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Abstract
A unique sutural cataract was observed in a 4-generation
German family to be transmitted as an isolated autoso-
mal, dominant trait. Since mutations in the Á-crystallin
encoding CRYG genes have previously been demon-
strated to be the most frequent reason for isolated con-
genital cataracts, all 4 active CRYG genes have been
sequenced. A single base-pair change in the CRYGA
gene has been shown, leading to a premature stop
codon. This was not observed in 170 control individuals.
However, it did not segregate with the disease pheno-
type. This is the first truncating mutation in an active
CRYG gene without a dominant phenotype. As the CRY-
GA mutation did not explain the cataract, several other
candidate loci (CCV, GJA8, CRYBB2, BFSP2, MIP, GJA8,
central pouch-like, CRYBA1) were investigated by micro-
satellite markers and linkage analysis, but they were
excluded based on the combination of haplotype analy-
sis and two-point linkage analysis. The phenotype in this
family is due to a mutation in another sutural cataract
gene yet to be identified.

Copyright © 2003 S. Karger AG, Basel

Introduction

Cataract, an opacification of the eye lens, is a leading
cause of visual impairment or blindness during infancy
and early childhood [1]. An estimated 200,000 children
are blind with bilateral cataract worldwide; 20,000–
40,000 children affected with developmental cataract are
born each year [2]. In the developed nations of Europe
and Northern America, national surveillance or cross-sec-
tional studies revealed a prevalence of 1–4 cases per
10,000 children [3–5].

Most frequently, congenital cataracts without other
clinical symptoms have been found in the Á-crystallin
encoding CRYG genes [6–10]. Moreover, other genes
have also been reported to be involved in congenital dom-
inant cataract formation like CRYAA [11, 12], CRYBB2
[13–15], GJA3 [16], GJA8 [17–19] and BFSB2 (also
known as CP49 [20]). Similar clues are observed in the
mouse as the most prominent model system for cataract
[for an overview, see ref. 21].

Among those mutations listed, only very few have been
characterized as sutural opacities. In man, this is a muta-
tion in the CRYBA1 gene [22] and in the mouse the Cat2ns

[23]. We tested for linkage of some of the known cataract
loci with the unique phenotype observed in a 4-generation
German family.



72 Ophthalmic Res 2003;35:71–77 Klopp/Héon/Billingsley/Illig/Wjst/Rudolph/
Graw

Table 1. Haplotype analysis with two-point analysis

Marker Family member

I-2 (+) II-2 (+) II-4 (+) II-5 (–) III-1 (–) III–2 (+) III-3 (+) III-4 (–) IV-1 (+) IV-2 (+) LOD (£ = 0)

CCV
D1S468 2 1 3 1 1 1 1 2 3 1 2 1 2 1 2 1 3 2 1 2 –∞
D1S2845 1 2 6 2 2 2 2 1 5 4 7 2 3 2 3 2 5 7 4 7 –∞
D1S508 3 1 5 3 4 1 4 3 1 2 1 3 3 1 3 4 1 1 2 1 –∞
GJA8
D1S2669 1 2 3 1 3 2 3 2 1 3 1 3 1 2 1 2 1 1 3 1 –∞
D1S514 1 2 2 1 4 2 4 2 2 2 3 2 2 2 2 2 2 3 2 3 –∞
D1S1595 1 4 nd 4 4 nd nd 1 4 3 4 4 4 5 4 7 1 nd

CRYG
D2S2321 4 2 2 2 2 4 2 4 4 3 3 2 2 2 4 4 4 2 3 2 0.85
CRYG 2 2 1 2 1 2 3 2 3 2 2 2 3 1 3 2 3 2 2 2 –∞
D2S1434 4 2 2 2 2 4 2 4 4 3 3 2 2 2 4 4 4 2 3 2 0.85

BFSP2
D3S606 5 3 6 3 6 5 3 3 6 2 4 6 1 5 7 6 2 6 6 4 –∞
D3S3637 1 2 3 2 3 1 3 2 1 5 4 3 3 1 2 3 5 3 5 3 –∞
MIP26
D12S375 3 2 1 2 1 2 1 2 1 3 2 2 2 2 2 2 1 2 3 2 –∞
D12S1052 1 2 2 2 2 2 2 2 2 3 2 2 1 2 1 2 2 2 3 2 –∞
D12S1064 5 4 6 4 2 4 2 4 3 3 6 4 1 4 2 4 3 4 3 6 –∞
Gja3
D13S1316 2 4 6 4 6 2 6 2 1 5 3 4 4 2 4 6 5 4 1 4 –∞
D13S175 2 2 3 2 3 2 3 2 2 3 1 2 4 2 5 3 3 2 2 2 1.51
D13S1275 5 1 3 1 3 5 3 5 4 1 1 3 2 5 6 3 4 3 4 3 –∞
D13S2332 3 1 2 1 2 3 2 3 2 4 3 2 2 3 2 2 2 2 2 2 –∞
CPC
D15S659 4 2 2 2 2 4 2 4 1 2 2 2 4 2 3 4 1 2 1 2 –0.1
D15S643 3 1 2 1 3 3 2 3 2 1 3 2 3 3 4 3 2 2 2 2 –∞
D15S153 3 4 1 4 4 3 1 3 2 4 5 1 2 4 1 3 2 1 2 1 –∞
CRYBA3
D17S122 2 2 3 2 3 2 3 2 1 3 4 2 3 2 3 3 3 4 3 2 –∞
D17S1294 4 2 1 2 1 4 1 2 3 2 2 2 2 4 2 1 3 2 2 2 –∞
CRYBB2
D22S431 2 3 3 3 1 3 1 3 4 3 3 3 4 3 1 3 4 3 3 3 –∞
D22S258 3 2 2 2 2 2 2 2 1 2 2 2 1 2 1 2 1 3 2 3 –∞

‘+’ = Affected; ‘–’ = unaffected; nd = not determined.

Materials and Methods

Clinical Documentation
The proband and the accompanying parents or relatives under-

went clinical eye examination by a senior pediatric ophthalmologist
at the Eye Clinic of the Ludwig-Maximilians University of Munich,
Germany, by either Scheimpflug (Topcon-SL45) or slit lamp (Zeiss,
Oberkochen, Germany) examination. Clinical details were recorded
in a standard questionnaire including the age of onset and time of
diagnosis of the cataract in the proband as well as the proband’s and
her family’s health history. This study respected the tenets of the
Declaration of Helsinki, as the family members were fully informed

of their role in the study and the outcome, prior to securing their
informed consent, prepared according to standard norms.

Molecular Analysis
Blood samples (5–10 ml) were collected from the affected and

unaffected members of the family and genomic DNA was isolated
according to standard procedures. Candidate loci were analyzed by a
combination of linkage analysis and haplotype analysis as well as by
mutational analysis of the coding sequence available for selected
genes. Specifically, the Á-crystallin gene cluster (CRYG) was ana-
lyzed by sequencing. PCR of the four active CRYG genes (CRYGA,
CRYGB, CRYGC, CRYGD) was performed on genomic DNA sam-
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ples in reactions of 20 Ìl with a denaturation step at 95°C for 2 min,
for 1 cycle, followed by 40 cycles of 95°C denaturation for 45 s,
annealing at 60°C for 45 s, extension at 72 °C for 45 s and with a
final extension at 72 °C for 5 min with either a Stratagene Robocycler
(Stratagene, Heidelberg, Germany) or a Perkin Elmer Thermocyler
(Perkin Elmer, Weiterstadt, Germany), using primers according to
Santhiya et al. [10]. Sequence analysis was performed commercially
(SequiServe, Vaterstetten, Germany) after purification of PCR frag-
ments through Nucleospin® extraction columns (Macherey-Nagel,
Düren, Germany). The interesting sequence variation suggestive of a
mutation was further investigated by restriction analysis (AvaII).

Mapping of Candidate Loci and Linkage Analysis
In addition to the CRYG gene cluster, a group of candidate genes/

loci was selected from their previously documented association with
sutural lens opacities (table 1). Polymorphic markers were selected
from the publicly available databases to cover the genetic intervals of
interest. The most informative markers used are listed in table 1.

Assuming an autosomal dominant mode of inheritance and com-
plete penetrance, our family was not powerful enough to detect sig-
nificant linkage (LOD score 13, odds for linkage of at least 1,000:1;
p = 0.05). The power to detect linkage was investigated using SLINK.
Two hundred replicates of the pedigree were generated assuming a
completely penetrant AD disease locus with disease allele frequency
of 0.01 and no phenocopies. The predicted maximum LOD score is
2.10 (average 1.60); however, the structure of the family allowed us to
obtain significant information by haplotype analysis.

Genotyping was done masked to the disease status. Genetic maps
used for the selection of short tandem repeat polymorphisms were
obtained from the literature, those characterized by the Cooperative
Human Linkage Center (www.chcl.org/), Généthon (www.gene-
thon.fr/) and others available through the Internet, such as Marsh-
field (www.marshmed.org/genetics/) and GDB. Primers were ob-
tained from Research Genetics Inc. (screening set 6A), ACGT Inc., or
Dalton Inc. (Toronto, Canada). A fluorescent dye label was incorpo-
rated on the 5)-end of one of the primers and the amplification prod-
ucts were electrophoresed using ALF automated sequencers (Phar-
macia, Piscataway, USA) and analyzed using the fragment manager
software. The amplification protocol has previously been described
[14]. Their intermarker distances (cM) were determined from ge-
nome database genetic maps.

Cyrillic (V2.1.3) was used for data management and pedigree
drawing. Two-point linkage analysis between the cataract phenotype
and the genotype information used the MLINK component of
LINKAGE (v5.1 [24]). A full penetrance and a disease-gene frequen-
cy of 0.0001 were assumed for the disease locus. The allele frequen-
cies were assumed to be equal for each marker since the true popula-
tion allele frequencies for each marker could not be reliably esti-
mated.

Results and Discussion

Phenotype Description
A 4-generation family (fig. 1) with the clinical feature

of progressive congenital sutural cataract (cataract stella-
ris) was examined at the Eye Hospital of the Ludwig-Max-
imilians University, Munich, Germany. The phenotype

Fig. 1. Pedigree of the sutural cataract family. The pedigree of the
4-generation German family demonstrates the autosomal dominant
mode of inheritance. The numbers next to the patient’s symbol indi-
cate the collected blood sample used for linkage or molecular analy-
sis.

of two sisters (IV/1, IV/2) was analyzed by skiascopy, slit
lamp examination, funduscopy and documented with a
Scheimpflug camera (fig. 2) and with a slit lamp camera
(fig. 3; Zeiss, Oberkochen, Germany).

In the older sister (IV/1; fig. 1), visual acuity for dis-
tance and near on the right eye was 20/50 (cc. +3.0/–2.0/
175° = 0.4) and on the left eye 20/50 (cc. +3.0/–2.0/
180° = 0.4). The cornea was clear and the anterior cham-
ber without irregularities. The lens showed dense opaci-
ties of the anterior and posterior Ï-suture and a diffuse
moderate opacification of the whole lens. Vitreous and
retina were normal. Binocular vision was reduced (Tit-
mus fly +; Bagolini +; Titmus rings up to ring 2, normally
ring 9), and the symbols on the Lang chart could not be
recognized.

Cataract extraction with intraocular lens implantation
was performed successfully. Postoperative visual acuity
with best correction was 0.8 (20/25) on both eyes. Moder-
ate reduction of postoperative visual acuity is explained
by a relative amblyopia.

In the younger sister (IV-2), visual acuity was 20/40
with best correction of +2.5/–0.5/180° on the right eye
(0.5) and on the left eye 0.6 (20/30) with a correction of
+2.0/–0.75/175°. The lens also showed dense opacities of
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Fig. 2. Scheimpflug analysis. The Scheim-
pflug pictures show dense opacities of the
lens more prominent at the anterior than the
posterior Ï-suture. The spots in the anterior
chamber (b) are artifacts due to reflexions.
The age of the patients were 16 (a; IV-1) and
11 (b; IV-2) years.

the Ï-sutures and moderate diffuse opacification of the
lens and the nucleus. Binocular vision was nearly identi-
cal to her sister. The Titmus rings were recognized up to
ring 3 (Titmus fly +, Bagolini +), and cataract surgery is
planned. In both patients, no strabismus was present.

The mother (III/2) of the two girls demonstrated at the
age of 42 years less opacities in the Ï-suture but snow-
flake-like subcapsular opacities in the central as well as in
the more peripheral areas of the lens and diffuse opacifi-
cation of the whole lens, but the overall severity was not
significantly different from her daughters (fig. 3). Func-
tional testing in the mother was not performed; she was
operated in 1998 at another hospital. In all family mem-
bers, no further clinical manifestations were observed
cosegregating with the ocular phenotype, suggesting that
the cataract in this family was an isolated feature.

Analysis of the CRYG Candidate Genes
Since it has been shown in mouse and man that CRYG

genes are most frequently causative for congenital, iso-
lated cataracts, we sequenced all 4 active human CRYG
genes also in the proband and her father. In two of the four
CRYG genes (CRYGA, CRYGD), we observed polymor-
phic changes. The T→C transversion at position 196 of
the CRYGA gene (exon 3) leads to a Pro instead of a Lys.
However, this Pro is very common in human (10 of 10

cases tested in a previous study [10]) and in all other Cryg
genes of mouse, rat and bovine. Two further polymorphic
sites have been observed in the CRYGD gene (AG92-
93GA; QV→QM; T286C without effect on the amino
acid composition); both have also been observed in a pre-
vious study [10] with a high frequency and without co-
segregation with congenital cataracts. All three polymor-
phisms were also observed in the proband’s father. In con-
trast, the described silent polymorphic site in the CRYGB
gene at position 2437 (ccC→ccT; Pro→Pro; acc. M19364
[6]) could not be observed in the proband nor in her
father.

However, an additional insertion of C at position 43 in
the CRYGA was observed in the proband (IV-1, fig. 4) in a
heterozygous situation. The mutation leads to a shift of
the open reading frame; computer-assisted translation
suggests that only a short peptide will be formed consist-
ing of the 13 N-terminal amino acids of the ÁA-crystallin
and 7 novel amino acids (fig. 4). Since all other previously
reported truncations of the Cryg genes in the mouse lead
to dominant cataracts, this mutation was suggested to be
causative for the phenotype in this family. Using a restric-
tion enzyme digestion by AvaII, we could find this partic-
ular polymorphism neither in additional 170 randomly
collected human DNA samples of Caucasian origin nor in
1 Indian family suffering from dominant cataracts (C132
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Fig. 3. Slit-lamp analysis. Dense opacifica-
tions were presently more expressed at the
anterior Ï-suture.. The anterior and posteri-
or suture are demonstrated in their inverse
position. There is also a diffuse opacification
of the whole lens as compared with young
individuals of the same age. The age of the
patients were 16 (a; IV-1) and 11 (b); IV-2)
years; the age of the mother (c; III-2) was 42
years.

[10]). However, the sequence change observed did not
segregate with the disease phenotype and was observed
only in the proband and her unaffected father, but in none
of the other affected members of the family; we conclude
that this particular polymorphism is very rare (!1%;
fig. 5).

To our knowledge, it is the first truncating CRYG
change without (dominant) consequences on the clinical
phenotype. It might be speculated that this small peptide
(18 amino acids) is either unstable and will be degraded
or does not have a dominant negative effect as described

in the other truncated Á-crystallin, which have usually
a molecular weight of 16–18 kD [25–27]. As in the
„CRYGE and „CRYGF, the loss of function of a further
CRYG gene also seems to be without pathological conse-
quences. However, the mouse Cryga gene is expressed
earlier (from E12.5 onward) and at a higher level than the
other Cryg genes [28]. From this point of view, it would be
expected that mutations in the Cryga gene should lead to
severe cataracts. However, there has been no report on a
CRYGA mutation in man so far, and also in the mouse,
only one mutation has been reported [25]. In the human
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Fig. 4. Sequence analysis of CRYGA, exon 2. Sequence analysis of exon 2 of the CRYGA gene in the proband (IV-1)
revealed an insertion of a C at position 43 (given in bold, counted according to its position in the cDNA). It leads to a
short peptide of just 20 amino acids including 7 foreign amino acids (boxed) because of a stop codon in the new
reading frame. The genomic CRYG gene structure is indicated below the DNA and deduced amino acid sequence.
The new AvaII restriction site is shaded in grey; the place of the regular and new AvaII sites are indicated below the
genomic structure.

Fig. 5. Restriction digest of CRYGA by AvaII. The AvaII restriction analysis of the PCR fragment containing exons 1
and 2 are given. The carriers of the insertion (III-1 and IV-1) demonstrate 3 bands indicating the presence of two
restriction sites, whereas all other affected family members exhibit only two bands indicating the presence of just one
restriction site.

embryonic lens, CRYGA contributes 14% to the overall
CRYG transcripts (for comparison: CRYGC and CRYGD
together 81%, CRYGB only 5% [29]). Therefore, the con-
tribution of CRYGA to the functional integrity of the lens
is less compared with CRYGC and CRYGD.

Linkage of the Cataract Phenotype to Known
Cataract Loci
Following the sequence analysis of the CRYG genes,

we proceeded to the genetic analysis of the other sutural
cataract candidate loci (table 1). Using linkage analysis
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and haplotype analysis, the candidate loci considered
were genetically excluded, suggesting another sutural cat-
aract locus is yet to be identified.

Conclusion

A specific form of sutural opacities has been observed
in a 4-generation German family. A newly found trunca-
tion of the ÁA-crystallin after 20 amino acids is not
involved in the formation of this type of cataract. Map-

ping experiments did not show linkage to known sutural
cataract loci. This suggests that this unique form of sutur-
al opacity represents a novel genetic subtype expanding
the genetic heterogeneity of this condition.
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