulate yet another feasible estimator� This process may be continued
till the estimates stabilize� A similar iterative estimator can be de�ned using
�
���
� It will be interesting to �nd conditions of convergence and to compare
the speed of convergence of the two iterative procedures� Analyzing the bias
and mean squared error properties of estimatores in successive iterations will be
an exercise that may provide some useful guidance to practitioners�

We have studied the performance of calibration estimatores under the as�
sumption that errors are normally distributed� Such a speci�cation can be
relaxed and asymptotic approximations for the bias and mean squared error
can be derived following Lwin and Maritz ��	�
� Appendix
�

We have assumed that merely one reading is taken for estimating X � Our
investigation can be easily extended when two or more readings corresponding
to X are recorded�
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