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1 Introduction

The assumption A(,) was proposed by Hill [25, 26] for prediction in the case of extremely
vague a priori knowledge about the form of the underlying distribution. Let z;, i =
1,...,n, be the data values obtained in sampling from a finite population, and let z
be their ordered values in increasing order of magnitude. Let X; be the corresponding
pre-data random quantities, so that the data consist of the realized values, X; = z;, 1 =

1,...,n. Following Hill [27], we define A, as follows.

1. The observable random quantities X1,...,X,, are exchangeable. (In the original
definition of A, [25], exchangeability was not included allowing more general situ-

ations.)

2. Ties have probability 0. (Generalization to include possible ties is straightforward,

see Hill [26], but leads to more awkward notation.)

3. Given data z;, ¢ = 1,...,n, the probability that the next observation falls in the
open interval I; = (x(j_1),2(;)) is 1/(n + 1), for each j = 1,...,n + 1, where we

define z(g) = —oo and z(, ;1) = oo,

It is clear that A,y is a post-data assumption related to finite exchangeability [21],
see Hill [26] for a detailed presentation and discussion of A,), and an overview of related
work, including important contributions by Dempster [15] and Lane and Sudderth [30].

The assumption A, is not sufficient to derive precise probabilities for many events
of interest in inference based on such data. However, it does provide bounds for prob-
abilities, by what is essentially an application of De Finetti’s ‘fundamental theorem of
probability’ [21]. Theory of interval probability makes it clear that such bounds contain
valuable information, both on uncertainty of events and on indeterminacy caused by re-
stricted information. Therefore, we study the position of these bounds in the theory of
interval probability [36, 40]. In this paper, we prove that A, -based interval probabilities

have a position that is so-far unique in the theory of interval probability.

De Finetti’s [21] representation theorem uses a similar setting to justify a Bayesian
framework to learn about an underlying parameter, and a probability distribution for
that parameter, but he relies on the assumption that indeed there is an infinite sequence
of random quantities involved, whereas our interest here is mostly in inference on a single
future observation. Even more, the Bayesian approach as justified by De Finetti’s [21]

important results, explicitly needs a specified prior distribution, and together with the



conditional independence of future observations (conditional on an unknown parameter)
this adds quite a bit more structure to the data then our inference based on A(,). Such
inferences have a predictive and nonparametric nature, and seem suitable if there is hardly
any knowledge about the random quantities of interest, other than the first n observations,
or, which may be more realistic, if one explicitly does not want to use such information.
This may occur, for example, if one wants to study the (often hidden) effect of additional
structural assumptions underlying statistical models or methods. Inferences based on such
restricted knowledge have also been called ‘low structure inferences’ [23] and ‘black-box
inferences’ [30].

Recent suggestions of applications of A(,)-based nonparametric predictive inference,
for example in process control [2], condition monitoring [12] and selection [13], have also
inspired this study of the theoretical properties of the interval probabilities occurring in
this approach. The results in this paper support this inferential method further by show-

ing its internal consistency from a static as well as a dynamic point of view.

The outline of this paper is as follows. Section 2 provides a brief overview of some
basic aspects of interval probability, mostly based on the theory of Weichselberger [39, 40].
Section 3 presents the general form of the predictive interval probabilities as derived from
the assumption A(,), together with some basic results that make clear their relation to
other generalizations of probability theory that have been suggested in the literature.
Sections 4 and 5 discuss conditioning and updating, respectively, and strong internal
consistency results are derived. Finally, section 6 briefly discusses some further related

aspects, including some topics for future research.

2 Some basic aspects of interval probability

The idea to use interval-valued probabilities dates back at least to the middle of the nine-
teenth century [6]. Since then, interval probabilities, also known as imprecise probabilities,
have been suggested in quite different areas of statistics. For example, they arise naturally
in several approaches to predictive inference such as Dempster’s multivalued mappings
[16] and Hampel’s successful bets [24], in modelling uncertain knowledge in artificial intel-
ligence [41], in economic decision theory [9], and in robust Neyman-Pearson-testing [4, 29].
Furthermore, there is a strong connection to robust Bayesian inference [5, 32]. Recently,
there has been increasing activity in this area by researchers from widely varying back-
grounds, resulting in a series of conferences [18, 19], special issues of journals [7, 14, 17]

and a project webpage [20].



Fine and collaborators [31, 37] established a frequentist theory of interval probability.
Extending De Finetti’s theory [21] to interval-valued previsions, Walley [36] provides a
rigorous generalization of the concept of probability based on a behavioural interpretation
of subjective interval probability as bets with eventually differing maximum buying price
and minimum selling price. A formal foundation of interval probability in the spirit of Kol-
mogorov’s axioms, and not dependent on interpretation, is developed by Weichselberger
[40] (see [38, 39] for some selected aspects). We use Weichselberger’s concept through-
out this paper, and we comment briefly on the relation to work by others, in particular
Walley’s theory and Choquet capacities.

According to Weichselberger [40], an axiomization of interval probability can be achieved

by supplementing Kolmogorov’s axioms.

Definition 1
Let (2, A) be a measurable space.

e A set-function p(-) on A satisfying Kolmogorov’s axioms is called classical probabil-

ity; the set of all classical probabilities on (Q, A) will be denoted by K (2, A).
e A function P(-) on A is called F-probability with structure M, if
* P(-) is of the form

P : A - {[L;U|0SL<U<I1}
A —  P(A) =[L(A);U4)],

and
* the set
M= {p() € K(Q,A) | L(A) < p(A) ST(A), VA€ A} £0,  (2)
and
, (i)réf/\A p(A) = L(A)
VAe A. (3)
sup p(A) =U(4)
p(-)eEM

Throughout this paper, the notation P(-) is used for interval assignments, and p(-) for
classical probability. The property (3) is considered by several authors, for instance [29].
On finite o—fields, it coincides with Fine’s notion of envelopes [31, 37] and with Walley’s

concept of coherence [36].



Some consequences of Definition 1 are that for every F-probability, L(-) and U(-) are
conjugated,
L(A)=1-U(-4), VAcA, (4)
and L(-) is superadditive and U(-) is subadditive,
L(AUB) > L(A)+L(B) and U(AUB) <U(A)+U(B), VA,B e A, ANB = 0. (5)

Conjugacy ensures that every F-probability is uniquely characterized by L(-). We call
F = (2 A; L(+)) an F-probability field.

Not every set of classical probabilities is a structure, but every set can be used to
construct the smallest structure containing it and a unique corresponding F-probability

field. The proof of the following lemma is directly obtained from Definition 1.

Lemma 1

Consider a measurable space (2, A) and a non-empty set Mg of classical probabilities on
(Q,A). Then P(-) := [Lo(-); Uy ()] with

Lo(A):= inf p(A) and Uy(A):= sup p(A) (6)
p(-)eEMo p(-)EMo

i1s F-probability. For its structure M the relation M D Mg holds.

Property (3), which is essential for F-probability, is not new in the literature, but
usually it is derived as a consequence of two- or totally-monotone capacities. Assignments
satisfying properties beyond F-probability, in particular monotonicity properties of L(-),
become special cases with some mathematical particularities, but without any principal

superiority from the foundational point of view [3, 35, 40].

Definition 2
Let (2, A) be a measurable space. F-probability

P : A — {[L;U]|0SLLSUKLI1}
A = [L(A);U(4)]
is called
1. C-probability, if L(-) is two-monotone, i.e. if
L(AUB)+ L(ANB) > L(A) + L(B), VA,B € A, (7)

2. totally-monotone C-probability, if L(-) is totally-monotone, i.e. if for all ¢ € IN and
for all Ay,..., A, € A,

L <LQJIA> > > (-pfiHtL <ﬂ Ai>. (8)

0AIC{L,....q} i€l



Then the F-probability field C = (2; A; L(+)) is called (totally-monotone) C-probability field.

Obviously, every totally-monotone C-probability is C-probability. The notion of (totally-

monotone) C-probability is motivated by Choquet’s [10] system for classifying set-functions.

Definition 3
Let (2,0) be a topological space and A its Borel o-field. A set-function L(-) is called a
two- or totally-monotone capacity, if it satisfies (7) or (8), respectively, together with the

conditions
L0 =0, L®=1, (AJ,cybA— lim L(4,) = L(4) 9)
and
(Ap)new T A, A, open,n e N, = nlbrglo L(A,)=L(A). (10)

Totally-monotone capacities were independently introduced to statistics by Strassen
[34] and by Dempster (e.g. [16]), and form the basis of the Dempster-Shafer theory [33,
41]. Two-monotone capacities provide a superstructure upon the neighbourhood models
commonly used in robust Neyman-Pearson testing [4, 28, 29].

Under quite mild regularity conditions, each two- or totally-monotone capacity L(-)
leads to F-probability, and therefore to two- or totally-monotone C-probability, respec-
tively.

Lemma 2 (After [29, Lemma 2.5])

Let (2, A) be a measurable space, where ) is complete, separable and metrizable, and A
is the corresponding Borel o-field. If L(-) is a two- or a totally-monotone capacity, and
U(-) :=1— L(-) is the corresponding conjugated set-function, then P(-) := [L(-);U(-)] is
C-probability, or totally monotone C-probability, respectively.

In the next section A(,)-based interval probability is derived, and it will be shown
that this is totally-monotone C-probability, and therefore F-probability. Furthermore, the
A(n)-based L(-) is not a Choquet capacity, a fact that provides new theoretical insight into
the relation between totally-monotone Choquet capacities and totally-monotone C-pro-

babilities.

3 Predictive interval probability based on A,

We start this section introducing predictive interval probabilities based on the assumption

A(n), and present some basic properties. In subsection 3.1 we prove that these interval

6



probabilities are F-probability. In subsection 3.2 we focus on the attractive property of
local additivity which is important for conditioning as will be discussed in section 4. Fi-
nally, in subsection 3.3 we relate our inference to inner and outer measure and give a more

detailed characterization of the structure arising.

Let B be the Borel o-field over IR. For any element B € B, set-functions L and

U for the event X1 € B, based on data z1,...,zy, which partition IR into intervals
Iy,...,I41, and the assumption A, are

1

L(X B = —|{j:I,CB 11

(X1 €B) = ——l{j: ;< BY (1)
1

U(X €EB) = : I,NB . 12

(Xor1 €B) = —|(j: ,NB#0) (12

Throughout the paper, we leave the conditioning on data zy, ..., z, out of the notation.

L(-) and U(-) can be understood as bounds for the probability for the event X, € B,
consistent with the probabilities as assessed by A(,). The lower bound L(-) is achieved by
taking only probability mass into account that is necessarily within B, which is only the
case for the probability mass n%_l per interval [; if this interval is completely contained
within B. The upper bound U(+) is achieved by taking all the probability mass into ac-
count that could possibly be within B, which is the case for the probability mass %H per
interval I; if the intersection of I; and B is non-empty. Remark that, in this reasoning,
we do allow positive probability masses in points. The way of deriving L(-) is similar in
idea to the construction of belief functions. Notice, however, that L(-) cannot be a belief

function, because the latter is defined for finite spaces only.

Next, we discuss some basic properties of L(-) and U(-). For all B € B, we have

1 . 1 ,
LiXnp€B) = ———lj : B} = =7 - nB =10}

1
- n+1[”+1_|{j t LiNB £ 0} = 1-U(Xnt1 € B).

This means that L(-) and U(-) as defined in (11) and (12) satisfy (4). This conjugacy
justifies that we mainly concentrate on L(-). Next we prove that total monotonicity holds

for L(-). Let B; € B, i =1,...,q, with finite integer ¢ > 2 and let S C {1,...,q}.

Lemma 3 (For total monotonicity)

(@) {j: LCcU B} D UL{j: I CBi}

() Miesti : L CBi} = {j:Ij CNes Bi}-



Proof

q
(@) joeU{j: L CB} = Jieq.q:LioCBi
=1

q q
= Lyc|Bi = joe{i: c|JB}
=1 1=1
) joe({j: L CB} & Vies:Ij, CB;

€S

q q
It is easily seen that {j : I; C U B} ¢ U{j : I; C B;}. For example, observations
=1 =1

= )
z1 =1and 29 =2 give I} = (—00,1), Ir = (1,2) and I3 = (2, 00). If we take B; = [0.5, 1.5]
2

2
and By = [1.5,2.5], then 2 € {j : I; C | J B;}, whereas | J{j : I; C Bi} = 0.
=1 =1

Theorem 1 (Total monotonicity)
Set-function L(-), based on data zy,..., T, and the assumption Ay, as defined in (11),

1s totally monotone.

Proof
We prove that L(-) satisfies (8), using Lemma 3 and a standard inclusion-exclusion result

from the theory of sets.

q q q
LUK €8 = b({XaneUBY = — =i - L UBa
=1

=1 =1
1 q
> 2 .
> ”+1|gl{j I; C B}
1 Sla1 .
= — X (=D A = L c B
0£SC{1,...,q} €S
1
= —7 2 UL B
0£SC{1,...,q} icS
= > V)IL({Xe e () BiY)
0£SC{1,....q} i€S
= Yo (COEHIL({Xns € Bi).
0#£Sc{1,...,q} €S

Total-monotonicity leads to (so-to-say static) coherence in Walley’s [36] sense. (For a
proof use the fact that total-monotonicity implies two-monotonicity and apply [35, Corol-

lary 6.3].) According to Walley’s generalized betting interpretation for interval probability



[36, Chapter 2], this means that if we are acting according to our interval probabilities,

nobody can place a Dutch book against us at any fixed moment in time.

3.1 A(,-based interval probability is F-probability

While Walley’s concept of coherence is strictly connected with finite additivity of the
probabilities considered [36, Chapter 3.3], we now turn to a stronger property of internal
consistency, which is based on countable additivity of classical probability. We will embed
our A(,)-based interval probability into Weichselberger’s system of interval probability by
showing that it is F-probability. A natural way to start would be to check the conditions
(9) and (10) and then to apply Lemma 2. But a simple counter example shows that this
way of proceeding is not applicable. The set-function L(-) derived from (11) does not

satisfy (10).

Example 1 (Counter example continuity)
Consider the set-function L(-) for the random quantity X3, based on two observations,
1

T1 = 5 and 2 =1, and the assumption A(). Define the following sequence of open' Borel

o.¢]
sets: A; = (0,1 — 1), with A = U A; = (0,1). It is clear that L(X35 € A;) = 0 for every
i=1
1>1, so
S
lim L(X3 € UlAi) = lim L(X3 € 4;) = 0,
1=

but L(X3 € A) = 3. Hence, this set-function L(-) does not satisfy (10).

Note further that in this counter example the limit A is different from Q = IR, so
A® # (. This makes impossible the use of Buja’s ([8]) elegant method of applying the
Kuratowski isomorphism theorem to establish (10) in a non-standard topology, which has
been quite successful for proving (10) for the usual neighbourhood models arising in robust
statistics.

Nevertheless our interval probabilities are F-probabilities. This can be deduced from
the following theorem, which also establishes a weakened form of continuity and prepares

the ground for a simplification of the practical calculation of conditional probabilities.

Theorem 2

Let Ay C Ay C ... C A; C ... be an infinite sequence S of Borel sets (A; € B for alli > 1)

!By embedding the situation into the product-space (IR™™!, B"™!) endowed with the standard topology
and taking X, 41 as the (n + 1)st-projection, the set {X,4+1 € A} is open iff A is open.



o
with A := U A; satisfying
i=1
Assumption 1: For each j with I; C A there is an 4; such that I; C A;,.

Then there exists classical probability ps(.) with

ps(Xnt1 €B) > L(Xp41 €B), VBEDB, (13)
ps(Xpnt1 € A;)) = L(Xp41 € 4;), VA €S, (14)
pS(Xn+1 S A) = L(Xn+1 S A) . (15)
Proof
First we define a set {a1,...,a;...,ap41} of real values with a; € I;, j =1,...,n+1. For

every j the following method is used to define a corresponding a;.
o If I, N AY # (), then take as a; any element of I; N A®.

e In the alternative case, I; C A, let a; be any element of I; N (Anj \Anj,l), where

nj = min{n € IN : I; C A,}. (Because of Assumption 1 the number n; is well
defined.)
Now we put probability mass nLH into every point a; and consider the set-function ps(:)
defined by
n+1

ps(Xp+1 € B) == 1g(a;), VBEB,
1

n+1j:

where 15(-) denotes the indicator function. Since a; € I; for all j, we have for every B € B

the relation I; C B = a; € B, and therefore

1
) ca; €EB
——|{jra; € BY
1 n+1
= > 1(aj) = ps(X,41 € B),
j=1

1 .
L(Xn41 € B) = e {i:fjc B} <

n—+1 —

as stated in (13).
This construction ensures that for every j and every member A; of the sequence S the

relation a; € A; is only possible if 4 > n;, which implies I; C A;. Therefore

ps(Xnt1 € 4;) = ntl 3221 La,(aj) = nol {7 a;j € Ai}l

1 )
nrl Hj: I C Ai}| = L(Xnt1 € 4)),

10



leading together with (13) to (14). And, analogously, the fact that a; € A can only be
true if J; C A holds, gives us (15).

To complete the proof we have to check that pgs(-) satisfies Kolmogorov’s axioms.
Obviously ps(-) is nonnegative with ps(X,+1 € IR) = 1. For countable additivity of ps(-),

note its finite additivity as a first step. For two disjoint Borel sets By and By we have

1 n+1

ps(Xny1 € B1UBy) = ESPD 1p,uB, (aj)

1 n+1

= 1p,(a;) + 1p,(a;
n+1j;(3(])+ B.(a;))

= ps(Xn+1 € B1) +ps(Xpq1 € Bo).

For an arbitrary sequence of pairwise disjoint sets B; € B, 7 € IN, we note that there can
only be a finite collection of these sets which have non-empty intersection with the set

{aj, j=1,...,n+1}. This means that there exists a finite set J C IN such that

1 n+1 1 n+1
n+12 S 1= UBY
=1 Z_L:JlBZ =1 icJ
n+1
and n—sz:llBi(aj) =0 for all € IN\ J. Then

o) 1 n+1 1 n+1
ps <Xn+1€UBi> = n+121°° (aj) = n—szlluBi(aj)

=t I=t Ule' icJ
Z:
1 n+1< 1 n+1
= > 1Bi(aj)> = BRI IR A
n+1:=\i5 n+lig\;3
! > ps(Xnt1 € B;) +0 ! i (Xpi1 € B)
= pPs{Ant+1 i = ps{An+1 i) -
n+liz n+1l4

This completes the proof of Theorem 2, from which we will deduce several corollaries. One

of these is the main result of this section, namely that our method leads to F-probability.

Corollary 1 (F-probability)
(IR, B, L(.)), with set-function L(-) based on data x1,...,7, and the assumption A, is
a totally-monotone C-probability-field, and therefore an F-probability field.

Proof
The total-monotonicity is already stated in Theorem 1. To prove the F-property, apply

11



for each B € B Theorem 2 to the degenerate sequence A; = B,i > 1 and A = B. Together
with the conjugacy property of L(-) the relation (13) shows that there is a non-empty
structure; the F-property (3) is given by (14), again with the help of conjugacy.

A weakened version of (10) can also be achieved. Assumption 1 prevents situations as

in the counter example above.

Corollary 2 (Pseudo-continuity)
For all sequences S, as introduced in Theorem 2, and for which Assumption 1 holds, we

have

SlLrng L(Xn+1 S U Az) = L(Xn+1 € slgrgo U Az)
=1 =1

Proof

This follows from (14) and (15) in Theorem 2 and continuity of classical probabilities.

3.2 Local additivity

Before considering at conditioning and updating in the next sections, we briefly discuss
some further properties of the unconditional interval probabilities connected with the
special nature of A,). In particular we use the fact that probability statements on intervals
I; and unions of them are precise and that these sets provide a natural partition of the

sample space.

Definition 4 (Natural partition)

A finite collection C = {C4,...,Cy,...Ci} of events is called a natural partition, if there
are non-empty pairwise disjoint index sets J; C {1,...,n+1}, ¢ =1,...,1, with Uézqu =
{1,...,n+ 1}, such that Cy = Ujez,1;, ¢q=1,...,1L.

Interval probabilities are typically non-additive. Our set-functions, however, are ‘lo-
cally additive’ with respect to natural partitions. This property is important for several

results stated below and for practical applications.

Theorem 3 (Local additivity)
Let C = {Ch,...,Cy,...Ci} be a natural partition. Then for every event A € B

l l
L(Xpt1 € A) =Y L(Xn41 € ANCY) and U(Xpy1 € A) =D U(Xpq1 € ANC,). (16)

g=1 g=1
Proof:
! 1 U 1
qZ:lL(XnHEAqu) = n+1q§:1|j:chAﬂCq|:n—+1qZ:1|jeJq:chA|

1 .

12



and analogously for U(-).

3.3 Further characterizations

We conclude this section by looking at the relation of these inferences to inner and outer

measure and by giving a characterization of the structure of the F-probability field arising.

Consider the classical probability field (IR, D, pp(-)), where the o-field D is the power
set of {I1,...,I,+1}, and

_Wi:LcDp

D) :
po(D) n+1

. DeD.
Then the set-functions L(-) and U(-) from (11) and (12) can be reformulated as

L(Xpt1€A)= sup pp(D) and U(X,41 € A) =

inf D AeB.
DeD,DCA DeD,DDApD( )

This means that L(-) and U(-) can equivalently be interpreted as the extension of the
classical probability induced by the assumption A,) to the whole Borel o-field via inner
and outer measure.

Walley [36, p.125f.] relates inner and outer measure to coherent interval probability
and a set of finitely additive classical probabilities. Using o-additive probability as a
primitive we arrive at results which are similar in the end. The structure of the F-prob-

ability field resulting from our inferences can be characterized in the following way.

Theorem 4
The structure M of the F-probability field (Q;.A; L(+)), with L(-) and U(-) arising from
A(n)-based inference with data x1,...,Tn, as defined in (11) and (12), has the form

1
n+1

Mz{p(-)EIC(R,B) (L) = ——, ijl,...,n+1}. (17)

Proof:
Let Vy be the right hand side of (17). If we compare this with the structure

M={p(-) e K(R,B) | L(Xp41 € A) <p(Xp11 € A) <U(X,41 € A), VYAeB}

of the F-probability field (IR; B; L(-)), then we immediately arrive through L(X, 41 € I;) =
U(Xpp € 1) = n%tl? j=1,...,n+1, at the fact that M contains all the restrictions in
Vy and some more. Therefore M C V.

To prove that M D V), consider the F-probability field (IR; B; Lo(-)) deduced from V)
via (6) and prove the equivalent relation L(-) < Lo(-). This is clear for every B C I,

13



for some jo € {1,...,n + 1}, because L(X, 11 € B) =0 < Ly(Xp41 € B) if B # I, and

L(Xn41 € B) = 757 = Lo(Xnt1 € B) if B = Ij,. Arbitrary B € B can be partitioned

into B = U?LIB N I;. From above and from the local additivity in Theorem 3 we obtain,

using superadditivity (cf. (5)) of Ly(-) in the last inequality,

n+1 n+1
L(Xpt1 € B) =Y L(Xn41 € BNIL) <> Lo(Xnt1 € BNIj) < Lo(Xnt1 € B).
j=1 =1

Denoting the structure of (IR; B; Lo(-)) by My, this leads to Vy C My C M, which com-
pletes the proof.

We have shown that the structure of the F-probability field obtained by A(,)-based
inference consists of all classical probabilities being in accordance with A, on the intervals
I;. This emphasizes that the inferences described here are only exploiting the assumption

A(n) in a perfect manner without adding any further assumptions.

4 Conditioning

In this section we consider conditioning on an event {X, ;1 € C}, C € B, within our
framework of predictive inference for X,,;, based on observations zi,...,x, and the
assumption Ag,). After some general remarks on different ways of conditioning with
interval probability, we derive a theorem of total probability for natural partitions in
subsection 4.1. In this subsection we also show that, for conditioning on X, 1+ € C, where
C is an element of a natural partition, two ways of using this information coincide. One
can either condition on this event, or consider a conditional form of A(,). Conditioning
on arbitrary events is presented in subsection 4.2, where we derive convenient expressions

from a computational point of view.

For a long time there has been confusion between mainly two competing approaches
to conditional interval probability. The first one is called the intuitive concept in this
paper, following Weichselberger [38, 40]. It concentrates on the structure and defines
conditional interval probability via the infimum and supremum over all classical conditional
probabilities formed by elements of the structure. Given an F-probability field F =
(Q; A; L(-)) with structure M,

LY(A|C) := pien/\f/lp(A|C) and UY(A|C) := seujap(A|C), VA,C e A, L(C)>0. (18)
P

By construction, L'(-|C) and U’(-|C) are conjugated (relation (4)). Furthermore, for every
suitable C the triple (C; Ac; L(-|C)) with A¢ := {ANC|A € A} is an F-probability field.
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This can be seen by applying (6) in Lemma 1 to the set {p(- N C)/p(C) | p(-) € M}. For
example, this concept has been propagated by Walley [36, chapter 6], who derives it from
coherence considerations between unconditional and conditional (contingent) gambles.

Another definition of conditional interval probability dates back to Dempster [16] and
his proposed method of statistical inference. Nowadays this is often used independently of
its original motivation as Dempster’s rule of conditioning, mainly in the area of artificial
intelligence. The upper interval limit for A|C is defined as the ratio of the upper interval
limits for AN C and C, the lower one by ensuring conjugacy (4),

U(AY N C)

U(ANC)
ue)

P o) = 0(0)

and LP(A|C):=1- VA,C € A, U(C) > 0.

(19)
In the case of totally-monotone C-probability, [LP(A | C);UP(A | O)] is also totally-
monotone C-probability, but the operation is not closed under F-probability. This con-
cept of conditional interval probability has experienced many modifications, see [42] for a
comparison of different proposals.

Recently, the idea has gained more and more acceptance that there cannot be one
single concept of conditional interval probability which is appropriate for all purposes. It
is becoming clear that there should be a coexistence of several different concepts, based on
different tasks of conditional probability which coincide in the case of classical probability.
Dubois and Prade [22] use the intuitive concept for what they call ‘focusing’, and Demp-
ster’s rule for ‘conditioning’. In Weichselberger’s theory [38, 40] the intuitive concept is

t’?, based on a canon of desirable properties.

supplemented by the ‘canonical concep

As already mentioned, all definitions are generalizations of classical conditional prob-
ability. In the special case of interval probability where L(C) = U(C) for the event C on
which is conditioned, all these concepts coincide. We then write L(- | C) and U(- | C) for

the conditional probability.

4.1 Conditioning on an element of a natural partition

We now focus on conditioning on X, 11 € C, where C'is an element of a natural partition,
in the sense of Definition 4, so C' = Uje . I; for an appropriate set Jeo C {1,...,n + 1}.
Then L(Xp41 € C) = U(Xp+1 € C), and we have the special case mentioned above,
arriving at a type of conditional interval probability which is a synthesis of the different

concepts, bringing together all their nice properties. For every A € B,

. p(Xn—I—l € A N C)
L(X € Al X, eC) = inf
( n+1 | n+1 ) p()EM p(Xn+1 = C)

*We do not define the canonical concept here because we will only use it implicitly in a special case.
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L(Xn+1 € AN C) L(Xn+1 € AN C)

_ _ 20
L(X,H_l € C) U(Xn+1 € C) ( )
25 1UIL CANGY |y e Jelr; € 4y
— {ijlI; € C} | Tc| ’
which agrees with (19) because
{jedelly CAY _ | UXnt1€4°NC)
|JC| U(Xp+1 € C)
And analogously
p(Xn+1 € AN C)
U(X € AlX eC) = sup
(En1 [En ) p(-)em p(Xnt1 € C)
_ U(X,H_l EAHC) _ U(Xn+1 EAHC) (21)
U(Xn+1 € C) L(X,H_l € C)
_ L nANC# B |{j e Jeln A0}
o UL N C # 03 | Jel

It should be noted that this conditional interval probability is perfectly consistent with
another way of exploiting the information X, 1 € C, namely a so-to-say conditional A
inference. Knowing X,,11 € C' = Ujec .1, and assuming nothing else, we would divide the
probability mass 1 among the |J¢| intervals I;, j € Je. Reasoning in accordance to (11)
and (12) would lead to

e Jell; C A

and

' LNA#D
UC(Xn+1 EA) = |{] S jC||}C| # }| )

which are equal to L(X,41 € A|Xp41 € C) and U(Xp41 € A|Xp41 € C) from above.

Therefore, starting with A,), deriving interval probability from it and then conditioning

on the information X, ;1 € C = Ujc7.1; gives the same result as doing the conditioning

process first and then calculating interval probability from that conditional A).

For natural partitions it can easily be shown that the theorem of total probability is

valid for our nonparametric predictive inference.

Theorem 5 (Theorem of total probability for natural partitions)

Let C = {Cy,...,Cy,...Ci} be a natural partition. Then the set-functions L(-) and U(-),
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based on the assumption A(,) and data z1,..., Ty, and the corresponding conditional set-
functions, satisfy

l
L(Xp1€4) = Y L(Xpy1 € Al Xy €Cy) - L(Xuq1 €Cy), VAEDB,
q=1
l
U(X,H_l € A) = Z U(X,H_l € A|Xn+1 € Cq) . U(X,H_l € Cq) , VAEe€B.
q=1

Proof:

This is an immediate consequence of Theorem 3. For example,

L(Xn+1 € A) == n+1 € A N Cq)

| T4 )1, T4

n+1

l
Y L(X
q=1

l
Y L(Xp41 €ANC,) - (
q=1

l

= Y L(Xp41 € A|Xp1 € Cp) - L(Xpq1 € Cy) .
q=1

Conditioning on elements of the partition consisting of only a single interval I;, leads
to

L(Xn—H € A|Xn+1 € I]‘) =0 and U(X,H_l € A|Xn+1 € Ij) =1, VAeB,

which is another paraphrase of the fact that we do not add further assumptions to A,).
We can only be precise concerning the whole intervals I;, there is uncertainty in the strict

sense about what is happening inside these I;.

4.2 Conditioning on arbitrary events

When considering conditional interval probability for events of the form X, 11 € A| X, 41 €
C, where C does not consist of (a union of) intervals I}, the intuitive concept of conditional
interval probability according to (18) seems to be the appropriate choice, since we are
interested in the consequences which the structure implies for conditional events. For
practical application Corollary 4 is of importance, because it allows us to circumvent the
complex optimisation underlying the original definition in (18). The proof requires one
more result which follows easily from Theorem 2, by defining A; = B; and A; = BS, for
1> 2.

Corollary 3
For each By, By € B with By C BY there is a pp, ,(-) € M with pp, B,(Xn+1 € B1) =
L(Xy41 € By) and pp, B,(Xny1 € By) = U(Xpq1 € Bo).

17



Corollary 4 (Conditional interval probability)
For every A,C € B with L(X,41 € C) > 0 we have

L(X,H_l € AN C)
L(Xp11 € ANC)+U(Xpy1 € AN CO)

LY(Xp41 €A X1 €C) =

and
U(Xn+1 eAnN C)

U(X,H_l €AN C) + L(X,H_l € AN C) '

U'(Xnt1 € A|Xny1 €C) =

Proof
This follows from Corollary 3 and the fact that (A°NC) C (AN C)¢, using the relation

p(Xn+1 € A N C) p(Xn+1 € A N C) 1

= C Xp41€ACNC) *
p(Xn+1 € C) P(Xnt1 € ANC) +p(Xyq1 € ANC) 1+ W

A slight generalization of Corollary 4 can be achieved by relaxing in (18) the condition

on C to U(X,41 € C) > 0 and by replacing p € M by p € M, p(X,41 € C) > 0.

When appropriate, also Dempster’s rule of conditioning (cf. (19)) can be powerfully
applied to our nonparametric predictive inferences. The resulting conditional interval
probability [LP(- | C),UP(- | C)] is again totally-monotone C-probability, and therefore
F-probability. To see the total monotonicity, use Theorem 1, formulate relation (8) in
terms of U (-), and note that the inequality is not changed by dividing through by U (X,,11 €
C) > 0. The property of being F-probability follows from Theorem 2 by setting, for every
AeB, A =C%and 4; = (ANC)° for all i > 2.

5 Updating

In this section we discuss how extra observations affect our nonparametric predictive in-
ference. We analyse inference on X, 2, both before and after the value of X,,1; becomes
available. In subsection 5.1 we present the rather straightforward mechanism of updating
on the basis of a new observation. Internal consistency of such updating is shown in sub-

section 5.2.

The assumption A, gives a predictive probability for a future observation on the basis
of data z1,...,z,. Although our focus has so far been on X,, 11, our results hold for any
single future observation X,1;, [ > 1. However, care should be taken that such future

observations are not independent (conditionally on the n observations [11, 15, 25]).
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On the basis of the first n observations, assuming A, the predictive inferences for

Xn_|_2 are again derived from the assessments
(Xpo€1)) = —— forj=1 +1
) = , for N ) .
PlAn42 j ntl J

Thus, interval probabilities for X, 12 € B, B € B, are derived as presented before for

Xn+1, and the same properties hold again.

5.1 Basic considerations of updating

When considering updating, we are interested in the effect of additional observations on
our inferences, in contrast to conditioning where we exploit information on the same ran-
dom quantity. Therefore, in section 4, where we were concerned with conditioning, we
looked at interval probabilities for X, 1; € A|X, 11 € C, while now we study interval

probabilities for X, 1o given the concrete value of X, 1.

If the value of X, becomes available, say X,, ;1 = d, then we simply obtain updated
inferences for X, 2 by adding d to the observations z1,...,z,. Now we assume A, 1),
for which we in effect maintain the same intervals I; as before, with the exception that the

interval in which d falls, say I;,, is divided into two intervals, (z;,—1,d) and (d, z;,), and

1
n+2°

be in any B € B are derived as before, and all the results remain valid, mutatis mutandis.

the probability mass assigned to each interval is Interval probabilities for X, o to

Updating turns out to be a straightforward exercise in our approach, as it is always dealt
with through replacing A(,) by A(;,41), or A(,4y) if [ > 1 further observations have become
available.

5.2 Internal consistency of updating

We now consider the relation between predictive inferences for X, o before and after ob-

servation of X, 1, and we show a strong consistency of our procedure of updating.

If we are interested in predictive inferences for X, 2, based on observations zi, ..., zy,,
and assuming A(,), then we can derive these in two ways. First, in a direct manner as

described above, leading to
L ;<n+2 € n 1 J l] C

and

1 .
U(Xni2 € B) = n—+1|{‘7  I; N B # 0},
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for B € B.
Secondly, we can include in our reasoning the as yet unknown X,,;1, via the theorem

of total probability. The only inference about X,,; that we can make without additional

1
n+1?

argument should not change the result, and motivates consideration of set-function L(-)

assumptions is p(X,41 € I;) = for all j = 1,...,n 4+ 1. Bringing X,11 into the

for X, 12, based on z1,...,2,, with B € B,

n+1

L(Xpi2 € B) =Y L(Xpi2 € B| Xps1 € Ij) p(Xnpa € I). (22)
=1

Under a quite weak assumption on B, this is indeed equivalent to considering X, 2

directly. Of course, this additionally requires the natural assumption that one will be

happy assuming A, 1) as the basis for further inferences, after getting to know the value
of XTH—I .

Theorem 6 (Internal consistency of updating)
Set-functions L(-) and L(-), describing inference based on data x1,...,x, and assumption

Any, as defined in (11) and (22), respectively, are equivalent in the following sense.
L(Xny9 € B) = L(Xp12 € B),

for all B € B with |{I; NB°}| #1 forallj=1,...,n+1,

Proof:
The main argument is as follows, the use of the assumption [{/; N B°}| # 1 for all j =
1,...,n+ 1 for the second equality is explained below.
B n+1
L(Xn+2 € B) = Z L(Xn+2 €B | Xn+1 S Ir)p(Xn+1 € Ir)
r=1
1 W
= 2 (g [0 b B+ 1uen))
1
= V{j:1I;CB [, CB
1
= —|{5:I;,CB
(’I’L + 1) |{.7 J - }|
= L(X,42 € B).

Detailed study of L(X,12 € B | Xp41 € I;,) reveals the exact nature of the relation

between the set-functions for X, ;9 with and without conditioning on the as yet unknown
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value of X, 41. It is easily derived that

—5{j : I € B} ifI;, NB=10

—[{j: cBY+1 ifl;,CB

[{j : ;CB}+A ifl;,NB#0
and I;, N B¢ # ()

L(Xn+2 €B | Xnt1 € de) = 1
n+2

where the term A needs further explanation. Using the notation I;, = (xj,-1,%;,), as
before, the term A is, without any further assumptions, the maximum achievable lower

bound for
A = Y@, 1 Xor)cB T 1{(Xpi1,25,)CBY

which is the relevant term given X,, 1 € I;, and the conditions I;,NB # ( and I;,NB¢ # 0.
It is easily seen that A = 0 in all cases, except if |{I;, NB“}| = 1, in which case A = 1. This
special case is the situation where only one singleton within I, is not in B, and therefore
splitting I;, gives necessarily at least one new interval that is completely contained within

B.

Similar detailed considerations lead to analogous results for U(-), showing that not
only the static part, based on conditioning, of our nonparametric predictive inference is
consistent, but also the dynamic aspect of updating in the light of new observations is

internally consistent.

6 Concluding Remarks

This paper presents properties of nonparametric predictive inference based on Ay, fo-
cussing on its position in the theory of interval probability. Strong internal consistency
results have been derived. In particular, the property of F-probability has been proved for
our interval probabilities, and for the corresponding conditional interval probabilities ac-
cording to both the intuitive concept as well as Dempster’s rule. Consistency in updating
has also been shown.

These results support the theoretical position of our inferential method. Its practical
value depends more strongly on possible applications. In the introduction, we have referred
to some work presenting further details on inferential methods within our framework,
for example on selection, process control and condition monitoring, and these appear to
provide convincing opportunities for applications with attractive properties. However,
further research is required to extent the area of application. For example, generalization

to multivariate inference is crucial. Hill [27] suggests an approach which provides an
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interesting starting point for further analysis. Concepts from classical nonparametric
statistics, for example ‘statistically equivalent blocks’ [1], might also provide ways towards
such a generalization.

For most of this paper, predictive inferences were stated in terms of one future ob-
servation. It is of interest to consider multiple future observations, where also study of
limit behaviour might provide new insights into the relation of our approach with, for
example, likelihood methods. Such limits have been considered for Bernoulli data, from
a similar perspective as presented in this paper [11]. As the random quantities represent-
ing the multiple future observations are assumed to be exchangeable, limits are related
to De Finetti’s representation theorem [21], providing different insights into the role of
parameters occurring in statistical models when infinite exchangeability is assumed.

Finally, as we set out to study these A(,)-based inferences, we only considered equal
probabilities for the intervals of the partition of IR as created by data z1,...,z,. Our main
results, however, can easily be generalized for different probabilities per interval. From
the prospective of interval probability, it is interesting to replace the exact probabilities
1/(n+1) by interval probability, which might lead to inferences which also have attractive

properties from a robust statistics perspective.
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