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Abstract

Usual sequential testing procedures often are very sensitive against
even small deviations from the ‘ideal model’ underlying the hypothe-
ses. This makes robust procedures highly desirable. To rely on a clearly
defined optimality criterion, we incorporate robustness aspects di-
rectly into the formulation of the hypotheses considering the problem
of sequentially testing between two interval probabilities (imprecise
probabilities). We derive the basic form of the Kiefer-Weiss optimal
testing procedure and show how it can be calculated by an easy-to-
handle optimization problem. These results are based on the reinter-
pretation of our testing problem as the task to test between nonpara-
metric composite hypotheses, which allows to adopt the framework
of Pavlov (1991). From this we obtain a general result applicable to
any interval probability field on a finite sample space, making the
approach powerful far beyond robustness considerations, for instance
for applications in artificial intelligence dealing with imprecise expert
knowledge.
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1 Introduction

Sequential and group sequential procedures help ceteris paribus to reduce the
sample size. So they have become the standard way of analysis especially in
areas, where sampling cost of each unit is high, like in quality management
and in many types of clinical trials (e.g. Jennison and Turnbull (1999)).

In contrast to the fixed sample case, the problem of robustness has rarely
been addressed in sequential analysis, neglecting the fact that many of the
standard procedures must be suspected to be highly sensitive to even small
deviations from the ‘ideal model’ specifying a certain parametric distribution.
But in many situations the distributional assumptions may be satisfied only
approximately: for instance the measurements may be imprecise or outliers
may occur. Furthermore, sometimes it is even impossible to formulate an
‘ideal model’ precisely. This is especially true in applications in artificial
intelligence, where the models stem from, naturally rather imprecise, expert
judgements.

One approach to take robustness into account (e.g. Christmann (1999)) will
be called ex post robustifcation in this paper: procedures which are optimal
for the ‘ideal model’ are robustified by passing over to robust versions of the
statistic they are based on. (For instance, in the simplest case, using the me-
dian instead of the mean.) To find such robustifications, one tries to transfer
experience from the case of a fixed sample size to the sequential case hoping
that “what’s good for fixed sample size can not be bad in the sequential case”.
The performance of such robustified versions then is evaluated with respect
to certain measures of performance (for instance the breakdown point) or is
justified by appropriate behaviour in simulation studies.

This paper would like to bring up a conceptually different approach for dis-
cussion. We propose to incorporate robustness considerations directly into
the formulation of the hypotheses and then to search for optimal procedures
in this extended setting. This so-to-say ez ante robustification has the appeal-
ing property that the whole development stands under a certain, precisely



defined optimality criterion (in our case a Kiefer-Weiss-type criterion). There-
fore, the solutions gained are eo ipso justified to be optimal for the setting
considered.

To formulate such hypotheses prepared for robustness, the natural framework
is the notion of interval probability, also known as imprecise probability. This
concept provides a superstructure upon the models commonly used in robust
statistics to describe small deviations from an ‘ideal model” as well as outliers
(see e.g. Huber (1981, Chapter 10) or the review (and the extensions) in Au-
gustin (2001)). Additionally interval probability is the tool per se to express
uncertain knowledge in form of expert opinions probabilistically (e.g. Shafer
(1976), Weichselberger and Péhlmann (1990), Yager, Fedrizzi and Kacprzyk
(1994)). A general survey on imprecise probabilities and a comprehensive bib-
liography can be found on the “imprecise probability page” (de Cooman and
Walley (2001)); recent developments are discussed, for instance, in Bernard
(2001).

To make this paper self-contained, in Section 2 we briefly collect some basics
from the theory of interval probability. Section 3 turns to sequential testing
and states the optimality criterion under consideration. Our main result de-
scribing the basic form of the optimal procedure is formulated and proven
in Section 4. There we also discuss this procedure as well as aspects of its
practical calculation, and finally illustrate it with a didactic example.

2 Interval probability

In the whole paper we will confine ourselves to a finite sample space ) =
{y1, .., Yn} with n elements y; and consider, w.o.l.g., A = P(}) as the o-field
on ) containing arbitrary events A. Singletons will separately be denoted by
Ej:{yj},jzl,... , 1.

Interval-valued assignments are symbolized by capital letters P(-) and are
called interval probabilities; the lower interval limit is denoted by L(-), the
upper one by U(-). As the name interval probability suggests, the probability
of every event A is described by an interval [L(A),U(A)] C [0;1] instead of
a single real number p(A). To distinguish in notation and terminology, we
call every probability in the usual sense, i.e. every set function satisfying
Kolmogoroft’s axioms, classical probability and denote it by small letters
p().

The concept of interval probability allows to express the quality of infor-



mation or the degree of uncertainty in the probability statement itself. By
this also robustness aspects can be taken into account properly. If there are
doubts about the underlying model or if many outliers have to be expected,
neighborhood models can be formulated leading to wider intervals. On the
opposite, small intervals reflect probabilistic information with high reliability.
Several axiomatizations for interval probabilities have been suggested in lit-
erature, which materially coincide in the case of a finite sample space. Ac-
cording to them interval-valued set functions

P : A — {[L,U]:0<L<U<LI1}
A = [L(A), U(A)]

can be distinguished with respect to the relation between the non-additive
set functions L(-) and U(-) and the set

M= {p() : L(A) < p(A) <U(A) VAe A}

of all classical probabilities p(-) being in accordance with them.

If at least M # (), which is understood as a minimum requirement, the assign-
ment can be interpreted as not contradictory to the concept of probability. In
this paper we join Weichselberger’s terminology, calling P(-) R-probability
and M its structure (cf. Weichselberger and Péhlmann (1990), Weichsel-
berger (2001, Chapter 2)). !

If there is additionally an one-to-one correspondence between interval limits
and the structure such that

inf p(A) = L(4), VA
inf p(4) =L(4), VAEA

supp(A)=U(4), VAc A,

peEM
an R-probability P(-) is called F-probability (cf. Weichselberger and
Pohlmann (1990) and Weichselberger (2001)).
Since there are well-defined ways to proceed from R- to F-probabilities
(Weichselberger (2001), Chapter 2.5 and 2.6), we confine ourselves in the
following to F-probability.

'In the frequentist theory of interval probability (e.g. Papamarcou and Fine (1986)) the
set function L(.) is called “dominated”. Walley (1991) gives a behaviorial characterization
of such assignments as “avoiding sure loss”.



Note that in this situation necessarily L(-) and U(-) are conjugated:
UA)=1-L(—A), A€ A (1)

Therefore, one of the two set-functions L(-) or U(-) is sufficient to describe
P(.).

In the way it was defined above, interval probability is characterized by as-
signing probability components to all events of the o-field A. It is a huge
advantage of interval probability that it is possible to construct interval
probability from any assignment on arbitrary subsets Ay, Ay of A. For this,
consider partial assignments L(-) on Ay, and U(-) on Ay such that

M :={p() e M: p(A) > L(A), VAeAL
p(A) < U(A), VA€ Ay} #0.

Then it can be shown that P(-) = [L(-), U(-)] with

L(A) := inf p(A), VA€ A,
pEM

U(A):=supp(A), VAe A,
pEM

is an F-probability with structure M. That is, it is reflecting exactly the
information contained in L(-) and U(-).

An important special case for applications is the situation where Aj; and
Ay are consisting of all singletons F;,j5 = 1,... ,n. Then one is led to the
theory of probability intervals (PRI) as described in Weichselberger and
Pohlmann (1990). In this case the limits L(-) and U(-) will be summarized
in the following way:

L(E) U(E)
LB ()

3 Sequential testing

To prepare the study of sequential tests between interval probabilities and
to introduce the notation used throughout this paper, let us briefly review
some basics of sequential analysis (e.g. Ghosh (1970), Irle (1990)).



3.1 Classical theory

Consider two hypotheses Hy and H, specifying two sets Wy, W, of proba-
bility distributions, with Wy N W, # 0, on the same measurable space. In
sequential analysis one solves the task of deciding between Hy, and H; by
considering successively repeated observations. Given bounds «;, i € {0, 1},
on the overall probabilities of falsely rejecting hypothesis H;, one has to de-
cide at every time point whether one is ready to accept Hy, or to accept Hy,
or whether a further observation has to be drawn. This leads to

Definition 1 :
Consider a finite space Y, a sequence X1, Xo, ... of independent random ele-

ments mapping from a measurable space (2, G) into (¥, P(Y)) with common
probability law p(-), and the filtration Ay, As, ... adapted to X1, X, ... .

a) A sequential test for testing Hy : p(-) € Wy versus Hy : p(-) € W) is
a pair (N, D) where N is a stopping time with respect to the sequence
A1, As, ... and D is an Ax-measurable decision rule specifying which
hypothesis is to be accepted once sampling has stopped.

b) For every sequential test (N, D) denote by v;(N,D,p), i € {0,1}, the
overall probability of deciding in favour of Hy, i € {0,1}, i' # i, if
p(:) € Wo UW, is true. Then, given two bounds og and ay, let Kag oy
be the set of of all sequential tests (N,D) with v;(N,D,p) <
a;,Vp(-) € W, i € {0,1}. O

Most work on sequential analysis considers the case of two simple hypotheses
of the form Hy : p(-) = po(+) versus Hy : p(-) = p1(-) where py(-) and p;(-) are
classical probabilities. Typically p(-) is described by a real-valued parameter
f being an element of a parameter space ©, so that one tests de facto:

Hy:0=0y versus H;:0 =10,

where, without loss of generality, §; < #; can be assumed. In this case two
criteria have been suggested to distinguish one element of Ky, o, as optimal:
Wald and Wolfowitz (1948) proposed to define a test as optimal if it minimizes
both [Ey N and IEp, N among all tests (N, D) € K, a,, which also contains
level-ag tests based on fixed sample sizes. This problem possesses a general
solution, namely the sequential probability ratio test (SPRT) between 6, and
61, which firstly was introduced by Wald (1947).



The SPRT, however, may perform quite unsatisfactory for values between 6,
and 6;. This motivated Kiefer and Weiss (1957) to study a different criterion:
a sequential test (N*, D*) solves the Kiefer-Weiss problem, if it minimizes
the maximum expected sample size among all (sequential) tests (N, D) €
Kao,a1, 1-€.

sup IFyN — min .

0€0 (N,D)
(In the modified Kiefer-Weiss problem FyN is minimized only for a fixed 6.)
Constructing optimal solutions, with respect to these criteria, often has been
impossible; therefore usually an asymptotic version with diminishing error
probabilities has been considered (e.g. Eisenberg (1982), Huffman (1983),
Pavlov (1991)), which will also motivate our generalization defined below.
In several papers, the criteria have been extended to the case of composite
hypotheses described by a single one-dimensional parameter of the form “6 <
0y and 6 > 0,” (Ghosh (1970), Chapter 3.2).
Restricting considerations on invariant problems, Lai (see Lai (1981) and the
references therein) extends the Wald-Wolfowitz situation as well as the mod-
ified Kiefer-Weiss problem to composite hypotheses. Pavlov (1991) presents
an asymptotic solution to the Kiefer-Weiss problem for very general hypothe-
ses.
Sequential tests are applied in several areas, especially when sampling costs or
a small number of specimens to be investigated are of great importance. This
can be not only in quality control, but also in such fields like epidemiology or
biometrics (e.g. van der Tweel, Kaaks and van Noord (1996), Jennison and
Turnbull (1999), or P6hlmann and Augustin (2001)).

3.2 Sequential testing under interval probability

A natural way to test between two F-probabilities Py(-) = [L((.), U ()]
and Pi(-) = [LM(-), UM] considers the decision

Hy: P(-) = Py(-) versus Hp: P(-)= P() (2)
as a testing problem between the corresponding structures M, and M;:
Hy:p(-) € My versus Hj :p(:) € M. (3)

So, the task to test between two single, interval-valued hypotheses has been
transformed into a classical composite testing problem, and Definition 1 can
also be applied in this context.



Note, however, that the hypotheses formulated in (3) are of a very complex
form; only in degenerated special cases they can be described by a one-
dimensional parameter. As a consequence, the standard methods leading to
the construction of optimal sequential tests are no longer directly applicable.
Huber (1981, Chapter 10) generalized the Wald-Wolfowitz criterion to inter-
val probability. He succeeded in extending the core of his famous result on the
construction of minimax tests (Huber and Strassen (1973)) to the sequential
situation, provided that the error probabilities are forced to converge to zero:
under certain additional assumptions on the F-probabilities Py(-) and P (+),
the optimal procedure for the composite problem (3) can be obtained by
considering the optimal procedure for the reduced problem Hy : p(-) = qo(*)
versus Hy : p(-) = q1(-) where the classical probabilities ¢o(-) and ¢;(-) are so
called least favorable elements of the structures. Quang (1985) has achieved
an analogous result for contamination neighborhoods which are ‘shrinking’
with increasing sample size.

What was already briefly mentioned in Section 3.1 also applies here: the
optimal procedure in the sense of the Wald-Wolfowitz criterion may perform
quite unsatisfactory “between” the hypotheses. Therefore, in this paper we
will consider an extension of the Kiefer-Weiss criterion to interval probability.
(The modified Kiefer-Weiss problem can be generalized in an analogous way.)
In the spirit of Kiefer and Weiss we have to minimize

sup IE,N (4)
p(-)eC)

with C(Y) = MyUM,UT as the space of all classical probabilities p(-) lying
in Mg or in M or in an indifference zone Z, i.e. a set “between” M, and
M. The set Z has to be specified appropriately: we take Z such that C())
is the envelope of MU My, i.e.

C(Y) = {p()] min Li(4) < p(4) < maxUi(4), VA€ A} (5)
Since even in the classical, single parameter situation, the Kiefer-Weiss crite-
rion in its pure form showed to be not tractable, (4) is certainly too complex
to allow for a general solution. Therefore, we base our generalization of the
Kiefer-Weiss criterion to interval probability on the asymptotic version, which
has usually been considered in literature (cf. the references in Section 3.1).
Hence we obtain:



Definition 2:
A test (N*,D*) € Koy,a, is called asymptotically optimal among all tests
in Kag,ar o, for ag — 0 and oy — 0,

Sup,,(. E,N*
Pp()ec) ©p =1+o0(1). (6)

inf(n,p)eKag.a, SUPp(ecy) EpN
(]

4 Construction of an asymptotically optimal
testing procedure

To construct optimal procedures it may look promising to aim at adopt-
ing Huber’s result on Wald-Wolfowitz optimal sequential tests under interval
probability to the criterion formulated in Definition 2: one could try to reduce
the structures to the Huber-Strassen least favorable distributions ¢y(-) € My
and ¢;(-) € Mj; and then one would construct the Kiefer-Weiss optimal test
between ¢o(-) and ¢ (-) in the hope that it is also optimal for the testing prob-
lem in Equation (3). Unfortunately, as is also demonstrated with Example 1,
this conjecture does not work. Apparently, the problem of finding (asymp-
totically) Kiefer-Weiss optimal procedures has to be based on completely
different methods, which will be presented in Theorem 1.

4.1 Main theorem

Before stating the theorem let us shortly describe the basic ideas underlying
the procedure.
Sequentially, at each step ¢ € IV, a new (independent) observation { X, = z;}
with 2, € {y1,... ,9,} is drawn, and the adapted relative frequency h\*=) ()
is calculated, based on the first (¢ — 1) observations. This is done in the
following way:
_ -1
for ¢ >2: R V() = A5 > o Lixg=as
if it leads to a value in C(Y) (otherwise see below);
and RO (z;) == 1.

It has to be noted that the construction is based on asymptotic considera-
tions. If only few observations have been drawn, it can not be excluded that



10

R~ (z,) would take values not in accordance with C())). They even may
be zero, spoiling the whole product in the numerator of QEZ) (see below) for-
ever. In these cases, h(~"(z,) has to be restricted to the smallest value being
compatible with C(Y) (cf. Equation (5)).

With these adapted relative frequencies the ratio Qy) has to be evaluated at
each step ¢ for i € {0,1}:

Q) = =— (7)

sup | | p(z,)
p(-)EM; ];[1

where p(z,) := p({X, = x,}) as the probability of x, (given H; resp. M,).
In QEZ) we compare, based on the available information up to that time, an
estimated probability with the highest probability being in accordance with
the hypothesis H;. If this ratio is for the first time (with respect to ¢) greater
or equal to a; "', for one index i (i say), we call this time point 7" and
the process stops with N = T). The decision is to reject the corresponding
hypothesis Hy, respectively to accept the hypothesis H;» (i' # i";d',1" €
{0, 1}), that is D = Hiu.

So we can summarize the procedure in the following theorem:

Theorem 1: Let 70 := min{¢ : QY > o;'},i € {0,1}, with Q' as in
Equation (7).

The asymptotically optimal testing procedure (N*, D*) in the sense of Defi-
nition 2 is:

7O <TW  then N*=TO and D* = H, (the decision is for H);

if 7® > 7®  then N* =T and D* = Hy (the decision is for Hy).
O
Proof of Theorem 1 :

The proof of this theorem is based on the idea that it is possible to embed the
situation under consideration into the general framework of Pavlov (1991).

2Pavlov (1991) originally investigates sequential procedures for m hypotheses. With
respect to our intended application of his results we confine ourselves to the case m = 2.
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Given a finite dimensional parameter space ©, two hypotheses H; : 6 € 0,
with ©; G ©, i € {0,1}, ©N O, = 0, an indifference region Z = 6\ (6, U O,)
and error bounds oy and ay, he constructs a test (N*, D*) € Ky, ,q, With:

sup IEyN*
9o

inf sup IEy N
(N,D)EKag,a; 9O

—1+0(1) . (8)

We will show that Pavlov’s results also provide a solution to our problem
of optimal sequential procedures between interval probabilities. Note that
X1, Xo, ..., X, ... are i.i.d., so that we can write p({X = y;}) instead of
p({X, = y;}) for arbitrary . To embed our problem into Pavlov’s parametric
framework we take

6=(6y,...,0,)
with
0; :=p({X =y;}) =py;), 1 =1,....n,
and the constraint 2?21 0; = 1. Therefore, every classical probability
p(+) € C(Y) uniquely corresponds to a certain value # € ©. In particular, we

have © = C()).

With this parametrization Pavlov‘s optimality criterion coincides with our
asymptotic optimality criterion in Equation (6). Therefore, if we transfer
Pavlov’s main results (Pavlov (1991, Theorem 4.1 and Lemma 4.1)) to our
situation, we can conclude that the testing procedure in Theorem 1 is asymp-
totically optimal in the sense of Equation (6).

To guarantee this transferance of his results, we need to prove further:

a) the identity of the test statistic 7), given here, with Pavlov’s test
statistic

b) that Pavlov’s conditions (1°) to (4’) (see Pavlov (1991, p. 283)) are
satisfied in the situation given here.

Ad a) Pavlov uses a test statistic based on the ratio

é ~
Hp(ererfl)
r=1

sup p(z,||0)
0cH,;
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where 6, , is an appropriate estimate for , resulting from the first (r — 1)
observations x1, ... ,x,_1. If we additionally take into account Pavlov’s con-
dition (4’), we know that 6,_, has to be the maximum likelihood estimate
for 6.

Under our embedding the denominators in both statistics are equal. Since
the maximum likelihood estimates of (fy,...,6,) are the corresponding
(adapted) relative frequencies, also the numerators coincide.

Ad b) As mentioned above, Pavlov’s condition (4’) is now automatically sat-
isfied. The conditions

(1’) : © is compact and

(2’) : the sample space Y of each draw is compact

are satisfied because in our situation
O = {(91,... ,0,) 0, =p(y;) €10,1] and Zej — 1},
j=1

Therefore, © is a closed polyhedron and hence compact. Notice further that
Y =A{yi,...,yn} is finite, and therefore trivially compact.
The function p(z||f) is continuous for all (x,0), as required in Condition

(37). Furthermore, the second demand in Condition (3’) is also satiesfied: in-
deed the Kullback-Leibler information, p(6, ¢) = IEp (log %), is strictly
positive for 8 # ¢ (see Kullback (1968, p. 14)). O

4.2 Practical aspects and implementation

With the adapted version of the relative frequencies h("~")(z,) for the nu-
merator in le) no further problems arise.

The denominator of Qgi) generally can be calculated by a non-linear opti-
mization problem:

x1) ... plry) — max 10
pa) - pla) » max (10)

subject to the (trivial) linear constraints:

ply;) €10,1], j=1,....n, > ply;) =1 (11)
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For given F-probabilities P;(-) = [L®(-),U®(-)], with structures M;, the
conditions p(-) € M, can be transformed with the help of Equation (1) into
a system of linear constraints, only using the lower interval limits:

pUX =y} 2 LO(JX =9)),  WIC{Lm)  (12)

jeJ jed
In the case of an F-PRI, with interval limits Lg-i) and U]@ one obtains:

ply)) =p({X =y }) > LOUX =y, ) =LY, j=1,...n,

and

ply;) =p({X =y;}) UV X =y, }) = U, j=1,...,n.

Because of z, € {y1, ..., yn} the objective function (10) can be formulated as
follows:

l l
p oo p(yn)™ — max 13

with £; .= Y20 1{x,=y;}, as the absolute frequency of y; and » 7, ¢; = ¢.

In general, the maximum can not be given analytically, but this optimization
problem can easily be solved by numerical standard procedures.

Taking into account that in Theorem 1 the time points T®) i € {0,1}, have
to be calculated, it is evident that, as long as QEZ) < a; ', both for i = 0
and ¢ = 1, a further observation has to be drawn. Furthermore, for most of
the sequential steps, the following easy-to-handle approximation will suffice:
if the objective function in Equation (10) is only roughly estimated at p; =
Lg-i)(yé 0), the lower limits of the corresponding component of the F-PRI (for
i € {0,1}), we obtain:

As long as the upper bound @(i) is less than o', for i = 0 as well as for
¢ = 1, this is also true for QEZ), and a further observation has to be drawn.
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This means, instead of calculating at each step ¢ a non-linear optimization

problem, it is sufficient firstly to evaluate @(Z) and to compare it with a; L
If both terms are less than a; ', a further observation has to be drawn. Only
if for at least one i it is greater or equal to a; *, we need to start a non-linear
optimization routine to check whether the process stops.

4.3 A didactic example

Now let us illustrate the essentials of the procedure in Theorem 1 with an
example, which is kept so simple that all calculations can be done by hand.

Example 1:

Consider a sample space of three elements:
Y ={y1, 92,93} = {1,2,3},
and the testing problem
Hy: P(-) = Py(-) versus Hp: P(-)= P() (14)

where Py(-) and P;(-) are F-probabilities, with corresponding structures My
and M, described by the following F-PRIs?:

0.2 0.4 04 0.6
02 04 | and | 025 045 |. (15)
0.3 0.5 0.05 0.25

Choosing ag = a7 = 0.1, the test statistic Qy) leads to a decision if it is
greater or equal to 10.

l=1:
Now let us assume that the first observation z; = 1. Then we obtain

0 1 017:2.5 for 1=0
U ) 5
— =156

p(IEM; 5 for 1=1.

(=2}

3Actually, in the case of a sample space with three or less elements, the structure
of every F-probability is uniquely determined by the assignments on the singletons; the
notions of F-probability and the F-PRI materially coincide.
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Because, under H, as well as under Hy, the ratio Qgi) is less than 10, we have
to draw a further observation.

(= 2:

Let x5 = 2. Now the relative frequency of this observation, resulting from the
first observation, would be zero. This is not compatible with C()), because

CY) = {p() | p(Ey) € [C(E;), C(E;)] = [min L) min U}"], j = 1,2,3}.

1=0,1 J J

For our example we obtain

[C(1),C(1)] = 1[0.20,0.60]
[C(2),C(2)] = [0.20,0.45]
[C(3),C(3)] = [0.05,0.50].

So we have to take: hY)(zy) = C(2) = 0.2.
Now le) results in:

W 1-0.2 0.2

sup p(1)-p(2)  sup p(1)'-p(2)'-p(3)°
p()eM; p()EM;

If we only use the upper bound @(i) we obtain:

0.2 o .

——(3) oz = H5<10 for i =0
Q=

% = 2<10 for i=1,

and a further observation has to be drawn.

(=3

Let x3 = 1. Here we obtain a relative frequency of %, which is compatible with
C(Y) (especially with [C(1), C(1)]), and therefore h®) (z3) = 1. By calculating
the approximation

0.2:0.5 _ -
0 sres = 125 for =0
Qs =

L2 = 25 for i=1,

we see that we have to determine the exact value for Q:(),O):
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o 0.2-0.5 0.2-0.5

~ sup p(1)?-p(2)° T 04203
p(-)EMo

= 2.083 < 10.

Again we have to continue drawing.

(=4

Let x4, = 1. Here we would obtain a relative frequency of % which again is
not compatible with C())). We have to restrict h® (x,) to C(1) = 0.6.

The approximative formula leads to @(0) = 37.5 and @(1) = 3.75; therefore
we have to determine the exact value of Qio):

QY = 3.125.

(=T
Already with the further observations: x5 = 1,26 = 1,27 = 1 the procedure
stops at:

10.547 > 10 for 1=0

QY =
0.79 < 10 for 1= 1.

Now we have: T(® = 7 and T > 7 and therefore N* = T . So the decision
is for H, : D* = H;.

Let us stay with the example a bit longer and briefly discuss some prin-
ciple aspects. The structures My and M; in the example above can also
be connected to a model often used in robust statistics: they can be inter-
preted as total variation neighbourhoods around the centers po(-) and pi(+)
with po(y1) = 0.3, po(y2) = 0.3, po(y3) = 0.4 and p(-) with p;(y1) = 0.50,
p1(y2) = 0.35, p1(y3) = 0.15. From this point of view, M, and M, are con-
sisting of all classical probabilities which are close to po(-) or p;(+) in the
sense that their distance in the total variation norm is less than or equal
to 0.1. Then, (14) can be understood as a robust test of the hypotheses
Hy :p(-) = po(-) versus Hy : p(-) = p1(-), where we de facto test the hypothe-
ses H; : “p(-) is approximately p;(-)”.

An additional fact is worth mentioning: this example also provides a simple
counterexample demonstrating that least favourable pairs can not be directly
used to construct the optimal test statistic. Huber’s (1981) result on the
Wald-Wolfowitz optimal testing between interval probabilities can not be
transferred to the Kiefer-Weiss criterion considered here.
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It can be shown that in this situation (go(-), q1(-)) with

(1) =04, qo(y2) =0.3, qo(ys) =0.3 and

2 2
— 04+ — —0.35 — — ~0.2
ai(y1) =0 +70, ¢1(y2) = 0.35 w0’ q1(ys) = 0.25

is a least favourable pair in the sense of Huber and Strassen (1973).
Applying (9) to the hypothesis

Hy 3p(') = QO(') and H,; :p(-) = Ch(')

derived from the least favourable pair does not lead to the test statistic
le) in Equation (7). The Kiefer-Weiss optimal procedure based on the least
favorable pair differs from the optimal test for the interval-valued hypotheses.

5 Concluding remarks

This paper developed a general framework for robust sequential testing of
two hypotheses. Using the concept of interval probability we incorporated
robustness directly into the formulation of the hypotheses. For these ‘cautious
hypotheses’ we then have, with the Kiefer-Weiss criterion, an unambiguous
optimality criterion. This ‘ex ante robustification’ is very much in the spirit
of Huber (1981) who, however, considered a different optimality criterion,
namely an extension of the Wald-Wolfowitz criterion to interval probability.
For arbitrary interval probabilities on a finite sample space we gave the gen-
eral form of an Kiefer-Weiss optimal testing procedure and showed how it can
be derived in an operational way. Far beyond the robustness considerations
originally motivating our research, the generality of our results promises a
huge range of potential application. In particular we think of artificial intelli-
gence, where interval probability has shown to be a powerful means to model
uncertain expert knowledge.

Several topics of further research suggest themselves. First of all, the pro-
cedure proposed evidently needs more detailed investigations from the nu-
merical point of view. Secondly, with respect to application for instance in
biometrics, an extension to group sequential tests would be highly desirable.
The situation of a fixed sample size at every step is formally contained by ap-
propriately enlarging the underlying sample space ). Adaptive choice of the
sample size at every step is much more difficult; it may even need a complete
reconsideration of the issue from the very beginning.
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The example above showed that Huber’s (1981, p. 273) result can not be
directly extended to the Kiefer-Weiss situation: the optimal procedure does
not coincide with the optimal test between least favorable elements of the
two structures. Therefore, it is still an open question whether the optimal
procedure can also be obtained by considering an equivalent testing problem
which is easier to be solved.
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