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Abstract  This contribution studies the Cox model under covariate measurement
error. Methods proposed in the literature to adjust for measurement
error are reviewed. The basic structural and functional approaches are
discussed in some detail, important modifications and further develop-
ments are briefly sketched. Then the basic methods are compared in a
simulation study.
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1. Introduction

Probably the most common statistical model in biometrics is Cox’s pro-
portional hazards model for analyzing survival data. Searching in the
Medline database yields about 8000 entries for the term ‘proportional
hazards’ during the last ten years. In most biometric studies, measure-
ment error is an important issue. Often variables of interest can not
be measured without substantial error, often they are even not avail-
able in principle (like the average protein intake over the last five years).
Surrogates have to be used instead. The naive estimate, which just
plugs in the surrogate instead of the true covariate, may be expected
to be severely biased. Therefore, several methods have been developed
to remove the bias by taking the measurement error appropriately into
account. This paper reviews them and compares the basic approaches
underlying them. For this purpose, we proceed as follows: Section 2 col-
lects some facts on Cox’s proportional hazards model, Section 3 states
precisely the basic form of the error models underlying this study. The
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literature on covariate measurement error in the Cox model is surveyed
in Section 4, where special attention is paid to those methods which
have laid the foundations for further developments. In Section 5 several
correction methods are compared by a simulation study.

2. Cox’s proportional hazards model

According to Cox [9], for every unit ¢ = 1,...,n, the corresponding
hazard rate A(t) = limcjge™' - P({t < T; < t+¢e}|{T; > t}) of the
failure time 7T; is related to the p-dimensional vector X; of covariates by

A(t1X;) = Xo(t) - exp(B7 X;) . (1)

The hazards of the units are proportional to each other, because the
baseline hazard rate A\o(t) is assumed to be the same for all i. It can
be left completely unspecified, making the model a semiparametric and
therefore quite flexible tool.

The common random censorship model is used: rather than always
observing T;, only the pair (Y;, 4A;) is available where Y; = min(T;, C;)
and A, is the indicator function of {T; < C;}. The censoring variable C;
is stochastically independent of T; and describes the maximal time span
which unit 4 can be in the study. Assume that no ties occur, and order
the observed true failure times in increasing magnitude: 71 < 79 < ... <
7; < ...< 7T, 7o := 0. Define for j = 0,1,... ,k the risk set R(7;) to be
the set of all units being alive immediately before 7;.

Estimation of the parameter vector (3 is based on the so called partial
likelihood, which does not involve Ao(t). The partial likelihood estimate
BPL is then obtained as the root of

k T
. Zz‘eR(rj) X; - exp (87 X;) _
2 (X] Yier(y) exp (B7X) ) v @

i=1

For inference on the baseline hazard rate customarily the Breslow esti-
mate (cf. [4, 5]) of the cumulative baseline hazard rate Ay (t) = fg AMu)du
is used.

3. The basic error model

Unless it is explicitly mentioned the classical, homoscedastic error model
in its basic form is considered throughout the paper: Take all true covari-
ates X; to be continuous and assume that the surrogates W; are related
to X; by W; = X; + U; . The measurement error U; is required to be in-
dependent of T}, X, 7 = 1,... ,n, as well as of Uj, 5 # i. Furthermore,
the variables U; are assumed to be i.i.d. normally distributed with mean
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zero and known (or consistently estimated) covariance matrix ¥y;.! The
dependent variables Y; and A; are taken to be error free.

Altogether this leads to nondifferential measurement error: given X;,
the variables T; and W; are conditionally independent. This means that
knowledge of X; would make observation of W; superfluous; W; really is
only a surrogate providing no information which is not contained in X;.

4. Correction methods for the Cox model

Apart from some comments in Section 6 on baseline hazard rate es-
timation, we concentrate on measurement error corrected inference on
the regression coefficients 5. To structure this part of the presentation,
we order the different methods according to the assumptions they re-
quire for the distribution of the true, unknown covariate X;. We begin
with the structural approaches, where the distribution of X; is assumed
to belong to a known class of parametric distributions. Then we turn
to the functional methods which manage to do without any parametric
assumption on the distribution law of the X;s.

4.1 Structural approaches

Generally there are two basic structural approaches: regression calibra-
tion, which will be discussed at the end of this subsection, and ‘integrat-
ing the likelihood.’

The latter one uses the conditional distribution of X; given W; and
the assumption of non-differentiality to integrate out the influence of
the measurement error. Prentice [20] made it clear that applying this
idea to the Cox model leads to unexpected difficulties: Under non-
differential measurement error, which can be shown to be equivalent
to A(t| X5, W;) = A(t|X;), one obtains in general

AHW:) =lime - P(T: < t+e}{T 2 2}, W)

&

=lime™! B (PU{T: <t +e}X, {3 > t}, W) {Ts > 1}, W)
£

=lime™" B (PT < t+ )T 2 th X){T: 2 1), W)
&

=EW\(X){T: > t}, Wi),

and for the Cox model
A(HWi) = Xo(t) - E(exp(8" X;)|Wi, {T; > t}). (3)

Note that, via the event {7; > t} appearing in the condition, the second
factor, the so called induced relative risk, depends on the previous history
of the process. Because of this complex dependence on the unknown
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baseline hazard rate, the characteristic form of (1) is lost, and partial
likelihood estimation can not be directly applied any more.?

However, as Prentice also argued, the effect of this time dependence
can be expected to be small if the failure intensity is very low, because
then the condition {7; > ¢} is almost always satisfied. Under this so
called rare disease assumption,

AtIW;) = E (A X)RT: > 1}, W) =~ E(A(X;)|[W)) (4)
Xo(t) - E (exp(68T X:)|Wi)

and the induced relative risk can be explicitly calculated in some cases
approximately. (See [19, p. 1170] for a brief discussion of the exactness
of this approximation.)

If X;|W; is normal with mean z; and common covariance ¥, then

A(IW;) = Ao(t) - exp(BT fis + 0.587£8) =: Aj(t) - exp(BT 1) . (5)

One important example is the situation where X; itself is i.i.d. normally
distributed, with unknown mean p x and non-singular covariance matrix
Yx. Then W; ~ N (ux;Xx + Xy), and indeed Xz|Wz ~N (,LZZ, 2), with

fii = px + Ex - (Ex +20) - (W — px) (6)
and ¥ =Yy —Xx - (Bx + EU)_1 Y x. Now (5) reads as

AHW:) = X5(t) - exp(BTux + 7Sx - (Sx +2p) " (Wi — py)
= N*(t)-exp(8T-Tx - (Sx +3Zp) L Wy).

This shows that, under the assumptions stated above, the simple at-
tenuation factor known from linear regression also applies for the Cox
model; the corrected estimate F.opp 1S

Bcorr = 2)_(1 : (ZX + ZU) ' Bnaive . (7)

Notice further that, given the measurement error covariance Xy, the
nuisance parameters px and Y x can be efficiently estimated from the
observations Wy,... ,W,.

[13] arrived at (7) as an ad-hoc proposal, motivated by the attenuation
known from linear regression. In a series of simulations he observes
a strong dependence of the bias on the true § and on the amount of
censoring. Both issues are in accordance with the deviation given above:
the lower, ceteris paribus, the true § and the higher the proportion of
censored observation are, the better the rare disease assumption (4) is
satisfied.
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Probably the most universal tool for measurement error correction is
regression calibration (c.f., e.g., [7, Chapter 3]). One uses the knowledge
of W; to predict X; and replaces X; by its expectation given W;. In
general, the estimates derived are not necessarily consistent, but the
bias is considerably reduced. The main advantage of the method is its
easy implementation; simply by proceeding with E(X;|W;) instead of X;
in the calculation, the estimates are obtainable by standard software.

In the presence of validation data, regression calibration can be used
in a functional way, because then E(X; | W;) can be estimated in a
non-parametric manner. [21] elaborated this idea for the Cox model.
If no validation data are available, structural modeling is necessary. In
the simplest case also considered above, where X; is i.i.d. normally
distributed, regression calibration coincides with the method discussed
above: Substituting in Equation (2) the variable X; by its conditional
expectation g; from (6) yields the estimating equation

i (Mj _ DieR(r) Fi - €XP mTM) =0.

D icr(r;) eXP (BT 1)

j=1

-1
After simplification and multiplication with (EX (x4 EU)_I) one
obtains

k DieRr(r;) Wi - exp (BTZX (Ex 4+ 2! WZ->

do{wi- =0, (8)

=1 2ieR(r;) €XP (ﬁTEX (Sx +3p) Wi)

which indeed leads again to (7).

Since assumptions on the distribution of the latent variable may influ-
ence the behaviour of the estimates, more flexible models for the distri-
bution of X;, for instance mixtures of normals, may be very attractive.
The main arguments given in [2] to develop measurement error corrected
quasi-likelihood estimation carry over to the situation considered here.
In this generalized setting, both structural approaches won’t be equiva-
lent any more.

Methods related to regression calibration are studied and developed
further in [19, 8, 13]. As mentioned above, [21] integrate this approach
into a model, where the conditional distribution needed to adjust for
measurement error is estimated from validation data. An alternative
way to incorporate validation data is discussed in [23].

Under the assumption of piecewise constant hazard rates and based
on numerical integration, [11] developed three likelihood based methods,
which differ with respect to the modelling of the covariate distribution
(nonparametric, semiparametric and parametric.)
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4.2 Functional approaches

There are also several strictly functional approaches. The most pop-
ular one is [18], where Nakamura adopts his general methodology of
corrected score functions (cf. [17]) to the Cox model. Nakamura’s basic
idea is to construct unbiased estimating equations by looking for a func-
tion in the observable quantities ¥ := (Y1,...,Y,), A= (Ag,...,Ap)
and W := (W1y,... ,W,) such that the conditional expectation given
X; is equal to the original score function. Then, by the theorem of
iterative expectation, the overall expectation of this so called corrected
score function equals zero, from which, under mild regularity conditions,
consistency and asymptotic normality of the resulting estimate can be
derived. This general framework, however, can not be directly applied
to Equation (2) for partial likelihood estimation in the Cox model: the
fact that the denominator possesses a (complex) singularity makes the
existence of a corrected score function impossible.

Nakamura [18] therefore proposes an approximate solution based on
a first and second order Taylor approximation of the fraction in (2).

Denoting the naive estimating function by \If_(f/', A, W; () and defining
—2
K; (W) = 1= (SDieriy oxp (Wi B) ) - (Sieriy exp (WilB))
one obtains the first order corrected estimating function \111(}7, A, W; 0)
and the second order correction Wo(Y, A, W; 3) as

—

v (V,AWi8) = v (V,AW:p) + 3-8 (9)

u (VAW ) = v (VAWS) +3 (K (W) Sy 4
[15] study asymptotic properties of the resulting first order estimate
and suggest an extension to non-normal measurement error. [3] gives a
justification of (9) as an exact corrected likelihood estimate for Breslow’s
(cf. [4, 5]) likelihood approach to the Cox model. Based on replication
data, [12] develop a nonparametric correction method which manages to
do without parametric assumptions on the measurement error.

Another functional approach is studied by [6], who obtains a different
unbiased score equation. [14] derives an expression for the asymptotic
bias of the naive partial likelihood estimate, which can also be used for
bias reduction.

5. Simulation study

By simulation we examined the behaviour of the basic estimates in
the situation of one normally distributed covariate under normally dis-
tributed, homoscedastic measurement error. We compared the naive
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estimate, the first and second order Nakamura estimates and the two
elementary structural methods, which coincide here. We varied the sam-
ple size, the distribution of the true covariate, the amount of censorship,
the measurement error variance Xy and the underlying distribution of
the survival time. Here is a brief summary of the results:

We generated Weibull distributed survival times. Varying the shape
parameter had some effect on the magnitude of the bias, but did not
change the phenomenological picture depicted below. As may be broadly
expected, for very small measurement error the naive estimate still is
superior, while for large measurement error the bias is intolerable: for
Yy = X x the observed attenuation is about one half.

5.1 Structural correction

In the designs we studied, the amount of censoring did not play a very
important role: this suggests that the rare disease assumption (4) un-
derlying (7) may be interpreted liberally to some degree (c.f., however,
[13], and Section 4.1.) The effect of the distribution of the true covariate
X; was surprisingly small. Misspecification (by a symmetric mixture of
normals and a uniform distribution) did not substantially worsen the
behaviour of the structural methods. This insensitivity, on the other
hand, is also responsible for the fact that the structural methods were
not able to beat Nakumara’s first and second order estimates even in
situations where all the assumptions on which the structural methods
are based were fairly met.

5.2 The Nakamura estimates

The estimates obtained from Nakamura’s correction method showed
some quite remarkable features: the often observed excellent behaviour
was contrasted by sometimes completely wrong results and many numer-
ical difficulties. In a, by far not negligible, number of situations we were
confronted with the problems of non-convergence or of wrong conver-
gence, which also had been reported by some other authors. As described
in [15], the estimate may not always exist because the derivative of the
corrected score functions is not always negative in the neighborhood of
the true §. This effect regularly happens when the measurement error
gets large. Even when the measurement error variance was half of the
covariates variance, Nakamura'’s estimates often failed to converge. We
additionally want to stress that a lot of care is needed with respect to the
numerical calculation of the root of the corrected estimating equations.
Experimenting with different root finders we got quite often completely
different estimates. This is in particular urgent for the second order es-
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timate and if the slope of the hazard rate differs considerably from zero.
The need to use numerically expensive procedures makes calculation of
the estimate rather slow.

When we restricted ourselves to those situations where the solutions
were apparently reliable, the bias was very small indeed. Then Naka-
mura’s methodology proved to be very powerful for correcting the mea-
surement error. After having removed the ‘outlying values’, the func-
tional methods performed almost always better than the structural meth-
ods. As already said above, this was even true in that situation which
was used to derive und justify the structural approaches.

Comparing both Nakamura estimates with each other, the second
order estimate was in most situations slightly superior to the first order
estimate, as long as no numerical problems appeared. Whether this gain
in bias reduction is large enough to compensate the additional numerical
difficulties and the higher danger to produce artefacts, has to be decided
on a case-by-case basis.

6. Concluding Remarks

In this paper we reviewed methods to estimate regression parameters in
the Cox model under homoscedastic measurement error. In some more
detail, we discussed Nakamura’s method as well as the application of
the two main structural methods, which were additionally shown to be
equivalent in a special case. Then the basic estimates were compared
in a simulation study. The overall conclusion resulting from it is some-
what ambiguous, because the Nakamura estimates showed very extreme
behaviour. On the one hand, they can lead to a lot of numerical diffi-
culties and may produce artificial results, on the other hand, in those
constellations where they behave not irregularly, they are very powerful.

We did not discuss the estimation of the baseline hazard rate under
measurement error. Results on this issue can be found in [21, 16, 15, 12,
3]. A comparison of the different methods is still lacking.

Another topic of further research, also quite important for practical
application, is the extension of the methods to heteroscedastic mea-
surement error. For instance, this is of particular interest in nutritional
studies, where subject matter considerations suggest comparatively high
heteroscedastic measurement errors (see, e.g., [22, page 33-48].)

In the last years parametric survival models have attracted much at-
tention, but up to now not much is known how to correct for measure-
ment error in this context. Some results are directly available from [17]
and are extended by [10]. A structural approach to measurement error
correction in parametric survival models is proposed in [1].
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Notes

1. We allow for the border case that (some of) the rows of Xy are zero, so that we do not
need to distinguish in notation between correctly measured and error-prone components of
the covariate vector. If the j-th component X;[j] is measured without error then U;[j] = 0.

2. Cf., however, [19, p. 1169], who characterize a family of distributions where the adapted
partial likelihood can be dealt with in a closed form.
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