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Abstract

The analysis of the geographical distribution of disease on the scale of geographic
areas such as administrative boundaries plays an important role in veterinary epidemi-
ology. Prevalence estimates of wildlife population surveys are often based on regional
count data generated by sampling animals shot by hunters. The observed disease rate
per spatial unit is not a useful estimate of the underlying disease prevalence due to
different sample sizes and spatial dependencies between neighbouring areas. Therefore,
it is necessary to account for extra-sample variation and and spatial correlation in the
data to produce more accurate maps of disease incidence. For this purpose a hierarchi-
cal Bayesian model in which structured and un-structured overdispersion is modelled
explicitly in terms of spatial and non-spatial components was implemented by Markov
Chain Monte Carlo methods. The model was empirically compared with the results
of the non-spatial beta-binomial model using surveillance data of Pseudorabies virus

infections of wildboars in the Federal State of Brandenburg, Germany.
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1 Introduction

In geographical epidemiology spatial data are frequently mapped on the basis of artificial
boundaries such as administrative units. In wildlife population surveys, administrative struc-
tures are often the only feasible way to map samples. Just in a few studies each case and
control is connected to exact coordinates (Kitron et al., 1991; Staubach et al., 2001). One of
the most popular map types in geographical epidemiology is the choroplethic map. Choro-
plethic maps assign a shading or colour to geographic areas (defined by their boundaries)
to visualize the variable of interest. The assigned hatching pattern or colour is based on
a class interval or continuous scale deduced from a descriptive statistic of the aggregated
data. Especially in situations where the sampling size per spatial unit is small, dot maps
and proportional symbolic maps may be more helpful for visualization. Nevertheless, all ma-
nipulation and analysis relies fundamentally on the given set of zonal units, and this cannot
be overcome without access to individual data records (Gatrell, 1994).

The simple classification into different prevalence ranges that is frequently applied causes
some problems: (i) Spatial boundaries are artificially chosen and not relevant to disease
spread. (ii) The sample size is often not taken into consideration when spatial data are
presented. Therefore, confidence limits may overlap with those of neighbouring prevalence
ranges and prevalence differences between neighbouring units could thus be random. (iii)
When data are stratified, sample sizes in some units or strata may be too low to obtain
reliable prevalence estimates. (iv) Mapping surveillance data in this manner may also lead
to false interpretations of disease clusters or disease-free areas. Furthermore, all relation-
ships observed between variables will only hold for this particular aggregation of the data,
a phenomenon which is well-known as ecological fallacy (Fotheringham and Wong, 1991;

Fotheringham and Rogerson, 1993; Pfeiffer and Morris, 1994; Smans and Estéve, 1996;



Haining, 1998).

Particularly in medical epidemiology, different spatial filters, smoothing methods and
parametric regression techniques have been suggested for the solution of these problems
(Pfeiffer and Morris, 1994; Elliott et al., 1995; Haining, 1998). They do frequently not regard
all sampled informations as parameters of a hypergeometric distribution (Elliott et al., 1995;
Smans and Estéve, 1996). A full Bayesian model for a spatial analysis of disease prevalence
data based on a spatial smoothing prior was implemented using modern Markov Chain Monte
Carlo (MCMC) methods. By using surveillance data of Pseudorabies virus (PRV) infections
of wildboars we compared the diagnostic results with the prevalence estimates of the MCMC

and the non-spatial beta-binomial model.

2 Material and Methods

2.1 Disease data

The study area comprised of the Federal State Brandenburg in the eastern part of Germany
and covers approximately 29,530 km2. The Federal State of Brandenburg is divided into 1700
administrative units (municipalities) with an average area of 17.4 km?. Municipalities may
have enclaves with the same identification number which are not directly spatially linked to
the main administrative unit. The topographical map consists of a total of 1902 geographic
areas.

Disease data consist of the numbers of diagnosed positive and negative results directly
linked in the GIS to the spatially defined administrative units. If enclaves of municipalities
existed, the positive and negative results were subdivided proportionally to the area of each
unit.

The data base, sampling frame and investigation procedure of the disease data is described



elsewhere (Miiller et al., 1998) . We used summarized surveillance data of PRV infections
of wildboar based on a serological survey of the year 1993 as example. In 370 spatial units
1364 shot wildboars were examined (Figure 1). 119 animals were serologically positive in the
diagnostic test (full-antigen ELISA) resulting in prevalences ranging between 0.0 and 1.0 for

each spatial unit.

2.2 Statistical Models

Within a map of N spatial units, let n; denote the sample size and y; the number of positive
results in the ith region. The observed prevalence for each spatial unit is given by the ratio
pi = y;/n;. However, note that often no prevalence estimate is available due to the lack of
data (n; = 0).

Throughout we assume that the number of cases in each spatial unit is binomial dis-
tributed with y; ~ Binomial(n;, m;), where m; represents the unknown true disease preva-

lence.

2.2.1 Beta-binomial Model

To model only the unstructured overdispersion of the data we use an empirical Bayesian ap-
proach based on the beta-binomial model. This model is often fitted to binary response data
which display a larger variance than that expected under a binomial model (Williams, 1975;
Gelman et al., 2000). The prevalence in each spatial unit is assumed to be independently
beta distributed, i.e. m; ~ Beta(a, ), where o and ( are fixed, but unknown hyperparam-
eters. These hyperparameters were estimated by maximum likelihood techniques (Smith,

1983).



The beta distribution has mean «/(a + ) and density

p(m) =:%%§3§§%%w2-10.—-w»ﬂ-1. 0

Applying Bayes’ theorem, i.e. multiplying the prior distribution (1) with the binomial like-
lihood
_ T Yi n;—yY;
plol) = (1)1 = ) 2)
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yields the posterior distribution, which is (due to conjugacy) again beta distributed: ;|y; ~
Beta(a + y;, 5 + n; — y;). In particular, the posterior mean of the true prevalence is (o +
yi)/(a + B + n;). We will use the posterior mean as a point estimate of the true disease
prevalence, alternative choices include the posterior mode (o +y; —1)/(ac+ 8+ n; — 2) and
the posterior median, which can easily be calculated numerically.

The posterior variance

(v +yi)(B+ni — i)
a+f4+n)2(a++n+1)

(3)

var(m;|y;) = (

can be used to calculate approximate credible intervals for the underlying true prevalence
in each spatial unit. However, exact credible intervals, based on the quantiles of the beta
distribution, are easily available and should be preferred. Similarly, the posterior probabil-
ity that the prevalence 7; in the ith unit exceeds the overall prevalence Y y;/ > n; can be

computed and mapped in order to visualize the “significance” of the point estimate.

2.2.2 Hierarchical Bayesian Model

For the full Bayesian approach we adopt a commonly used model from spatial epidemi-
ology (Besag et al., 1991) to the binomial observation model. In contrast to the beta-
binomial model, this formulation incorporates the spatial structure of the data and essen-

tially smoothes the observed prevalences. Furthermore, for spatial units without any data,



the model is able to interpolate the prevalence surface. An underlying spatial smoothing
parameter is treated as unknown and estimated from the data.

In the spirit of Besag et al. (1991) (replacing the log-linear Poisson with a binomial logistic
model), we decompose the log-odds of 7; into an intercept p and two heterogeneity parameter,
one displaying spatial structure (u;) the other displaying unstructured heterogeneity (v;) a

priori:

ﬂ'.
logl — = = g Ui+ v (4)

For the spatially structured parameter u; we adopt a so-called Gaussian Markov random
field distribution, also known under the name “intrinsic autoregression”. More specifically,
we assume that the conditional distribution of u;, given u;, j # ¢, is normal with mean equal
to the average of the u;’s in neighbouring units and variance equal to an unknown variance
parameter o2 divided by the number of neighbouring regions of unit i. Spatial units are
considered as adjacent if they share a common boundary.

The unstructured effects v; are assumed to be a priori independent with mean zero and

2
ve

variance o5. Note that, due to prior independence of the v.s, districts without any data
(n; = 0) can provide no information about the unstructured component. Let I be the
number of spatial units with data, and assume that the units are ordered with respect
to n; (in decreasing order). To avoid potential identifiability problems, we set the non-
spatial heterogeneity parameter for the N — I districts without any data to zero: v; = 0,

i=I+1,...,N.

2

For both the spatial and the non-spatial heterogeneity variance parameters o;

and o2
we will use priors which favour a nearly constant prevalence pattern, with a high prior mass
on very small values. However, the (inverse gamma) priors used are highly dispersed, hence

the formulation will be flexible enough to capture heterogeneity if there is evidence in the



data for it. Note that o2 has the role of a spatial smoothing parameter, determining the
variability of the spatial heterogeneity component w.

Statistical inference in this model is only feasible using modern MCMC simulation tech-
niques, see for example Gelman et al. (2000). It is computationally convenient to reparame-
terize the model from v; to n; = p+ u; +v; (Besag et al., 1995). This has the advantage that
the full conditional distribution for u is multivariate Gaussian. We can therefore block up-
date the vector u efficiently using an algorithm described in Rue (2001). For sampling 7; we
use a Metropolis step with a Gaussian proposal, which was tuned in order to get acceptance
rates between 35% to 45%. The full conditional distributions of the precision parameters
are again inverse gamma distributed and can be therefore sampled in a Gibbs step. More
details on computational issues in hierarchical models with underlying Markov random field
components can be found in Knorr-Held and Rue (2001).

MCMC techniques generate samples from the posterior distribution of the =;’s, from
which posterior characteristics such as quantiles can be estimated. Posterior probabilities of

an exceedence prevalence can be calculated, similar as in the beta-binomial model.

3 Application

We now present an empirical comparison of the two methods for data on Pseudorabies virus
infections in Brandenburg. Figure 2 displays the observed prevalences y;/n; while Figure 3
gives posterior mean estimates based on the non-spatial beta-binomial model. A considerable
shrinkage of the observed disease prevalences towards the overall prevalence can be seen. In
fact, estimates based on the beta-binomial model lie always between the sample proportion,
yi/n;, and the prior mean, a/(a + ) (Gelman et al., 2000). Note that no estimates are

available for units without any data. Finally, results from the full Bayesian model are



displayed in Figure 4. The spatial structure is now more apparent with a rather constant
disease prevalence throughout the area considered with slightly increased prevalence in the
east of Brandenburg. Most notably, the full Bayesian formulation does find considerably
less evidence for spatial variability compared to the naive estimates and the empirical Bayes
estimates in Figure 2 and 3. It seems that the incorporation of the spatial structure of
the data, together with the large uncertainty about disease prevalence (due to many areal
units without any data) implies a rather strong smoothing effect of the observed prevalences.
Figure 5 and 6 map the posterior probabilities for a prevalence above the overall prevalence
from the two different models. The maps show that the greatest evidence for an increased
disease prevalence can be found in the eastern part of Brandenburg. This may support the
hypothesis that the epidemic in Brandenburg starts at locations near to the border to Poland
(Miiller et al., 1998).

Incidentally, although the beta-binomial model is non-spatial, there is some agreement
of the posterior probabilities from that model (for the 370 regions with data) with the corre-
sponding ones obtained from the hierarchical Bayesian model, with an empirical correlation
of 0.549. See also Figure 7, which compares the two estimates in a scatter plot. The differ-
ence between the estimates from the two models can be explained by the additional spatial

component in the hierarchical Bayesian formulation.

4 Discussion

A large number of epidemiological studies utilize explorative spatial data analysis to describe
geographical distributions of very different types (e.g. virological and serological prevalences,
incidences, biological marker proportions). Health data are often collected at the scale

of geographic areas, because even the step from the smallest administrative unit to exact



coordinates of the sampled animal is enormous and only in a few cases necessary, (e.g. for
spatial analysis of habitat and microclimate; Kitron et al., 1991; Staubach et al., 2001).
Therefore, the data are often mapped independently for each spatial unit. In spite of efforts
to reach a sample size as large as possible, the sampling sizes per spatial unit are often very
low (Figure 1).

The possibility to calculate and map Bayesian posterior probabilities is important to
assess the significance of the prevalence estimates on a small-area level and to judge the
geographical variation of the disease.

An advantage of the full Bayesian model in comparison to the beta-binomial or mixture
models is the possibility to estimate prevalences also for spatial units with missing data. To
aggregate the data on a higher spatial level (e.g. districts or countries) is often not feasible,
because this reduces the sampled spatial information and may lead to false interpretations of
disease clusters or disease-free areas (Schliiter and Miiller, 1995; Tackmann et al., 1998). On
the lower spatial level (e.g. municipalities, counties) regions without any sample are often
recorded due to logistic and administrative problems.

Time-consuming large scale simulation studies are the only feasible way to further explore
the statistical properties of the different models for spatial binomial data in detail (Lawson
et al., 2000). Nevertheless, the examination of different data sets from field with different
statistical properties illustrates that the full Bayesian model may be useful as a first step of
descriptive and explorative spatial data analysis. The final map displays a more adequate
data representation then the raw prevalence estimate, especially if the sampling frame is
sparse - as it is often the case in data sets from wildlife population surveys. Of course, for
the final interpretation of the maps and hyperparameter values, it is necessary to consider
the character of the diseases, as e.g. contagious, environmental, vector-borne and parasitic.

From a methodological point of view, efficient MCMC algorithms for the analysis of



disease prevalence data can be challenging to implement, due to the sparseness with many
spatial units without any data. We were able to avoid some of the problems using a block
update of the underlying Markov random field u. However, Knorr-Held and Rue (2001) show
in the disease mapping context that a joint update of u and v, preferably together with the
corresponding variance parameters, is possible and might in fact be necessary to decrease
the simulation error of the estimates. We are currently investigating the applicability of such
algorithms to the binomial setup.

A potential disadvantage of the Markov random field approach for spatial smoothing is
that it assumes a priori, that the degree of spatial smoothness is constant over the whole
study area. More adaptive smoothing methods have recently been proposed in Knorr-Held
and RaBer (2000) and Denison and Holmes (2001). However, the applicability of such models

to the binomial set-up is beyond the scope of this paper.

Acknowledgments

We thank Thomas Miiller for making available the data sets utilized by this study and

Hartmut Schliiter for support.

References

Besag, J.E., Green, P.J., Higdon, D.M. and Mengersen, K.L., 1995. Bayesian computation

and stochastic systems (with discussion). Statistical Science, 10, 3-66.

Besag, J.E., York, J.C. and Mollié, A., 1991. Bayesian image restoration with two ap-
plications in spatial statistics (with discussion). Annals of the Institute of Statistical
Mathematics, 43, 1-59.

Denison, D. and Holmes, C., 2001. Bayesian partitioning for estimating disease risk. Bio-
metrics, 57, 143-149.

10



Elliott, P., Martuzzi, M. and Shaddick, G., 1995. Spatial statistical methods in environ-
mental epidemiology: a critique. Statistical Methods in Medical Research, 4, 137-159.

Fotheringham, A.S., Wong, D.W.S., 1991. The modifiable areal unit problem in multivari-
ate statistical analysis. Environment and Planning A, 23, 1025-1034.

Fotheringham, A.S., Rogerson, P.A., 1993. GIS and spatial analytical problems. Int. J.
Geographical Information Systems, 7, 3-19.

Gatrell, A.C., 1994. Density estimation and the visualization of point patterns. In: Hern-
shaw, H.M., Unwin, D.J. (Eds.), Visualization in Geographical Information Systems,
Wiley, Chichester, pp. 66-75.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2000. Bayesian data analysis. Boca
Raton, Chapman and Hall/CRC, 526p.

Haining, R., 1998. Spatial statistics and the analysis of health data. In: Gattrell, A.C.,
Loytonen, M. (Eds.), GIS and Health, GISDATA VI, London, Taylor and Francis,
29-47.

Kitron, U., Bouseman, J.K. and Jones, C.J., 1991. Use of ARC/INFO GIS to study the
distribution of Lyme Disease ticks in an Illinois county. Prev. Vet. Med., 11, 243-248.

Knorr-Held, L. and Rafler, G., 2000. Bayesian detection of clusters and discontinuities in

disease maps. Biometrics, 56, 13-21.

Knorr-Held, L. and Rue, H., 2001. On block updating in Markov random field models for

disease mapping. Revised for Scandinavian Journal of Statistics.

Lawson, A.B., Biggeri, A.B., Boehning, D., Lesaffre, E., Viel. J.-F., Clark. A., Schlattmann,
P., Divino, F., 2000. Disease mapping models: an empirical evaluation. Statist. Med.,
19, 2217-2241.

Miiller T., Teuffert J., Ziedler K., Possardt C., Kramer M., Staubach C., Conraths F.J.,
1997. Pseudorabies virus infections of the European Wildboar from Eastern Germany.
Journal of Wildlife Diseases, 34, 251-258.

11



Pfeiffer, D.U., Morris, R.S., 1994. Spatial analysis techniques in veterinary epidemiology.
The Kenya Veterinarian, 18, 483-485.

Rue, H., 2001. Fast sampling of Gaussian Markov random fields. Journal of the Royal
Statistical Society, Series B, 63, 325-338.

Smans, M., Estéve, J., 1996. Practical approaches to disease mapping. In: Elliot P.,
Cuzick, J., English, D., Stern, R. (Eds.), Geographical and Environmental epidemiology,
Oxford, Oxford University Press, 141-150.

Schliiter, H., Miiller, T., 1995. Tollwutbekampfung in Deutschland. Ergebnisse und Schluf}-
folgerungen aus iiber 10jahriger Bekdmpfung. Tierdrztl. Umschau, 50, T48-758.

Smith, D.M., 1983. Maximum likelihood estimation of the parameters of the beta binomial
distribution - algorithm AS 189. Applied Statistics, 32, 196-204.

Staubach, C., Tackmann, K., Thulke, H.-H., Hugh-Jones, H. Conraths, F.J., 2001. Geo-
graphical information system-aided analysis of factors potentially influencing the spa-
tial distribution of Echinococcus multilocularis infections of foxes. The American Jour-

nal of Tropical Medicine and Hygiene (in press).

Tackmann, K., Loschner, U., Mix, H., Staubach, C., Thulke, H.-H., Conraths, F.J., 1998.
Spatial distribution patterns of Echinococcus multilocularis (Leuckart 1863) (Cestoda:
Cyclophyllidea: Taniidae) among red foxes in an endemic focus in Brandenburg (Ger-
many). Epidemiology and Infection, 120, 101-109.

Williams, D.A., 1975. The analysis of binary responses from toxicological experiments

involving reproduction and teratogenicity. Biometrics, 31, 949-952.

12



150 —

100 —

Number of spatial units

Sample size

Figure 1: Distribution of the sample size of examined wildboars for PRV per spatial unit
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Figure 2: Observed prevalences of the PRV infections of wild boars in Brandenburg based on a

serological survey of the year 1993
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Figure 3: Prevalence estimate of the PRV infections of wild boars using the beta-binomial model
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Figure 4: Estimated median prevalences for PRV infections of wild boars using the full Bayesian

model
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Figure 5: Posterior probablilities of a prevalence above the overall prevalence for PRV infections

of wild boars using the beta-binomial model
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Figure 6: Posterior probablilities of a prevalence above the overall prevalence for PRV infections

of wild boars using the full Bayesian model
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Figure 7: Graphical comparison of the estimated posterior probabilities obtained from the two

models
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