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Prediction of outstanding insurance claims®

Claudia Kliippelberg Martin Severin '

Abstract
Building reserves for outstanding liabilities is an important issue in the financial statement
of any insurance company. In this paper we present a new model for delay in claim settlement
and to predict IBNR (incurred but not reported) claims. The modelling is based on a data set of
a portfolio of car liability data, which describes the claim settlement of a car insurance portfolio.
The data consists of about 5000 realisations of claims, all of which incurred in 1985 and were
followed until the end of 1993.

In our model, the total claim amount process (S(t));>0 is described by a Poisson shot noise

model, i.e.
N(#)
St) =Y Xn(t—T,), t=>0,
n=1
where X (-), Xo(+), ... are i.i.d. copies of the claim settlement process X(-) and the occurrence

times (7;);en of the consecutive claims are random variables such that N(t) = #{n € N; T,, < t},
t > 0, is a Poisson process, which is assumed to be independent of X (-).

The observed times of occurrences of claims are used to specify and to estimate the intensity
measure of the Poisson process N(-). Motivated by results of an exploratory data analysis of
the portolio under consideration, a hidden Markov model for X (-) is developed. This model is
fitted to the data set, parameters are estimated by using an EM algorithm, and prediction of

outstanding liabilities is done and compared with the real world outcome.

Keywords: EM algorithm, hidden Markov model, Poisson shot noise process, prediction, risk

reserve, mixture model.
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1 Introduction

As emphasized in the Claims Reserving Manual [3], published by the Institute of Actuar-
ies, London, the reserve for outstanding or for incurred but not fully reported (IBNFR)
claims is an important issue in the financial statement of an insurance company. The
problem in claims reserving is to estimate the cost of claims - known or unknown to date -
to be paid ultimately (or yearly) by the company. A large variety of methods have been
developed over time: based on deterministic and stochastic modelling, on macro- (mod-
elling the whole portfolio) and micro-models (modelling each single claim); see Taylor [21]
for more details.

In this paper, we

e suggest a new micro model, a shot noise model with a hidden Markov structure,
e fit a large portfolio by means of the EM algorithm,

e predict outstanding claims based on our model.

We model the total claim amount process by

N(t)

St) =Y Xu(t-T,), t>0. (1.1)

n=1
The different quantities of the model are as follows:

N = (N(t))i>0 is an inhomogeneous Poisson process with points 7,,, n > 1, represent-
ing the time points, when the n-th claim occurred.

Xn = (Xa(t))i>0, n € N, are independent increasing stochastic processes on R;,
representing the pay-off function of the insurance company for the n-th claim.

N is called the shot process and the X,, are called the noise processes of the model.
We assume throughout that the processes (X, ),en are independent of N.

The model is a natural extension of the classical compound Poisson model taking into
account that occurring claims may require payments over several years until they are
finally settled. This model for i.i.d. noise processes has been suggested and investigated
in Kliippelberg and Mikosch [10, 11]. Ruin probabilities for this model and for different

premium principles have been derived by means of diffusion approximations in the finite



variance case. The infinite variance case has been investigated in Kliuppelberg, Mikosch
and Scharf [12].

In this paper we want to see the model at work. To this end we analyse a large data
set of a portfolio of motor vehicles liability data provided by a leading Swiss insurance
company. The data are described in detail in Section 2.

Although (X,,)nen are assumed to be i.i.d., as much structure is incorporated into the
model as exhibited by our data. For instance, each single claim has a certain number of
instalments and it turns out that claims with the same number of payoffs, we call them
instalments are structurally similar, whereas those with different numbers of instalments
have quite a different behaviour. Since the number of instalments of each claim is not
known in advance we model this by a simple hidden Markov model; see Section 3.

The paper is organized as follows. After explaining our data in Section 2, in Section 3,
we concentrate on the noise processes X (+) introducing the hidden Markov structure. We
derive the prediction equations for this model in Section 3.2 on the micro level. In Section 4
the model is further specified. Each claim process is modelled as a compound process
with a certain number of instalments and inter-instalment times. These are specified
here and also the hidden Markov model is further specified. In Section 4.4 the claim
number process is modelled. When appropriate, initial parameter estimates are derived.
In Section 5 the parameters are estimated by MLE, where we use the independence of
certain quantities, which factorizes the likelihood function. The instalments are then fitted
by classical MLE, whereas the inter-instalment times require the use of the EM algorithm.
Finally, in Section 6 the capital reserve for this portfolio for the following year is estimated

as a one-step predictor and compared to the actual costs of the portfolio.

2 The data

We analyse a data set of a portfolio of motor vehicles liability data of a leading Swiss
insurance company. Insurance coverage is given for both, material damage and casualty
damage. The structure of the data set is shown in Table 1.

The data consists of claims which incurred during 1985 and were followed for a total



170785 250785 000000
061092 610
260991 830
160786 30
070186 25

110985 270985 101186
311086  -5000
180886 -500
070786 26140
250885 260885 090987
200586 1250
200586 -955
130586 1000

N N N 2 N N N 2 N N N N Z

Table 1: Structure of the given data set: a capital M indicates the occurrence of a new claim,
in the same line there is its date of occurrence, its date of reporting and its date of closing, if
known already. If the claim has not yet been closed, this is indicated by 000000 in the third
row; the first claim above has not yet been closed. Each capital Z in the lines below indicates

an instalment of the claim, showing the date and the amount of payment made.

of 9 years until the end of 1993.

We have cleaned the data in the following way:

— several instalments on the same day have been summed up;

—negative payments are cleared with positive payments on the same day or on previous
days;

— zero payments have been erased;

— periodical payments, as for instance annuities, have been erased; their deterministic
behaviour allows a precise prediction, taking a possible mortality or recovery risk into
account.

— most claims were closed by the end of 1993, the remaining 83 still open claims were
erased.

After cleaning, our data consists of 5681 realisations of single claims, all of which



occurred during 1985 and were settled by the end of 1993. Payments are attributed to
days: January 1, 1985 equals day 1 and December 31, 1993 equals day 3 287. All payments
are made in Swiss Francs.

The delay between occurrence and reporting of the claim is not investigated in this
paper; see Jewell [7, 8] for a careful analysis and consequences of this effect. We model
and analyse a claim after it has occurred and it is assumed to be immediately reported

to the insurance company.

3 The hidden Markov model

3.1 Modelling the claim size process

Each sample path of a single claim shows a finite number of instalments given at ran-
dom times and after the last instalment the noise process remains on its level forever.

Consequently, we model each single claim as

M(1)
X(t)=Y Zn, t>0, (3.1)
m=1

where M = (M (t));>0 is a counting process which counts the number of instalments up
to time ¢, (V3 )nen are the inter-instalment times and (Z,),en are the sizes of instalments.

In predicting the costs of future payment for this portfolio, an important issue is the
prediction of the ultimate number of instalments for a running, not yet closed claim. This
number is unknown when a claim incurs and remains unobservable during claim settle-
ment. We model this uncertainty by a simple hidden Markov model (HMM) governing
each claim X = (X (t));>0; for some background on HMM we refer to the monographs by
Elliott, Aggoun and Moore [5], MacDonald and Zucchini [15] or Rabiner [19].

The HMM is given by a Markov chain (&,), .y With state space

S={(n,m)neN, 1<m <n}

The index n € N represents the total number of instalments of a single claim; once n
has been fixed, the state (n,m) indicates that while the chain is in this state the m-th

instalment is paid. For m < n, immediately after the payment the Markov chain changes
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to state (n,m + 1); for m = n, the final instalment is paid, and the Markov chain moves
afterwards into its absorbing state A. Note that this means that the Markov chain behaves
almost deterministically on its state space: (&,),,oy starts in state (n,1) with probability
oy, and then it passes the states (n,1),(n,2),..., (n,n) deterministically and enters the
absorbing state A after n transitions.

The hidden Markov chain £ governs an observable sequence (Oy),, . with

(Va, Z0), i & # A,
0, = (3.2)

(00,0), if&, =A,

where (V},),cn represent the inter-instalment times and (Z,), oy the sizes of the instal-

neN

ments.

0 W, W, time ¢

Figure 1: Relationship between the sequence of occurrence times (W},), oy of consecutive instal-
ments and the Markov chain (£,),, ¢y, where 71 means the projection of the first component of

an observation vector.

The following distributional assumptions model our situation:

Assumption 3.1. (1) Conditionally on the Markov chain (&) the observations

neN?

(On)pen are mutually independent and O; depends on & only, i.e. for &,. .., &,
such that & # A,

P(O1€Gy,....0i€Gi|&,....&) = [[P(0;€G| &), i€N,
7=1
for all Borel sets Gj in Ry U {oo} x R;.
(2) For & # A, the distribution of O; conditioned on &; is given by

Oil{& =i} L F,; neN1<i<n,
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where for such &;, the distribution function F, ; has density f,; and tail F,m-(v, z) =

P,(Vi>wv,Z; > z), 1 <i<mn, where P, denotes conditional probability with respect

to {& =n}.

3.2 Prediction of the shot noise model

Since the HMM only depends on the initial state of the Markov chain, we simplify the
notation by setting o, 1 = oy, n € N, and define a random variable £, which takes value
n if and only if & = (n, 1).

In the following theorem we show how to filter the value of &, i.e. the number of

instalments of a single claim, using the information observed up to time ¢, summarized in

the o-field

ft:O'(Ht), tZO, (33)
where
He = (JMHu
k=0
- U{{M(t):k,Oj, 1<j<k}:0;€ B, B Borel set in R, xm} (3.4)
k=0

- U{{Wk§t<Wk+1,Oj,lgjgk}:OjEB,BBorelsetin& x&}.
k=0

The observations O; = (V}, Z;) are defined in (3.2), Wy =0, W), = 2521 Vi, k € N, which
is finite for V, < oo and infinite else.

Furthermore, by definition H;o = {{M(t) = 0}} = {{V1 > t}}.

The following theorem is the main result of this section; it shows how to estimate the
initial probabilities. For convenience we set H?Zl a; =1 and 22:1 a; = 0.

Theorem 3.2. Letn € Nandt > 0. For1 < j <nset A, ;(v) = F, ;(v,0) = B, (V; > v),
v > 0. Then the conditional distribution P (£ = n|F;) is uniquely defined by its definition
on all sets Hyy = {M(t) =k, 0; € Gj,1 < j <k} € Hyy, where Gj, 1 < j < k, are



Borel set in Ry, x R, :
(679 Zn 1(t)
TSR A (1)

P& =n|Hy) = I

+nz:1 T Qn Hg L i (0) Ap g (E— W)

M T fes(09) + Sy o [T, fis(O

an [ 15— fni(0;)

s) A (t— Wy)

)

For the proof of this result we shall need several lemmata.

Lemma 3.3. Fort >0 andn € N,

P(Hyon{€=n}) = an /(t ey do

Pt n{g=nh) = o I] [ hulo)do

and, denoting the first component of the observation O; by m (0;) =

k=1,...,n, we obtain for Wy, <t < Wy,

/c;1 /Gk </Gm+1 Jnp+1(0) 0) fox(og) doy -+ -

where Gy = (t — Z?Zl m(0j),00) X R;.

Proof. Equation (3.5) follows by

T 0 Ty fag(05) + o i Ty f13(0;) A (t — Wiy

(3.5)
(3.6)

Vi and Wy = S8 Vi,

fn,l (01) doy , (3.7)

Py(Hi) = Po(Vi>t) = / Frr(0) do

(t,00) xR+

Notice that for all m € N

Ht,m - (Ht,m N {Vm+1 < OO}) U (Ht,m N {Vm+1 -

To show (3.6), note that {V,,1; < oo, £ =n} =0 and thus

Pn(Ht,n) - P (thm{vn-l-l })
= P, (0 €Gy,...,0, €G,)

= / fn] 0] doj,

). (3.8)



where the last equality follows by Assumption 3.1.

Finally, for k € {1,...,n — 1} one obtains by properties of conditional expectation

P, (Hyy) = By [Pn (Hyp N {Vipr < 00} | On, .. .,Ok)]

k
- En ]{01€G1} e I{OkeGk} Pn (Vk+1 >t — Z ‘/} Ol; .. 7Ok)
j=1
— / J dFol,...,Ok‘f(Ola"'aok‘|n)7
G1><...><Gk
where Fp, . o, |¢ is the joint distribution function of Oy, ..., O given § and
k
J = P, (Vkﬂ >t=> v;|O1=(v,21),...,0p = (Ukazk)>
j=1
Fo,11101,...,01.¢ (t - Z m1(05) |01, - - -, Ok, n) :
j=1

. k
By Assumptlon 31, F01,~~~,Ok|§ = Hj:l Foj K3 and FOk+1|01,...,Ok,§ = F0k+1\§ and thus J

simplifies to

J = / Fpor(0) do
(t*2§=1 vj,00) xRy

and the result follows. O

Lemma 3.4. Fort > 0, let ¥ be a F;-measurable random variable, and for k € N let
Hyii be defined as in (3.4). Assume that ¥ is on Hyyp a function of Oy, ..., Oy alone, i.e.
U =U(0,...,0k). Then for all Hyy, € Hyy,

k
/Ht,k UdP = /G1 /Gk U(o1,...,0k) [ak sl:[lfk,s(os)
00 k k
+ 3 i <t—Z7r1(0r)) I] fl,s(os)] doy, ... dor. (3.9)

I=k+1

If U is a constant, then

/ VAP = U Ay (t). (3.10)
Hyo =1



Proof. Assume V¥ is a constant, then
/ VdP = YP(Vi>t)=V > o P (Vi >1)
Hi o =1

and equation (3.10) follows by definition of A4;(t).

Next, equation (3.9) is established. Recall from (3.8) that

/ Udp — / \IfdP+/ U dP,
Ht,k Ht,kﬁ{VkH:oo} Ht,kﬁ{Vk+1<oo}

where

/ UdP = / v dP
Hy ;N {Vk41=00} {0;€G;,1<5<k, E=k}
= Ozk/ VU dP,
0;€G;,1<j<k}
k
= Oék/ / (01,...,0k) H fr.s(0s) dog ... doy (3.11)
G G s—1

and, for Gyji1(01,...,08) = (t — Z] 1 m1(05),00) x Ry,

/ U dP
Ht,kﬂ {Vk+1 <OO}

o0

v dP

l=k+1 /{Oj €Gj, 155 <k, Wi <t<Wyg, €=1}
o

Ofl/ \I/dPl
= k+1 {0;€G;,1<j<k, W, <t<Wpg 11}

= Y / / / W(on,...,00) dFypsr(0) dFL(on) .. dFhy (o)
Gy J Gy gy1(01,.-50k)

I=k+1 YG1  JGr JGippa(on,e,

k
= (6%} / / \I’(Ol,..., Alk+1< Z 1 OT )dﬂk Ok) dFl’l(Ol)
G1 Gy r=1

= k+1 =

== (6%} / / \IJ(OI,...,Ok)ZUH,l(t—
G Gy r

= k+1

B

k

m(or)) T fis(05) oy - doy.
1 s=1

This together with (3.11) gives (3.9). O

Proof of Theorem 3.2. First notice that by Theorem 34.1 of Billingsley [2] it suffices

to show the representation for all sets in the generator H;, which is closed under finite

9



intersections.

First consider t = 0. Then Fy = {(), 2} and on the left hand side we have P (§ = n|F) =
ay,. On the right hand side, because I{y )=k} = 0 for 1 < k < n, the second and third
summand vanish. Furthermore, I{yr0)=0} = 1, A;1(0) = P (V; >0) =1for all ] € N and

> 2, ag =1, hence the result follows.

Now consider ¢ > 0 and denote the right hand side by W. To establish the theorem we

have to show that

/Hp(g:nurt) ir — /wp, (3.12)

H

for all sets H in the generator H; of F;.

The left hand side of equation (3.12) is evaluated in Lemma 3.3:
/ Ple=n|F)dP = P(Hn{¢=n}), HeH,.
H

It remains to calculate the right hand side of equation (3.12). Let H = H;y = {1} > t} €
Hto, then W is constant on H,y, more precisely,

n Ana(t
U = @ ’1() on Ht,O-

>y Aa(t)
By equation (3.10) [, VdP = o, A, (t), which is the same as (3.5).

Next, let n € N and H = H; € Hyy for 1 < k& < n. Then on the set H,; we have
M(t) = k and ¥ is a function in Oy, ..., Oy alone, namely
n TT5—y fng(O5) Ap s (£ — W)
o [Tisy frs(Os) + D ik 15, f1s(05) Appgr (t — W3)
an [TG=1 fni(0))
Cp H::l fn,s(Os) + Z;ﬁn—l—l o HZ:I fl,s(Os) Zl,n+1 (t - Wn) 7
The right hand side of (3.12) is then equal to (3.9). Taking into account that for k # n,

k
Zn,k#»l (t - Z m (Ok)) - /(; ( fn,k+1(0) do )
j=1 tk+1

, 1<k<n,

-

k=n.

017“'70/9)

where Gy 11(01,.00) = (t— 2521 m1(0j),00) x Ry, then (3.9) coincides with equation (3.7)

or (3.6), respectively. O

10



The next theorem shows how to predict the noise process by means of conditional

expectation.

Theorem 3.5. Let X (-) be a claim process as defined in (3.1). Fort >0 and 0 < s <t
let F denote the o-field defined in (3.3) representing the observations up to time s. Then
the best predictor of X (t) is given by

E(X(t) - X(s)[F) = P(&=n|F) En (Zn vz | Fs) (3.13)

n=M(s)+1 m=M(s)+1

3

with mean square error

E(X()-X@P|F)= Y, PE=n|F)x

n=M(s)+1

x| Y. E(ZLw.<y| F)+2 Y. E.(ZiZiLw,<y| F) |- (3.14)

m=M(s)+1 M(s)+1<i<j<n
Under the additional assumption that for M(s)+1 < m <n, V,, and Z,, are conditionally

independent given & = n, then for k € N such that the corresponding moment exists,
En (ZE Liwp<ty | Fs) = En(Zh) P (Wi < t| F) (3.15)
and, for M(s) +1<1i<j,
Ey (Zi Zi Iyw,<iy | Fs) = En(Z) Eo(Z;) Py (W; <t| F). (3.16)

Proof. First note that

o0

E(X(t) = X(s)|F) = > PE=n|F)E.(X(t) = X(s)| Fy)
n=M(s)+1
= Y. PE=n|F)E. | > Zumlp.<y| T
n=M{(s)+1 m=M(s)+1

= Y Y P(E=n|F) By (ZnLw,<y| Fs) -

n=M(s)+1 m=M(s)+1

The proof of (3.14) is similar using the simple fact that (37", @:)* = D10 234237, i, Tij.

Now assume conditional independence of V,,, and Z,,, given £. Then for M (s)+1<m <n

and k € N sucht that E,(Z*) < oo,
En (Zh Iiwp<ty | Fs) = En(Z)) Po (Wi <t F) .

11



The term E,, (ZZ- Zi Iw, <y ‘ ]—"s) simplifies analogously for M(s) +1 <i < j < n. O

Theorem 3.5 for s = 0 gives the following corollary.

Corollary 3.6. Let X (-) be the process given by (3.1). Under the assumption of condi-

tional independence of V,,, and Z,, given & we have fort > 0,

EX(t) = i a ZEn (Zm) Po (Wi < 1)
E(X(t))2 = EOO: Qp (zn: E, (Zr2n) P, (Wm < t) +2 Z Ey (Zz) Ey (Z]) by (W] < t)

Example 3.7. (a) Assume that all inter-instalment times are i.i.d. exponential random

variables with same parameter A > 0, i.e. P(V > v) =1—¢ *?

, v > 0, independent of
the state of the HMM. Setting Hys(5)+1 = W(s)41 —s and H; =V, j = M(s)+2,...,m,
by the no memory property of the exponential distribution, under the measure P, for
given M (s) the random variables H; are i.i.d. exponentially distributed with rate A > 0.

Consequently equations (3.15) and (3.16) simplify due to

7=1
= P, WM(s)+1 + Z Vi <t| Fy
j=M(s)+2

= P, Z H; <t—s| M(s)
(b) Exponential distributions are special phase-type distributions. For this class of dis-

tributions P,(W,, < t) can still be calculated explicitly. For details see Severin [20],
Section 3.3.

12
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4 Model specification

Prediction of outstanding liabilities requires specification of the initial distribution (o, ),,cy
of the HMM and the conditional distribution f, ; of the kth observations Oy (instalment
and inter-instalment time), given £ = n. For the rest of this paper, we assume conditional

independence of the instalment and inter-instalment time, given £ = n, i.e.
fok(0,2) = hp (V) gni(2), v,2>0, 1<k<mn, (4.17)

where g, and h,, j, are conditional densities of the instalments and inter-instalment times,
respectively.

Next we investigate whether claims with different total numbers of instalments differ.
We investigate the inter-instalment times and the instalments separately for the different

classes.

4.1 The conditional distribution of the inter-instalment times

Figures 6 and 7 show the QQ-plots (versus the standard exponential distribution) of
the inter-instalment times classified by the total number of instalments; i.e. for a total
number n of instalments the subsamples of the k-th inter-instalment times for 1 < k <n
are investigated separately. Thereby the intensities A, of the exponential distributions
are estimated by maximum likelihood estimators (MLEs).

As a compromise between simplicity and sophistication of the model we settled on the
following. All inter-instalment times are modeled by an exponential distribution, the in-
tensity, however changes. It seems at first sight natural to compare all first inter-instalment
times, all second ones (provided there exists more than one) etc. However, the slopes of
the fitted lines are quite different. There is a more systematic similiarity, when comparing
all final inter-instalment times, all second last ones (provided there is more than one) etc.
Table 2 is ordered to make this more transparent.

A further investigation of the estimated intensities in this table indicates, firstly, an
increasing pattern in n for fixed k£ and, secondly, a decreasing pattern in k for fixed n.

For fixed k, i.e. for the last inter-instalment times, for the second last etc., the mean

13



n //{nn /):n,n—l //{n,n—Q //{n,l

1 {0.00501 - - - - - -

21 0.00502 0.01013 - - - - -

3 10.00489 0.00966 0.01323 - - - -

41 0.00503 0.00782 0.01403 0.01561 - - -

5 | 0.00405 0.00740 0.01082 0.01520 0.01809 - -

6 | 0.00397 0.00581 0.01186 0.01302 0.02025 0.01943 -

71 0.00363 0.00643 0.00849 0.01337 0.01296 0.02182 0.02073

Table 2: Estimated intensities /):n,k, 1 < k < n, of inter-instalment times related to states of the

Markov chain.

inter-instalment times decrease in n (the more instalments, the smaller are the mean
inter-instalment times). For fixed n, i.e. the number of instalments fixed, the mean inter-
instalment times increase in £ (the first mean inter-instalment times are smaller than later

ones). This leads to the following model:
Vae=a+bk+en, 1<k<n. (4.18)
Hence our model specification is
o io(v) = (a + bk + cn)? ¢ (@tthFen)®o 5

Fitting the model to the intensities given in Table 2 by a simple regression estimate
we obtain the estimates in Table 3, which we shall use as initial values for the more
sophisticated estimation procedure in Section 5.

Note that none of the 95% confidence intervals contains the value 0, hence a reduction

of the model seems not feasible.

4.2 The conditional distribution of the instalments

Figures 8 and 9 show the histograms of the log-instalments classified by the total number of
instalments; i.e. for a total number n of instalments the subsamples of the k-th logarithmic

instalments for 1 < k£ < n, are investigated separately.

14



LSE std. dev. 010.95

@] 00867 | 0.0044 | (0.0776, 0.0958)
b [-0.0164 | 0.0010 | (-0.0185, -0.0143)
¢ 0.0128 | 0.0010 | (0.0107, 0.0149)

Table 3: Least squares estimates (LSE) of the intensity parameters a, b and ¢ with standard

errors (std. dev.) and asymptotic 95% confidence intervals (Clp g5).

One common pattern is the bimodality of most of the histograms. At first we supposed
that a rather regular small sum might occur right at the occurrence of most claims, as
e.g. a fine requested by the police. However, this suggestion is obviously not true as one
glance at the histograms (3, 2), (4, 2), (5,2), (5, 3) etc. shows. jFrom the histograms it is
certainly not obvious, what models to choose. A further problem is that for claims with
larger numbers of instalments there are not enough data available to provide a sensible
model.

Assuming all instalments to be i.i.d., a histogram of all log-instalments in Figure 2
shows clearly the bimodality, but also suggests a normal model for the log-instalments,
i.e. we model the instalments by a lognormal mixture distribution. Lognormal models
are very common in the statistical analysis of insurance data. Consequently, we choose a
normal mixture model for the log-instalments, where we investigated further the choice
of parameters for claims with different numbers of instalments. Figure 10 visualises the
outcome: log-means and log-variances of the different instalments seem not to vary so
much as to justify a much more complicated model.

Hence, also for reasons of parsimony, we choose the same lognormal mixture model

for all instalments; i.e. for all 1 <1 < n,

1

9ni(2) = g(z) = . (p Ppur, 02 (logz) + (1 —p) Pus, o3 (logz)) , z>0, (4.19)

where @, ,2 is the density function of a normal distribution with mean p and variance o2.
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Figure 2: Histogram of all log-instalments and fitted density of bimodal normal mixture model.
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4.3 The initial distribution of the Markov chain

For our data, each claim has a certain total number of instalments reaching from 1 to
48, the frequencies of the number of instalments are given in Table 4. Figure 3 shows the

histogram of the total number of instalments for 1 to 10 instalments.

# of instalments 1 2 3 4 5 6

abs. frequency 1966 1343 840 925 313 184
rel. frequency 0.3461 | 0.2364 | 0.1479 | 0.0924 | 0.0551 | 0.0324

# of instalment 7 8 9 10 . 48
abs. frequency 115 75 61 52 1
rel. frequency 0.0202 | 0.0132 | 0.0107 | 0.0092 0.0002

Table 4: Partition of the portfolio by the number of instalments.

In predicting the costs of future payment for this portfolio, an important issue is the

prediction of the ultimate number of instalments for a running, not yet closed claim. Due
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Figure 3: Histogram, corresponding to Table 4 with fitted density of truncated geometric dis-
tribution (4.20).

to the fact that we have only claims which occurred during one single year, we do not
have enough data to fit a sophisticated model. Consequently, we model the total number
of instalments by a truncated geometric random variable, which fits quite well at least to
that part of the histogram, where enough data are available; see Figure 3:

" (1—q)
- 1— q48 ’

n=1,...,48, 0<qg<1. (4.20)
We are well aware of the fact that fixing the support of the distribution to the realized
N = 48 instalments is not optimal. Joint maximum likelihood estimation of ¢ and N,
however, leads to highly unstable parameters, moreover, the estimator of N will not be
an integer. There are remedies for this problem, see e.g. the discussion in Johnson, Kotz
and Kemp [9], Section 8.2, in connection to the binomial distribution. We decided at this

point to restrict ourselves to the observed N = 48 and estimated ¢ by maximum likelihood

estimation, resulting in an initial estimate ¢ = 0.5348.
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4.4 The intensity function of the claim number process

Figure 4 shows the daily numbers of claims per day during the year 1985 of occurrency

of the claims.

30
|
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Daily Number of Claims
15
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'
'
'

0o 100 200 300

Time in Days

Figure 4: Time series plot of the daily number of claims A;, i = 1,...,365, during 1985.

We think of these data as (over the day) aggregated realisations of the inhomogeneous

Poisson process N i.e. if
AN=#{j|T,e(i—-1,4}, i=1,...,365,

then we interpret A; = N(i) — N(i—1) as the increment on day i. The obvious seasonality
over the year will be captured by a deterministic intensity function A : Ry — R, ; i.e. we

assume for 0 < s < t,

where



Since we have only one year of aggregated data to fit the model, the choice of model is
rather limited and we have fitted a quadratic model for the intensity function. The problem
of estimating the unknown model paramters by observations A; with mean p; = fzz_l A(t)dt
is circumvented by the quadratic model and by the following result, whose proof is a simple

application of the binomial formula.
Proposition 4.1. For some n € N let A(t) = Z?:o Bit!, t > 0 and define p; =
fii_l At)dt, i € N. Then p; = > ._, ari® and the relationship of the coefficient vectors

a=(ag, ai,...,a,) and = (Bo, Bi,...,0n)" is given by

a = A,pB

with the reqular matriz A, = (ag;) <), i<n given by
()
0, k> j.

We analysed the data, however, additionally for weekday effects. To this end we fitted a
model capturing a basic quadratic time effect, but we allowed also for additional weekday
effects; i.e. we investigated the model

6

A(t) = Bo+ Bit + Bot” + > (Bowd + Bruwat + Bawat®)duwa(t), >0, (4.21)

wd=1

where the dummy variables J,,4(t) are given by

1, if time ¢ is at weekday wd,
uall) = 0, el
, else.

We fitted the model using a linear regression model for A;, : =1,...,365:

A = pite
6

= Q) + Oéli + OfQiQ + Z (Oé()wd + Oélwdi + OézwdiQ) 6wd(z) —+ Ei,
wd=1

where the ¢; are i.i.d. N(0,0?).
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By a series of F-tests and a careful analysis of residuals using standard model selection

criteria the model (4.21) simplifies to

3
A(t) = Bo+ Bit + Bat” + Y _ Bowabuwalt), >0,

wd=1
where we have used Proposition 4.1 for the transition from A; to A(¢). The value of the

variable wd identifies the following weekdays

1, Mondays or Tuesdays,
, Wednesday or Thursdays
3, Fridays or Saturdays.

The regression coefficients and standard errors are shown in Table 5.

LSE std. dev. LSE std. dev.

ag | 5.778 8.760 107! || aoy | 1.353 | 7.280 107!
ap | 1.018 107! | 8553 1073 || ey | 2.173 | 7.292 107!
ay | -2.410 107% 1] 2.263 1073 || s | 3.116 | 7.292 107!

Table 5: Least squares estimates (LSE) for the as.

The fitted model ﬁi, 1 =1,...,365, is shown in Figure 5. For more details see Sev-
erin [20], Chapter 6.

5 Parameter estimation

5.1 Likelihood specification

By the model specification of the previous sections the parameter vector # of the hidden

Markov model is given by

0= (Q7a7 b7 ¢ D, /,Ll,O'l,,ug,O'Q) = (197199)7 (522)

where ¢ characterizes the initial probabilities (av,), oy of the Markov chain (&,)en; see

(4.20), a,b and c specify the intensities A, ;, 1 < i < n, of the conditional distributions
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of inter-instalment times; see (4.18), and, finally, ¥, = (p, p1, 01, pt2, 02) contains the
parameters of the density of instalments; see (4.19).

Since according to model (1.1) we suppose that all claims occur independently, the
joint likelihood with respect to all claims factorizes into the product of the single claims
likelihood contributions; so it is sufficient to specify the likelihood contribution of a single
claim. Obviously, by Assumption 3.1, the likelihood contribution based on the complete
data is given by

LC(Q) = LC(H,M() 017"'7 fl:"'aé-M(tH»l)

- {]{€>M H fe: (O A£M<t>+1( — W) + Lg=me H fe.(O }

where, for instance, the function Ire—ps()) indicates that the claim is settled. By (4.17),

this factorizes in two independent parts:
LC(Q) = Lgl)(ﬂm M(t)a Zl; ) ZM(t)) LEQ)(ﬁa M(t)a ‘/17 R VM(t)a gla s 76M(t)+1)7

where (we suppress the random variables)

10W,) = T 5 (P o008 2) + (1= p) 9y, 02108 7)) (5.23)

i=1
is the likelihood contribution of the observed instalments and the complete data likelihood

of the observed inter-instalment times is given by

M(2)
L?) (V) = ag(q) {I{§>M(t)} H he, (Vi a, b, c) ASM(t)H (t — W a, b, C)
1=1

M)
+le—n(t)) H he, (Vi; a, b, C)}

i=1
5.2 Fitting the instalments

We estimate the distribution of the instalment sizes by maximizing the likelihood function
(5.23). Based on a total of N = 8387 instalments the MLE of the mixture parameter p,
the two means p; and standard deviations o;, ©+ = 1, 2, are given in Table 6.

The normal mixture model satisfies the regularity conditions giving asymptotic nor-

mality and efficiency of the estimated parameters; see Lehmann [13], Theorem 4.1, p.429
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MLE | std. dev Cly.gs

p | 0.1770 | 0.0049 | (0.1674, 0.1866)

i1 | 3.0980 | 0.0058 | (3.0866, 3.1094)

o, | 0.1877 | 0.0057 | (0.1765, 0.1989)
( )
( )

H2 | 6.3958 | 0.0227 | (6.3513, 6.4403
09 | 1.6889 | 0.0162 1.6571, 1.7207

Table 6: MLEs and observed standard deviations (std. dev.) of the parameters of the instalment

distribution with asymptotic 95% confidence intervals.

and McLachlan and Basford [16], Section 2.1. More precisely,

-~

VN, —19,) = N0,1(¥,)"), N — o0,

where I(0,) ! is the inverse of the (expected) information matrix I(J,). By the law of

large numbers we may replace I(J,) ! by the (observed) information matrix

237.36 —3.31  80.86  255.86 —187.90
R ) —3.31 337.83 —10.28 —34.88  52.04
H(Jy) ' = 1 80.86 —10.28 321.64 32622 —24355 |.  (5.24)
255.86 —34.88  326.22 5165.33 —764.12
—187.90  52.04 —243.55 —764.12 2638.61

Correlations deduced from (5.24) are given in Table 7.

p 1i1 o Lo 09

p | 1.0000 -0.0117 0.2926 0.2311 -0.2374
iy | -0.0117 1.0000 -0.0312 -0.0264 0.0551
o1 | 0.2926 -0.0312 1.0000 0.2531 -0.2644
1o | 0.2311 -0.0264 0.2531  1.0000 -0.2070

09 | -0.2374 0.0551 -0.2644 -0.2070 1.0000

Table 7: Correlations of estimated parameters given in Table 6.
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5.3 Fitting the inter-instalment times by the EM algorithm

Since the distributions of the inter-instalment times depend on the state of the non-
observable Markov chain, an EM algorithm is used to estimate the remaining model
parameters ¥ = (g, a,b, ¢) simultaneously. For details on the EM algorithm we refer to
Dempster, Laird and Rubin [4], McLachlan and Krishnan [17] and Wu [22]; the EM
algorithm in a HMM setting is also known as Baum-Welch algorithm; cf. Baum et al. [1].

The idea of the EM alogrithm is to provide a sequence (91));5q of estimates which
converges to a MLE, say ¥*. Each of the 9\ is constructed by performing a so-called
expectation step (E-step) and a maximization step (M-step) iteratively, where we take
the initial values (¥ = (g, 6,5, ¢) from the end of Section 4.3 and Table 3.

To be more specific, let V' = (M(t), Vi, ..., Vi) be the random vector of observable
data, having likelihood function L(19), where ¥ is the corresponding parameter vector in
the parameter space [0,1] x R3. The observation vector V is viewed as being incomplete
in the sense that maximum likelihood estimation is made difficult by the absence of some
part of the data and is thus called the incomplete data part. Rather than performing a
maximization of this incomplete data likelihood L(?)), one augments the observed data V'
with unobservable data £ (also called latent data or hidden data). The augmented vector
X = (V,§) is called the complete data vector and its likelihood function is denoted by
L.(9).

Formally there exist two sample spaces X and V and a many-to-one mapping V' from
X to V. Instead of observing the complete data X in X one observes the incomplete data

V =V(X) in V and thus the likelihoods of X and V are related by

L(dv) = /X | Llom)de (5.25)
M(t) o0 M(t)
= oM@ H Py (Vi) + Z ay, Pni(Vi) Angri(t — Warry)
i=1 n=M(t)+1 =1
M(t) M(t)
= M) H Aty exp | — Z An(t)i Vi
i=1 i=1
0o M(t) M(t)
+ Z Qlpy H Anji €xXp | — Z Vi = Apgri(t = W) |
n=M(t)+1  i=1 i—1



where X (v) = {z |v(x) = v}.

If the hidden variable £ was observable, the complete data likelihood as a function in
the unknown parameter ¥ would be given by L.(¢). The EM algorithm solves the problem
of maximizing the incomplete data likelihood L(9) indirectly and iteratively in terms of
the complete data likelihood L.(#). This means the EM algorithm finds the value of 9, say
U*, that maximizes L(¥), that is the MLE for ¥ based on the observed data V. Because
L.(19) is not observable it is replaced by its conditional expectation given the observations
and the latest fit for ¥.

On the basis of 99, the so-called updated parameter estimator 9U*1 is calculated
as follows: in the E-step, the conditional expectation of the complete data log-likelihood,
log L.(V), with respect to the distribution (Pyy) (§ = n|Ft)),,>, is calculated (as usual we
work with the log-likelihood function):

Eyi) [log L.(9)| Fi] ZI{M )=k} Z Pyi) (£ =n|F) { log o, (q) (5.26)
n==k

+ Z IOg )‘n,i - )\n,i ‘/z - (1 - 6n,k) )\n,k—H (t - Wk) }

According to Theorem 3.2, the conditional distribution of the initial state £ of the
Markov-chain, given the information up to time ¢, and the initial estimator ¥¥) modifies

to

a —/\n,lt

Pﬁ(j) ( =n | ft) - I{M )=0} Z " o7 e—/\l,lt

n—1 k -
7% H — hn,l(%) An,k (t - Wk)
+ > Tpu-k ; . - =
st g [lomy Prs(Ve) + 202k @1 [lomy Pus(Vs) Ay (E— W)
+I{M Qo Hl:l h",l(w)

O T had(V) + L 00 Ty (V) A (= W)’
where all the o, \, h and A depend on the current fit of ¢, a, b, ¢, i.e. they depend on 90

Moreover,
k

k k
th,l(W):H)\n,l €xp <_Z)\n,l‘/Z) 5 kzla"'ana
=1 =1

=1

and

k k
T 2nd (V) A (8 = Wi) = H At €Xp (— > AaVi= Apa (£ — Wk)) .
=1

=1
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Expectation (5.26) gives the contribution of one single claim and hence, because all
claims are assumed to occur independently, the conditional expectation of the complete

data log-likelihood for all observations is given by

5681
QW,99) =" B [log L.(0)] 7. (5.27)
=1

where the upper index 7 indicates the contribution of the ith claim.
In the M-step Q(9,9Y)) is maximized with respect to ¢ over the parameter space

© = [0,1] x R®. This means finding a parameter 90+ € © such that
QMUY b))y > Q(0,99), forall ¥ e ©.

In the next step 9\ is replaced by the updated EM iterate 9U+Y) and Q(¢, 99+Y) is set
up. The E- and M-steps are performed until, for instance the change in the sequence of
EM iterates is sufficiently small.

Table 8 gives the EM iterates of ¢,a,b and ¢ by applying the EM algorithm to the
portfolio after a one year observation period. The initial values for the EM algorithm

correspond to step 0 in Table 8. After the 54th iteration the values are stable up to the

jthstep | ¢@ | o b ) o)
0 0.5348 | 0.0867 -0.0164 0.0128
1 0.7442 | 0.0929 -0.0148 0.0143
2 0.7680 | 0.0843 -0.0126 0.0144
3 0.7741 | 0.0799 -0.0116 0.0146
4 0.7761 | 0.0777 -0.0112 0.0147
54 0.7642 | 0.0749 -0.0104 0.0158

Table 8: Iterates of model parameters after a one year observation period.

fourth decimal. Since Q(0),9")) of (5.27) is continuous in both variables, we can apply
Wu [22], Theorem 2, to show that the limit point of (19(j))j>0 is a MLE of (5.25).
For this result, Wu [22] assumes mild regularity (continuity and compactness) condi-

tions. By (5.25) and the fact that all conditional densities of inter-instalment times are
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continuous functions in a, b, ¢, the likelihood function L(1) is a continuous function in 9.
Morover, the EM iterates given in Table 8 are evidently converging to some finite values,
not approaching the boundary of ©. For more details see Severin [20], Chapter 5.

A drawback of the EM algorithm in practice is that asymptotic variance-covariance
matrices for parameters (e.g. standard errors) are not automatic by-products as they
are in the standard situation. Louis [14] showed, by applying the “missing information
principle” of Orchard and Woodbury [18], how to compute the observed infomation matrix
for missing information problems when using the EM algorithm.

To be more precise, let S(¥) = dlog L(¥)/0Y and S.(v) = 0log L.(V)/0Y be the
score statistic based on the observed (incomplete) data and complete data, respectively.
Louis [14] proved that S(¢)) can be expressed as the conditional expectation of S.(9) given

the observed information JF;, i.e.
S(0) = Ey (Sc(9) | F).

Let H(ﬁ), with H(ﬁ)%] = —82 lOg L(19)/8192819] and Hc(ﬁ), with Hc(ﬁ)i,j = —82 IOg Lc(ﬂ)/aﬂzaﬁ]
be the matrices of the negatives of the second-order derivatives of the incomplete data

log-likelihood and complete data log-likelihood, respectively. Again by Louis [14],
H(0) = Ey (He(9) | Fi) = Ey (Se(9) Se(9)'| Fo ) + S(9) S(9)'.

Hence, because the MLE satisfies S(9*) = 0, the observed (incomplete) information matrix

of the MLE 9* is given by H(9*)"!, where
H(0%) = By (He(07) | Fi) = Ege (Se(07) Se(9%)' | 7).,

In our case of independent claim observations, S, (%) = 37000 S8 (9%), where S (9%)
denotes the contribution of the 7th claim to the score at ¥*, computation of the quantity
Eg (Sc(V*%) Sc(0*)" | F¢) becomes rather costly, cf. Louis [14].

Jamshidian and Jennrich [6] suggest an alternative algorithms to solve this problem
by applying a Richardson extrapolation method to differentiate S(¢J) at ¥* numerically
in order to get an estimate of H(9*) and call this the NDS (Numerical Differentiation of

Score) algorithm.

26



If we set
5: 906Y — (q(54),a(54),b(54), 0(54))’, (5.28)

the NDS estimate of the variance-covariance matrix of 9 according to Jamshidian and

Jennrich [6] is given by

11.13 080 0.06 —1.01

o 1 080 0.56 0.01 —0.18
10 0.06 001 0.16 —0.08

~1.01 —0.18 —0.08 0.17

(5.29)

Table 9 shows the EM estimates of ¢, a,b and ¢ with their standard errors.

MLE | std. dev. Cly.gs
g | 0.7642 | 0.0105 (0.7436, 0.7848)
a| 0.0749 | 0.0024 (0.0702, 0.0796)
b |-0.0104 | 0.0013 (-0.0129, -0.0079)
c | 0.0158 | 0.0013 (0.0133, 0.0183)

Table 9: EM estimates of ¢, a, b and ¢ with standard errors (std. dev.) and asymptotic 95%

confidence intervals CIj gs.

Correlations deduced from (5.29) are given in Table 10. By our model selection the
parameters a, b and ¢ of the inter-instalment times are highly correlated to the parameter

of the Markov chain gq.

7 a b ¢
g | 1.0000 0.3213 0.0492 -0.7348
@] 0.3213  1.0000 0.0443 -0.5953
b | 0.0492 0.0443 1.0000 -0.4820
¢1-0.7348 -0.5953 -0.4820 1.0000

Table 10: Correlations of estimated parameters given in Table 9.
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6 Prediction of outstanding insurance claims

Assume 0 < s < ¢t and set S = ij:(sl) X,(t—=T,) — X,(s — T,), that is the sum of all

payoffs in the time interval (s, ¢] for all claims occurred during [0, s] and let

F_ U( (N(T))gcres ((Xn(T - T”))OSTSS)1<71<N(S)>

be the o-field containing the observed claim number process and all observed payoffs
during [0, s]. Obviously, because we assume all claims to occur independently of each
other S is predicted by

N(s)
E(S|f) - Z E(Xn(t_Tn) _Xn(S_Tn) |f)

i=1
For each single claim, the conditional expectations of X,,(t—1},)— X, (s—T,,) are computed,
by Theorem 3.5, equations (3.13) and (3.15). For the model parameter 6, cf. (5.22), we
use the estimated parameters = (5, Eg) given in Table 9 and Table 6.

In our situation we set s = 365 and ¢ = 730 and hence for all claims occurred in 1985,

S gives the sum of all payoffs of these claims until the end of 1986. This yields
E (S| F)=18127950.
The realized costs for the portfolio in the same period is

S =17493881.

For a square integrable random variable S and a o-field F, Jensen’s inequality pro-
vides an almost sure upper bound for the expected prediction error, given the observed

infomation, i.e.

E(|S—=E(S|F)||F) < y/var(S|F).

For the specified portfolio, by (3.14) and the estimated parameter 0, Vvar (S| F) =
900 039. The observed prediction error is given by |S — E(S | F)| = 634 069.
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7 Summary

Given one year of data is certainly a restriction which we had to live with, but insur-
ance companies do not have to. Thus certain drawbacks of our analysis can certainly be
improved in real life, as for instance the rather crude inhomogeneous Poisson model for
the counting process. Furthermore, we have only been able to predict the reserves for
exactly those claims which appeared during one year. However, of course, the following
year claims occur within the very same portfolio, giving more data and better estimation
possibilities, also for years further ahead. We have been considering sampling future years
from our model, thus having the opportunity to larger steps of prediction, however, de-
cided to leave this to future work. We think of this investigation as a first step to a more
realistic stochastic modelling of an insurance portfolio and to a more precise estimation

of future capital reserves.
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