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and a Rho/Rho kinase signaling pathway leading to plate-
let shape change and subsequent aggregation. LPA-me-
diated platelet activation might contribute to arterial 
thrombus formation after rupture of atherosclerotic 
plaques and to the increased blood thrombogenicity of 
patients with cardiovascular diseases. 

 Copyright © 2006 S. Karger AG, Basel 

 Introduction 

 Platelets are surrounded by low-density lipoprotein 
(LDL) and high-density lipoprotein (HDL) in circulating 
blood. They also might interact with circulating oxida-
tively modifi ed LDL  [1–6] . Platelet interaction with LDL 
and oxidized LDL could explain the higher platelet ag-
gregability associated with hypercholesteremia, diabetes 
and cigarette smoking  [7–12] . Moreover, upon rupture of 
lipid-rich vulnerable plaques, platelets get exposed to ox-
idatively and enzymatically modifi ed LDL and their deg-
radation products accumulating in the plaque lipid-rich 
core  [13] , the most thrombogenic part of atherosclerotic 
plaques  [14] . Platelet activation by this plaque material 
might be important in arterial thrombus formation lead-
ing to acute coronary syndromes (angina pectoris, myo-
cardial infarction) or cerebral ischemia (TIA, stroke). 

 In contrast to the native lipoproteins, both LDL and 
HDL particles induce platelet activation, once they are 
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  Abstract 
 Oxidation of low-density lipoprotein (LDL) generates pro-
infl ammatory and pro-thrombotic mediators that play a 
crucial role in cardiovascular and infl ammatory diseases. 
Mildly oxidized LDL (mox-LDL) and minimally modifi ed 
LDL (mm-LDL) which escape the uptake of macrophage 
scavenger receptors accumulate in the atherosclerotic in-
tima. Oxidatively modifi ed LDL is also present within the 
electronegative LDL fraction in blood, which is elevated 
in patients at high risk for cardiovascular diseases. Mox-
LDL and mm-LDL, but not native LDL are able to induce 
platelet shape change and aggregation. LDL oxidation 
generates lipids with platelet stimulatory properties such 
as lysophosphatidylcholine, certain oxidized phosphati-
dylcholine molecules, F 2 -isoprostanes and lysophospha-
tidic acid (LPA). Mox-LDL and mm-LDL are like a Trojan 
horse carrying these biologically active lipids and attack-
ing cells through activation of physiological receptors 
and signaling mechanisms. LPA has been identifi ed as 
the lipid responsible for platelet stimulation by mox-LDL, 
mm-LDL and also mox-HDL. These lipoproteins activate 
platelets by stimulating G-protein coupled LPA receptors 
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oxidatively modifi ed  [15–21] . Several biologically active 
lipids are produced during LDL oxidation ( fi g. 1 ). They 
have often atherogenic actions on cells of the vessel wall 
(endothelial cells, smooth muscle cells and macrophages) 
and stimulate circulating blood cells including platelets. 
The fi rst bioactive lipid produced by LDL oxidation 
found was lysophosphatidylcholine (LPC)  [22, 23] . Other 
bioactive phospholipids formed during LDL oxidation 
are derived from oxidative degradation of mainly the 2-
arachidonoyl group of 1-palmitoyl-PC and 1-stearoyl-PC, 
respectively (oxidized PC molecules)  [24–26] . Also the 
F 2 -isoprostanes are derived form oxidative transforma-
tion of arachidonoyl-containing phospholipids  [27] . The 
most recent discovered bioactive lipid formed by oxida-
tion of LDL is the lysophospholipid LPA  [28] . LPA stim-
ulates cells by activation of G-protein coupled surface 
receptors  [29] . 

 Sphingosine 1-phosphate (S1P) and shingosylphos-
phorylcholine (SPC) are lysosphingolipids present main-
ly in HDL, but also in LDL  [30–32] . In contrast to the 
other bioactive lipids, the concentration of S1P decreases 
upon LDL oxidation  [32] . Since S1P and SPC in HDL 
mediate certain cytoprotective actions of HDL on endo-
thelial cells, these lysosphingolipids have been proposed 
as anti-atherogenic substances  [32, 33] . S1P is much less 

potent in activating platelets than LPA (for review see 
 [29] ), and SPC even inhibits platelets  [34] . Since S1P and 
SPC are apparently neither formed by lipoprotein oxida-
tion, nor do they signifi cantly activate platelets, they will 
not be considered further in this review. 

 The review discusses the different platelet – stimula-
tory lipids present in oxidatively modifi ed lipoproteins 
and focuses on their role in mediating platelet activation 
by minimally and mildly oxidized LDL. 

 Mildly Oxidized Lipoproteins (LDL, HDL) 
Stimulate Platelets 

 Many studies have shown that native LDL (nLDL) 
particles themselves do not induce platelet activation, al-
though they can after prolonged incubation sensitize 
platelets to other stimuli by specifi c mechanisms that 
have been unraveled only recently (see chapter Korporaal 
and Akkerman). In contrast to nLDL, oxidatively modi-
fi ed LDL induces rapid immediate platelet responses 
such as shape change and aggregation  [16–19] . The plate-
let response appears to be dependent of the type of oxida-
tion method used and the degree of oxidation of LDL. 
Using cupper-or SIN-1 induced oxidation, mild oxida-
tion has been shown to produce LDL particles with high-
er platelet-activating potency than strong oxidation  [17, 
18] . Chemical characterization of mildly oxidized LDL 
(mox-LDL) showed no indication of protein modifi cation 
and only a minor decrease of polyunsaturated fatty acids 
in mox-LDL, but protein modifi cation and an almost 
complete disappearance of polyunsaturated fatty acids in 
ox-LDL  [18, 35] . mm-LDL obtained by spontaneous ox-
idation of LDL had platelet activating properties similar 
to mox-LDL  [19, 21, 28] . Both mox-LDL and Minimally 
modifi ed LDL (mm-LDL) induced shape change of 
washed platelets at very low concentrations (5–50  � g/ml) 
 [21, 36] . 

 Platelet interaction with mm-LDL and mox-LDL 
might be – from a pathophysiological point of view – 
more relevant as compared to platelet interaction with 
more strongly oxidized LDL, since mm-LDL and mox-
LDL (a) are likely to accumulate in the atherosclerotic 
intima due to its escape from scavenger receptor-medi-
ated uptake by macrophages  [37] , (b) might circulate in 
blood, most probably within the fraction of electronega-
tive LDL which is elevated in patients at high cardiovas-
cular risk (familial hypercholesterolemia, hypertriglycer-
idemia, and diabetes mellitus)  [6] , and (c) enhance plate-
let activation induced by other platelet stimuli. Regarding 
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• SAzPC
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Platelet activation

  Fig. 1.  Platelet-stimulatory lipids formed during mild oxidation of 
LDL. LPC = Lysophosphatidylcholine; LPA = lysophosphatidic 
acid; oxPCs = oxidized phosphatidylcholine molecules; POVPC = 
1-palmitoyl-2-(5-oxovaleroyl)- sn -glycero-3-phosphorylcholine; 
SOVPC = 1-stearoyl-2-(5-oxovaleroyl)- sn -glycero-3-phosphoryl-
choline; PGPC = 1-palmitoyl-2-glutaroyl- sn  -glycero-3-phosphoryl-
choline; SGPC = 1-stearoylpalmitoyl-2-glutaroyl- sn -glycero-3-
phosphorylcholine; SazPC = 1-stearoyl-2-azelaoyl- sn -glycero-3-
phosphocholine. 
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the latter point it has recently been reported, that the de-
gree of oxidation of LDL is critical for its enhancement 
or attenuation of platelet activation induced by other 
stimuli. LDL, oxidized  ! 30% enhanced as nLDL platelet 
function, but LDL oxidized  1 30% attenuated platelet 
function, as measured by TRAP-induced fi brinogen bind-
ing  [38] . 

 LDL oxidation can alter both its protein and lipid moi-
eties  [39] . It is of importance, that not only oxidized LDL, 
but also oxidized HDL, which has a protein moiety dif-
ferent than LDL, activates platelets in vitro  [16, 20, 21] . 
From these observations, we have deduced that (a) lipids 
produced or altered during lipoprotein oxidation must be 
responsible for platelet activation, and that (b) the cell 
membrane receptors which bind the different protein 
constituents of LDL (apoB100) and HDL (apoE) are un-
likely to mediate platelet activation by oxidized lipopro-
teins. LDL oxidation generates several lipids that can ac-
tivate platelets as discussed in the following paragraphs 
( fi g. 1 ). 

 Oxidized Phosphatidylcholines 

 General 
 Oxidized phosphatidylcholine molecules can mimic in 

vitro major events in the initiation and propagation of 
chronic infl ammation such as to stimulate endothelial 
cells to bind monocytes, to secrete MCP-1 and IL-8, and 
to increase expression of atherogenic genes  [25, 40, 41] . 
The current view is that these lipids act as pro-infl amma-
tory agents in atherogenesis. On the other hand, oxidized 
phosphatidylcholines can also exert anti-infl ammatory 
and cytoprotective effects by interfering with the binding 
of LPS to the toll-like receptor TLR4  [41] . This event is 
central for bacterially induced neutrophil activation and 
the subsequent acute infl ammatory responses. 

 Formation by LDL Oxidation 
 Oxidation of LDL results in the modifi cation of phos-

pholipids, mainly of phosphatidylcholine (PC), the major 
phospholipid present in the outer layer of the LDL par-

Esterbauer
et al. [42, 43]
Hevonoja et al. [44]

Sanchez-Quesada
et al. [6]
Benitez et al. [66]

Corrinth and Siess*
Siess et al. [28]
Zhang et al. [79]

Protein (apoB100) 1 1 1
Cholesteryl ester 1,600
Triglycerides 170
Diglyceride 7
Cholesterol 600
Total phospholipids 700 490

PC 451 735 322
Lyso PC 80 28 15
SM 185 262 143
PE 10 133 10
LPA (bioassay) 0.05
Acyl-LPA (LC-MS) 0.1
Alkyl-LPA (LC-MS) 0.013

Free fatty acids 6 13
Total fatty acids 2,700
Total PUFAs 1,280
Antioxidants

�-Tocopherol 6 8
�-Tocopherol 0.5
�-Carotene 0.3 0.17
�-Carotene 0.1 0.05
Lycopene 0.2 0.26
Ubiquinol-10 0.1

* Unpublished.
LPA = Lysophosphatidic acid; Lyso-PC = lysophosphatidylcholine; PC = phosphati-

dylcholine; PE = phosphatidylethanloamine; PUFA = polyunsaturated fatty acids; SM = 
sphingomyeline.

Table 1. Lipid and antioxidant 
composition of LDL (approximate 
molecules/LDL particle)
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ticle ( table 1 )  [42–44] . PC oxidation is likely to be initi-
ated by the seeding of LDL with fatty acid hydroperox-
ides generated by the 12/15-lipoxygenase of vascular cells 
 [26, 45, 46] . Also myeloperoxidase expressed in human 
macrophages and the NADPH oxidase pathway of vas-
cular cells are important in generating reactive oxygen 
species for LDL oxidation  [47, 48] . Primarily, polyun-
saturated fatty acids of phospholipids which are present 
in large amounts in LDL ( table 1 ) are oxidized to hydro-
peroxides and subsequently undergo fragmentation to al-
dehydes. Interestingly, minimal oxidation of LDL pre-
dominantly modifi es arachidonic acid and less linoleic 
acid esterifi ed in  sn -2 position of PC  [49] . 

 PC oxidation products exert different biological ac-
tivities depending on the chemical bond at the  sn -1 posi-
tion  [24, 50] . PCs containing alkyl residues (ether bond) 
at the  sn -1 position become upon oxidative fragmenta-
tion of the unsaturated fatty acid at the  sn -2 position (i.e. 
oxidized alkyl-PCs) agonists for the platelet-activating 
factor (PAF) receptor  [50] , whereas oxidized acyl-PCs ac-
tivate cells via unknown receptors  [41] . 

 Many pro-infl ammatory acyl-phosphatidylcholine ox-
idation products derived from 1-palmitoyl-2-arachidono-
yl- sn -glycero-3-phosphorylcholine or 1-stearoyl-2-arachi 
donoyl- sn -glycero-3-phosphorylcholine have been identi-
fi ed in atherosclerotic lesions and mm-LDL. These are: 
1-palmitoyl-2-(5-oxovaleroyl)- sn -glycero-3-phospho ryl-
choline (POVPC), and 1-stearoyl-2-(5-oxovaleroyl)- sn -
glycero-3-phosphorylcholine, 1-palmitoyl-2-glutaroyl- sn -
glycero-3-phosphorylcholine and 1-stearoyl-2-glutaroyl-
 sn -glycero-3-phosphorylcholine, and 1-palmitoyl-2-(5,
6-epoxyiso-prostane E2)- sn -glycero-3-phosphorylcholine 
 [24, 51] . No information is available about their content 
in mm-LDL. It should be stressed that all these oxPC 
molecules are degraded by PAF-acetylhydrolase (PAF-
AH), which is associated with LDL, and inhibitors of 
PAF-AH such as PMSF are normally included during 
LDL oxidation to allow the measurement of the oxPCs 
 [24] . 

 Platelet Receptors and Responses 
 Purifi ed polar phospholipids derived from oxidized 

LDL have been shown to activate platelets via the PAF 
receptor  [52] . Particularly, 1-O-hexadecyl-2-(5-oxovale-
royl)- sn -glycero-phosphocholine (alkyl-POVPC), an ana-
log of PAF has been identifi ed in human atheroma that 
induced aggregation of rabbit platelets through activation 
of the PAF receptor. In contrast its 1-acyl-analog POVPC 
stimulated in rabbits only platelet shape change, which 
was independent from the activation of the PAF receptor 

 [53] . Very recently, three biologically active oxidative 
products of acyl-PC (1-stearoyl-2-arachidonoyl- sn -
glycero-3-phosphocholine) were identifi ed by electro-
spray ionization mass spectrometry which induced shape 
change of human platelets at low micromolar concentra-
tions: 1-stearoyl-2-azelaoyl- sn -glycero-3-phosphocholine, 
1-stearoyl-2-glutaroyl- sn -glycero-3-phosphocholine, and 
1-stearoyl-2-(5-oxovaleroyl)- sn -glycero-3-phosphocho-
line. All these compounds activated platelets indepen-
dently of the PAF receptor and LPA receptors  [54] . The 
concentrations of these platelet-stimulating alkyl-PC and 
acyl-PC products in mm-LDL and mox-LDL are not 
known. 

 F 2 -Isoprostanes 

 F 2 -isoprostanes are formed in situ on phospholipids 
by free radical-catalyzed peroxidation of arachidonic acid 
 [55] . Oxidative stress and lipid peroxidation in vivo can 
be measured by enhanced plasma levels and urinary ex-
cretion of the hydrolysis product 8-iso-PGF 2 �    [56] . F 2 -
isoprostane formation is enhanced in association with 
cardiovascular risk factors such as cigarette smoking, hy-
percholesterolemia, and types 1 and 2 diabetes mellitus 
 [57] . Cigarette smokers, who are exposed to free radicals 
present in cigarette smoke, showed elevated plasma levels 
of free and esterifi ed F 2 -isoprostanes in plasma and 8-iso-
PGF 2 �   in urine, that fell signifi cantly after cessation of 
smoking  [57] . F 2 -isoprostanes are not only formed in 
plasma, but also in LDL after exposition to oxidative 
stress  [27] . Oxidation of LDL resulted in the subsequent 
depletion of the anti-oxidants ubiquinol-10,  � -tocopher-
ol, lycopene and  � -carotene, and their consumption lead 
to the concomitant increase of lipid peroxides and ester-
ifi ed F 2 -isoprostanes  [27] . As reported in table 2 of refer-
ence  [27]  the increase of esterifi ed F 2 -isoprostanes during 
LDL oxidation was maximally 20 n M  in LDL (0.2 mg 
LDL protein/ml), which corresponds to 0.1 nmol per mg 
protein or 0.05 mol/mol LDL. It is not known, how much 
the unesterifi ed 8-iso-PGF 2 �   increases during LDL oxi-
dation. 

 Since lipid peroxidation also occurs in human athero-
sclerotic lesions, it is not surprising that the content of 
F 2 -isoprostanes (measured as 8-iso-PGF 2 �  ) was found to 
be higher in human atherectomy specimen as compared 
to vascular tissue devoid of atherosclerosis  [58] . Immu-
nohistochemical studies found that foam cells adjacent to 
the lipid necrotic core of plaques were markedly positive 
for 8-iso-PGF 2 �   indicating that these cells removed lipid 
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peroxidation products accumulating in the plaque core 
 [58] . 

 Unesterifi ed, free 8-iso-PGF 2 �   (in former publications 
8-epi-PGF 2 �  ) exposed to washed platelets induced at 
concentrations between 0.1 and 1  �  M  shape change, ino-
sitol phosphate production and cytosolic Ca 2+  increase 
 [59, 60] . Alone 8-iso-PGF 2 �   induced weak, reversible ag-
gregation, but when added together with subthreshold 
concentrations of ADP, thrombin or collagen, it induced 
maximal irreversible aggregation  [59, 60] . Although in 
one study platelet activation induced by 8-iso-PGF 2 �   
could be prevented by the thromboxane receptor antago-
nist SQ29548, it was concluded on the basis of other re-
sults that 8-iso-PGF 2 �   did not activate either of the 
TXA2/EP (TP) receptor isoforms described in platelets 
 [60] . This is contrast to studies of two other groups which 
described 8-iso-PGF 2 �   as partial agonist of platelet TP 
receptors with TP antagonistic properties  [59, 61] . Own 
studies supported these fi ndings: shape change induced 
by 8-iso-PGF 2 �   was blocked by the TP receptor antago-
nist BM13.505. Shape change induced by mox-LDL was, 
however, not inhibited after pretreatment of platelets 
with BM13.505  [36] . Together, these results indicate that 
F 2 -isoprostanes are formed during mild oxidation of 
LDL, but they do not mediate shape change induced by 
mox-LDL. 

 Lysophosphatidylcholine 

 LPC Formation during Oxidation of LDL 
 LPC during LDL oxidation is generated mainly by 

phospholipase A 2 -mediated degradation of PC  [62] . This 
constitutively active plasma enzyme is primarily associ-
ated with LDL, whereas only a small portion (about 15–
20%) is present in HDL  [63] . The enzyme has been 
termed lipoprotein-associated PLA 2  or PAF-AH  [63, 
64] . Unlike other PLA 2 , PAF-AH is specifi c for short acyl 
groups (Cn  !  6) at the  sn -2 position of phospholipid sub-
strates. The enzyme is Ca 2+  independent, and its highly 
restricted substrate specifi city is apparently essential to 
prevent the continuous phospholipid hydrolysis of lipo-
proteins  [63] . PAF-AH hydrolyzes effectively oxidized 
phospholipids such as the above-described oxidized 
PC molecules, and therefore prevents the accumulation 
of these bioactive PC molecules during LDL oxidation. 
Substances which inhibit PAF-AH such as PMSF have 
to be included in studies in vitro in order to observe 
the accumulation of oxidized bioactive PC molecules 
 [24] . The biological function of PAF-AH in atheroscle-

rosis is controversial  [63] , but evidence is now increasing 
to support a proatherogenic function  [64] . Although it 
degrades pro-infl ammatory bioactive oxidized PC mol-
ecules, it generates a new pro-infl ammatory lipid media-
tor, LPC. 

 LPC is present already in nLDL at signifi cant amounts 
( table 1 ). The mean values of LPC range between 2 and 
5% LPC of total LDL phospholipids in most of the recent 
studies  [65, 66]  (Corrinth and Siess, unpublished obser-
vations). LPC increases 2–10-fold dependent on the de-
gree of LDL oxidation.   Electronegative LDL, found in 
the small dense fraction of plasma LDL, contains twice 
as much LPC as nLDL  [66] . Mild oxidation also doubles 
the LPC content of nLDL (from 3.0  8  1.2 to 5.9  8  0.7% 
of LDL phospholipids). Strong oxidation results in a dras-
tic increase of LPC to 28  8  4% of LDL phospholipids 
(Corrinth and Siess, unpublished observation). 

 Action of LPC on Platelets 
 LPC has multiple effects on vascular cells  [67, 68] , and 

the reported effects on platelets are complex and on the 
fi rst glance controversial. LPC can activate and inhibit 
platelets. An early very detailed study of the action of 
LPC on platelets found, that in platelet-rich plasma (PRP) 
LPC concentrations  1 100  �  M  caused instantaneous in-
hibition of stimulus-induced platelet aggregation which 
was found to be partially reversible over a period of 60–
90 min  [69] . LPC-induced potentiation could not be ob-
served, neither in citrated nor in heparinized PRP. With 
washed platelets, inhibition was also observed at concen-
trations above 30  �  M , but the inhibitory effect not only 
rapidly disappeared but was followed by transient poten-
tiation of aggregation and serotonin release  [69, 70] . Both 
inhibition and potentiation were observed at concentra-
tions of LPC that did not cause a signifi cant change in 
platelet shape or platelet lysis. It was concluded that the 
effects of LPC on platelet function were due to structural 
modifi cation of the platelet membrane probably by its 
amphiphilic properties  [69, 70] . In later studies, LPC-me-
diated platelet inhibition was related to the G-protein 
mediated activation of adenylate cyclase, or to the incor-
poration of LPC into the platelet membrane leading to 
changes of membrane fl uidity  [71, 72] . Another study 
found that incubation of washed platelets with low con-
centrations of LPC (10  �  M ) could stimulate P-selectin 
expression through a protein kinase C-dependent path-
way  [73] . Since LPC is known to bind to albumin, it seems 
that the action of LPC on platelets is critical dependent 
on the albumin concentration in the suspension medium; 
it might explain the different effects of LPC on PRP 
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which contains high concentrations of albumin (3–5%) 
and on washed platelet suspensions containing no or a 
low albumin concentration (0.1–3%). We observed no 
shape change after addition of LPC concentrations up to 
30  �  M  to platelet suspensions, provided the buffer con-
tained albumin (0.5%) (Corrinth and Siess, unpublished 
observations). Some of the reported controversial effects 
of LPC on platelets might also be explained by different 
platelet isolation procedures. 

 For our considerations, the effect of LPC-enriched 
LDL on platelets is important. Native LDL which con-
tains already signifi cant amounts of LPC, did not activate 
the platelets directly, even if added at high concentrations 
to washed platelets (2 mg LDL/ml corresponding to 
60  �  M  LPC; Corrinth and Siess, unpublished observa-
tions)  [18] . Treatment of LDL with bee-venom PLA 2 , 
which resulted in a large selective increase of LPC not 
only failed to activate platelets, but it inhibited stimulus-
induced activation of washed platelets  [74] . In order to 
analyze the effect of the increased LPC concentrations 
present in mox-LDL, nLDL was spiked with LPC to reach 
the LPC content of mox-LDL, and then exposed to plate-
lets. No direct activation of platelets was observed (Cor-
rinth and Siess, unpublished observations). In a recent 
study, however, it has been observed that LDL isolated 
from insulin-dependent diabetic patients had a signifi -
cant higher LPC content (9.62  8  2.04% of LDL phospho-
lipids) as compared to LDL of healthy controls (4.55  8  
1.86% of LDL phospholipids). The LDL of diabetic pa-
tients increased cytosolic Ca 2+  concentrations and poten-
tiated ADP-induced aggregation  [65] . Whether this effect 
was due to the increased LPC content of LDL of diabetic 
patients or other mechanisms, remains an open ques-
tion. 

 In conclusion, low concentrations of LPC (10–30  �  M ) 
or LPC-enriched LDL, does not induce platelet activa-
tion, provided the platelet buffer contains minimal con-
centrations of albumin. Following exposure of platelets 
to high concentrations of LPC (100  �  M , added to plasma 
or buffer containing albumin) or LPC-containing ox-LDL 
(1 mg ox-LDL/ml corresponding to 200  �  M  LPC fi nal 
concentration) LPC is likely to intercalate into the plate-
let membrane and to inhibit and potentiate platelet func-
tion through its amphiphilic properties, not through bind-
ing to specifi c receptors  [70] . The observation that a high 
LPC content in LDL is inhibitory might explain studies 
showing that strongly oxidized LDL activates platelets 
less than mildly oxidized LDL  [18, 19, 38] . 

 Lysophosphatidic Acid 

 LPA Induces Shape Change and Desensitizes 
Platelets to Subsequent Stimulation by mox-LDL, 
mm-LDL and mox-HDL 
 In studies of our laboratory it was observed that very 

low concentrations of mm-LDL and mox-LDL (5–
200  � g/ml) induced reversible shape change and tyrosine 
phosphorylation of specifi c proteins in a manner similar 
to physiological stimuli  [35, 36, 75] . Shape change in-
duced by mm-LDL and mox-LDL showed homologous 
(mm-LDL/mm-LDL; mox-LDL/mox/LDL) and heterol-
ogous (mm-LDL/mox-LDL and vice versa) desensitiza-
tion as observed for platelet stimuli that activate G-pro-
tein coupled receptors such as thrombin, TRAP, ADP, 
and the thromboxane analog U46619  [21, 28] . Moreover, 
mox-HDL (200–300  � g/ml) also induced reversible shape 
change which could not be re-induced by a subsequent 
addition of mox-HDL. Signifi cantly mox-HDL and mm-
LDL/mox-LDL induced shape change showed cross-de-
sensitization  [21] . We therefore postulated that (a) the 
platelet receptor activated by mox-LDL and mox-HDL 
are identical and is most likely a G-protein coupled recep-
tors; (b) known LDL and HDL binding proteins can be 
excluded as receptors, since apoB100 of LDL and apoE 
of HDL bind to different surface receptors; (c) the active 
mediator generated by mild oxidation of LDL and HDL 
must be a lipid. Based on these postulates, the shape 
change desensitization assay was used and screened for 
lipids with platelet stimulatory properties, and within 2 
days LPA was identifi ed as the lipid that desensitized the 
shape change induced by mox-LDL, mm-LDL and mox-
HDL  [21, 28] . These results indicated that LPA is likely 
to be the active lipid mediating shape change by mox-
LDL, mm-LDL and mox-HDL 

 LPA Formation during Oxidation of LDL and HDL 
 As expected by the desensitization experiments, LPA 

increased during mild oxidation of lipoproteins  [28] . By 
using the shape change response as bioassay to quantify 
LPA after organic extraction of lipoproteins and TLC 
separation of polar phospholipids, it was found that LPA 
increased about 8-fold in mox-LDL and mm-LDL (from 
0.1 nmol to 0.8 nmol/mg protein by using 1-palmitoyl-
LPA for the standard curve)  [28] . The biologically mea-
sured LPA content of mox-HDL was similar as in mox-
LDL, it ranged between 0.5 and 1 nmol/mg protein 
 [21] . 

 LPA represents a class of different molecules. Depend-
ing on the type of fatty acid and the linkage of the fatty 
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acid to the glycerol backbone (either in ester or ether 
bond), the different LPA molecules vary in their potency 
to activate platelets. The alkyl-LPA species are about 20 
times more potent than the corresponding acyl-LPA spe-
cies  [76, 77] , and it was recently found that of various 
acyl-LPA species, arachidonoyl-LPA was 7 times more 
potent than other saturated or unsaturated acyl-species 
 [77, 78] . 

 Measurements by LC-MS showed recently that mild 
oxidation of LDL increased the total amount of alkyl-
LPA, but not acyl-LPA  [79] . Levels of acyl-LPA were 0.19 
and 0.18 nmol/mg protein in native and mox-LDL re-
spectively. Alkyl-LPA increased about 6-fold from 0.025 
to 0.15 nmol/mg protein, i.e. it accounted almost to 50% 
of total LPA in mox-LDL. Alkyl-LPA with saturated as 
well as unsaturated fatty acids (including 20:   4) increased 
during oxidation, and the rank order of the different fat-
ty acids of alkyl-LPA in mox-LDL was 18:   1  1  18:   0  1 

18:   2  1  16:   0. This is in contrast to the acyl-LPA species: 
only acyl-LPA (18:   0) increased, whereas acyl-LPA (18:   2) 
and acyl-LPA (20:   4) decreased during LDL oxidation 
 [79] . These results indicate that peroxidation of unsatu-
rated fatty acid occurs only on acyl-LPA, whereas alkyl-
LPA must be protected against oxidative degradation. 
The LPA content of nLDL measured by platelet bioassay 
and LC-MS was in the same range (0.1 and 0.2 nmol/mg 
LDL, respectively). This amount of LPA was apparently 
not suffi cient to confer platelet-stimulatory properties to 
nLDL. 

 The LPA content in mox-LDL measured by the plate-
let bioassay (0.8 nmol/mg protein) was higher as mea-
sured by LC-MS (total LPA: 0.32 nmol/mg protein), 

which is likely due to the increase of the more potent al-
kyl-LPA species in mox-LDL. The 8-fold increase of LPA 
measured by bioassay correlated well with the 6-fold in-
crease of alkyl-LPA measured by LC-MS  [28, 79] . 

 Although the amount of LPA formed present in mox-
LDL is relatively small (about 0.16 molecules per LDL 
particle; 0.03% of total LDL phospholipids), LPA is the 
main platelet-activating lipid of mox-LDL as shown by 
lipid fractionation studies. LPA was by far the most active 
lipid of mox-LDL; apart from some platelet-stimulatory 
activity in the LPC fraction, no other signifi cant platelet 
activity was observed in the various lipid fractions of mox-
LDL ( fi g. 2 )  [28] . LPA was also the main platelet-activat-
ing lipid of nLDL ( fi g. 2 ), but apparently without func-
tional consequences: LPA was found not to be responsible 
for the platelet sensitizing effect of LDL  [80] . 

 The pathway by which alkyl-LPA is generated during 
mild oxidation of LDL or HDL is not known. Since LPA 
is produced by mild oxidation of both LDL and HDL, it 
is likely that LPA is formed directly by lipid oxidation. 
However, enzymatic pathways for LPA generation that 
are activated by oxidation cannot be excluded. In serum, 
LPA is mainly generated by two distinct steps: (1) PLA1 
or PLA2 cleavage of PC, PE or PA, and (2) lyso-phospho-
lipase D cleavage of the basic phospholipid headgroups 
choline or ethanolamine  [81, 82] . Whether these enzymes 
are present in LDL and HDL is not known. 

 LPA Receptors and Antagonists 
 Platelets express all three EDG-family LPA receptors 

as revealed by RT-PCR analysis.  [83] . LPA 4  mRNA could 
not be detected in a megakaryocytic cell line suggesting 
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  Fig. 2.  LPA is the main platelet-stimulating 
lipid in mox-LDL and nLDL. Lipids were 
extracted from nLDL and mox-LDL by a 
two-step procedure, and separated by TLC. 
Lipids equivalent to 0.1 mg protein were 
added to platelet suspensions for measure-
ment of platelet shape change. The highest 
activity found in the LPA-fraction of mox-
LDL was set to 100%. The fi gure is based 
on data of table 1 of reference  [28] . 
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that platelets do not express this receptor  [84] . NPSerPA 
and NPTyrPA are LPA receptor ligands with both agonist 
as well as antagonist properties on platelets  [28, 77, 85] . 
NPSerPA is an agonist of the three EDG family LPA re-
ceptors (LPA 1–3 ), whereas NPTyrPA activates LPA 2  and 
is an antagonist of LPA 3   [86] . Recently it was shown that 
DGPP 8:   0, an antagonist of LPA-receptors of the EDG-
family with preference to LPA 3  over LPA 1  without an ef-
fect on LPA 2  receptors, inhibited LPA-induced platelet 
activation suggesting that LPA 1  and LPA 3  mediate LPA-
induced platelet activation  [77, 87] . DGPP 8:   0 and PA 
8:   0 were the only PA and LPA analogs that lacked ago-
nistic activity on isolated platelets. Very recently, synthe-
sis of various fatty alcohol phosphates, substances that 
lack a glycerol backbone and represent the minimal phar-
macophore to interact with LPA receptors, provided LPA 
receptor ligands which activated all three LPA receptors 
(LPA 1–3 ), or only LPA 2 , or were pan-antagonists, i.e they 
inhibited LPA 1–3 . All these compounds inhibited the 
LPA-induced shape change, and, with the exception of 
the LPA receptor pan-antagonist, activated platelets with 
different potency  [86] . Since platelet LPA receptors show 
a homologous desensitization 5 min after activation  [28] , 
it is possible that the agonistic fatty alcohol phosphates 
and fatty alcohol thiophosphates might exert their inhibi-
tion through desensitizing LPA receptors rather than re-
ceptor antagonism. 

 The effects of LPA-receptor agonists and LPA-recep-
tor antagonists on platelets are not consistent with their 
pharmacological properties on the known EDG family 
receptors LPA 1–3   [88] . Therefore it remains to be eluci-
dated, whether all these LPA receptor antagonists exert 
their effect on platelets exclusively through the EDG fam-
ily LPA receptors or in addition through an elusive plate-
let LPA receptor. In support of the heterogeneity of LPA 
receptors in platelets, Tokumura and colleagues noted 
that while platelets collected from all donors responded 
to acyl LPA 18:   1, some of them did not respond to alkyl-
LPA 16:   0  [78] . In this study, the authors found that plate-
lets from a donor with platelets non-responsive to alkyl-
LPA expressed mRNA to LPA 2   1  LPA 3   1  LPA 1  receptors. 
DGPP 8:   0 and NPSerPA inhibited both acyl-LPA and 
alkyl-LPA responses  [77] . Thus, the possibility remains 
that LPA responses in platelets are mediated via yet un-
identifi ed receptor(s). 

 Platelet Responses to LPA and mox-LDL: Inhibition 
by Albumin and LPA-Receptor Antagonists 
 The type of response of washed platelets to LPA and 

mox-LDL is very critical dependent on the type of plate-

let isolation procedure. After pretreatment of PRP with 
aspirin, washed platelets can be obtained which respond 
with shape change upon exposure to low (1–10 n M ) con-
centrations of acyl-LPA or 5–50  � g/ml concentrations of 
mox-LDL or mm-LDL  [36, 75, 77] . LPA with 16:   0, 18:   0 
or 18:   1 fatty acid in ester bond show similar potency in 
inducing shape change  [77] . Even after high concentra-
tions of acyl-LPA (1–10  �  M ), only shape change, but no 
aggregation or secretion is observed in these platelets  [77, 
89] . 

 Shape change induced by LPA or mox-LDL, mm-LDL 
or mox-HDL was completely inhibited by LPA receptor 
antagonists, indicating that LPA is the platelet-activating 
compound in all three oxidized LDL preparations ( fi g. 3 ) 
 [21, 28, 77] . The LPA-receptor antagonists tested were 
NPSerPA, NPTyrPA as well as DGPP8:   0. 

 In washed platelets, low nanomolar concentrations of 
LPA induced shape change (EC50 of acyl-LPA 16:   0: 2–
20 n M ). In contrast , much higher concentrations were 
required to induce shape change in PRP (EC50: 4–
12  �  M ) and in blood (EC50: 4  �  M )  [77, 89, 90] . Also for 
mox-LDL much higher concentrations were required to 
observe shape change of PRP (EC50  6 2 mg/ml) as com-
pared to washed platelets (EC50: 5–50  � g/ml)  [90] . Pre-
incubation of washed platelets with albumin inhibited 
dose-dependent LPA or mox-LDL-induced shape change 
(IC50 of albumin 6  �  M )  [89] . These observations might 
be explained by the high affi nity binding of LPA to albu-
min  [91] . Albumin in plasma might compete with platelet 
LPA receptors for LPA binding. Alternatively, albumin 
might also block binding of LPA to certain platelet LPA 
receptors. Indeed, studies on Sf9 cells expressing the in-
dividual LPA receptors showed that albumin interfered 
at lower concentrations with LPA activation of LPA 3 , as 
compared with LPA activation of the other two LPA re-
ceptors  [92] . 

 Aggregation of washed platelets upon stimulation by 
low concentrations of LPA (0.1–1  �  M ) can be observed, 
when platelets are separated from plasma by centrifuga-
tion and are resuspended in buffer without further wash-
ing and without addition of apyrase  [89, 93] . These 
platelets are, however, often preactivated (i.e. they are 
not discoid)  [90] . LPA-induced platelet aggregation in 
these platelet preparations is likely due to synergism of 
LPA with extracellular ADP artifi cially present in the 
medium  [77, 89] . Indeed, addition of apyrase or ADP-
receptor antagonists completely blocked the LPA-in-
duced aggregation in this platelet preparation  [89, 93] . 
Also mox-LDL (1–2 mg/ml) could induce platelet aggre-
gation of washed platelets, when apyrase was omitted 
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during platelet isolation and in the platelet resuspension 
buffer  [18, 21] . Aggregation induced by mox-LDL was 
completely inhibited by LPA receptor desensitization or 
NPTyrPA, indicating that LPA is also the compound of 
mox-LDL responsible for stimulation of platelet aggre-
gation  [21] . 

 We have recently followed a platelet preparation pro-
tocol, which used PGI 2  during the isolation procedure 
 [94] . A preparation of discoid platelets was obtained, 
which showed shape change to low concentrations of LPA 
(0.1–1  �  M ), and platelet aggregation to higher concentra-
tions of LPA ( 1 1  �  M )  [95] . Addition of fi brinogen was 
required to observe platelet aggregation. Upon high con-

centration of LPA ( 1 10  �  M ), maximal irreversible plate-
let aggregation was observed which was associated with 
secretion. LPA-induced aggregation was almost com-
pletely inhibited by either antagonist of the two ADP re-
ceptors P2Y 1  and P2Y 12 , but not by the cyclooxygenase 
inhibitor aspirin. Similar results were obtained upon 
LPA-induced platelet aggregation in whole blood  [95] . 
These results indicate LPA synergized with ADP to in-
duce platelet aggregation  [77] . Where did the ADP origi-
nate from? In washed platelet preparations containing 
apyrase, ADP can only derive from dense granules of 
stimulated platelets. Indeed LPA concentrations induc-
ing aggregation of washed platelets ( 1 3  �  M ), evoked a 
signifi cant, but minute dense granule secretion (as mea-
sured by the release of serotonin). In blood, ADP could 
derive from dense granules of activated platelets and/or 
red cells  [89] . 

 In blood, LPA induced platelet aggregation at low con-
centrations, the EC50 for alkyl-LPA (16:   0) was 0.3  �  M , 
and for acyl-LPA (16:   0) 5  �  M   [95] . These LPA concen-
trations are close to LPA plasma levels: the reported con-
centrations of acyl-LPA are between 0.1 and 0.6  �  M   [96–
98] . No studies have been done concerning the effect of 
mox-LDL or mm-LDL on platelets in whole blood. 

 Signaling Pathways Stimulated by LPA and 
mox-LDL 
 LPA activates the small GTP-binding protein Rho via 

stimulation of the heterotrimeric G 12  and G 13  proteins. 
By performing conditional gene knock-out experiments 
in mice, it has been recently shown, that in stimulated 
platelets only G 13 , but not G 12  mediates Rho-dependent 
shape change  [99] . These results suggest that in platelets 
LPA will activate Rho through G 13  stimulation. During 
LPA- and mox-LDL induced shape change, Rho-medi-
ated activation of Rho-kinase (p160ROCK) leads to the 
reorganization of the actin cytoskeleton underlying plate-
let shape change  [100–102] . We have recently found that 
LPA induced a rapid and reversible increase of Thr696 
and Thr853 phosphorylation of myosin phosphatase tar-
geting subunit during shape change (Pandey et al, unpub-
lished observations). Phosphorylation of myosin phos-
phatase targeting subunit inhibits the binding and activ-
ity of the myosin phosphatase to dephosphorylate myosin 
light chain (MLC). As consequence the phosphorylation 
of MLC is enhanced  [100, 101] . Specifi c inhibition of the 
Rho kinase with the inhibitor Y-27632 or the new spe-
cifi c, structurally unrelated Rho-kinase inhibitor H-1152 
inhibited myosin phosphatase targeting subunit and 
MLC phosphorylation, and in parallel the LPA- and mox-
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  Fig. 3.  Induction of shape change by mox-LDL and mm-LDL, but 
not nLDL. Inhibition by LPA-receptor antagonists. Suspensions of 
washed platelets were exposed to nLDL, mox-LDL or mm-LDL 
(0.2 mg/ml), or preincubated for 10 min with solvent (control), or 
the LPA-receptor antagonists NPTyrPA (10  �  M ) and DGPP 8:   0
(5  �  M ) before stimulation with mox-LDL. Data are from refer-
ences  [28,   77] . 
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LDL induced shape change (Pandey et al., unpublished 
observations)  [100, 101] . 

 Recent studies in our laboratory have shown that Rho-
kinase not only controls MLC phosphorylation, but also 
the F-actin increase during LPA-induced shape change. 
Rho-kinase led to rapid Thr508 phosphorylation of LIM-
kinase 1. However, the LIM-kinase substrate cofi lin did 
not show an increased phosphorylation, probably because 
of simultaneous dephosphorylation by a cofi lin phospha-
tase (Pandey et al., unpublished observations). 

 In addition to the Rho/Rho-kinase pathway, both LPA 
and mox-LDL stimulate a different pathway during shape 
change, i.e. the activation of the Src-family tyrosine ki-
nases and the subsequent activation of the tyrosine kinase 
Syk  [75] , which possibly mediates the exposure of fi brin-
ogen-binding sites on the fi brinogen receptor during shape 
change  [103] , a prerequisite for platelet aggregation. It is 
not known which G-protein is involved in the activation 
of this pathway. 

 High concentrations of LPA ( 1 1  �  M ) were needed to 
stimulate in platelets a small increase of cytosolic Ca 2+ . 
LPA as well as mox-LDL (0.5 mg/ml) increased the cyto-
solic Ca 2+  concentration mainly through the stimulation 
of Ca 2+  entry across the plasma membrane, much less by 
cytosolic Ca 2+  mobilization from intracellular stores  [75, 
77] . LPA and mox-LDL showed cross-desensitization of 
the cytosolic Ca 2+  increase (LPA/mox-LDL and mox-
LDL/LPA), and the mox-LDL evoked Ca 2+  increase was 
inhibited by LPA receptor antagonists  [75] . These results 
indicate that the mox-LDL induced Ca 2+  response in 
platelets is also completely dependent on LPA receptor 
activation. 

 Conclusion and Perspective 

 Although LDL oxidation generates numerous lipids 
with platelet stimulatory properties, it emerges that LPA 
is the only lipid responsible for platelet stimulation by 
mox-LDL and mm-LDL. These lipoproteins activate 
platelets by stimulating G-protein coupled LPA receptors 
and a Rho/Rho kinase signaling pathway leading to plate-
let shape change and subsequent aggregation. Notably al-
kyl-LPA is not only the LPA-species which is formed by 
mild oxidation of LDL, but also the LPA species with high 
platelet-activating potency. In whole blood, submicromo-
lar concentrations of alkyl-LPA induced platelet shape 
change and, synergistically with ADP, aggregation. Alkyl-
LPA might be present in circulating electronegative and 
oxidized LDL, which is elevated in patients at high car-
diovascular risk, and acyl-LPA as well as alkyl-LPA are 
known to accumulate in atherosclerotic plaques and to 
mediate platelet activation by the plaque lipid-rich core 
 [28, 77] . It is therefore possible that LPA-mediated plate-
let activation contributes to the increased blood thrombo-
genicity of patients with cardiovascular diseases and par-
ticipates in arterial thrombus formation after rupture or 
erosion of atherosclerotic plaques. The platelet LPA re-
ceptor which remains to be identifi ed might present a 
promising new anti-thrombotic target for the prevention 
of ischemic cardio- and cerebro-vascular dis eases. 
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