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Abstract

Order restricted effects of predictors can be represented in models
by the monotonic transformation fitted by the pooled adjacent viola-
tors algorithm as described by T. Robertson et al. In the context of
multivariate modelling, this paper aims to introduce next to additive
monotonic models a multidimensional approach. The corresponding
permutations test to assess significance for the predictors is described
and some feeble points of the approach are discussed. We also intro-
duce a procedure to improve the parsimony of the model by reducing
the resulting level sets. The use of monotonic regression in connection
with the threshold value estimation problematic is outlined and two
similar approaches to assess it are discussed.

*georgia.salanti@imse.med.tu-muenchen.de



An overview of the isotonic methodology 2

1 Introduction

The logit and probit model or nonparametric models are widely used to de-
scribe relationships between one or more explanatory variable and a binary
outcome. However, an assumption undertaken behind the parametric models
is that the relationship is directly linear or after some transformation. This
approach turns out to be inadequate in many applications since there can
be ”a penalty for assuming that a monotone regression is linear”. As to non
parametric models, as the generalised additive fitted by splines, the result
is not always easy to interpret and they are not sometimes convenient when
the establishment of a dose-response relationship is of interest. Furthermore,
in case of scale predictors, it is often useful - if not indispensable - to as-
sess optimal cutpoints in order to obtain an interpretable and simple model.
The monotonic regression retains the monotonicity assumption but relaxes
the linearity requirement, and results by fitting step functions. Its use as
smoother can extend generalised additive models and multidimensional re-
gression methods. In the present paper, those two methods will be described
and a procedure to detect threshold values will be proposed. Throughout
this paper we restrict ourselves on cases of binary response. The methodos
will be illustrated on an epidemiological study.

Data set used

The data set used to illustrate the methods is taken from the DFG-study
”Chronic Bronchitis” [4]. The aim of this study has been to investigate the
influence of the occupational total inhalable dust exposure besides the well-
known factors smoking and age. The disease rate is suspected to increase
while the concentration and the duration of the exposure increase. A further
aim of this study has been in case of association between dust and disease,
whether a threshold value for the dust concentration could be assessed. The
plant from Munich has been analysed.

2 The isotonic procedure

2.1 The isotonic regression as a smoother

Isotonic regression® reduces the description of n points from the given popula-
tion to [ homogenous subgroups with respect to the monotonicity restriction.

Tsotonic is simply the one-sided restriction of monotonic regression: the trend is consid-
ered increasing whereas in monotonic regression there is no assumption about the direction
of the trend.
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The [ constant risk groups in which we summarise the response are called
level sets. The fact that the variable to be regressed is replaced by con-
stant values under a conditional expectation, refers to a smoothing operation,
and therefore many authors call the isotonic transformation the ”isotonic
smoother”. However, the use of the term "smooth” has been criticised since
the result is a step function and there is obviously a lack of smoothness. In
this paper we retain the will to see in the monotonic process his smoothing
characteristics. From this point of view is a smoother having global nature
but resulting in locally flat estimations.
The procedure of “smoothing” can be described as follows: Starting from
the assumption that an isotonic dose-response relationship exists a maximum
likelihood estimator under order restrictions of the response is assessed. This
estimators can be provided by the Minimum lower sets algorithm, the Maxi-
mum upper sets algorithm or the ”"Pool adjacent violators algorithm” which
is used in the present paper considered as the most efficient.
Consider the case of k& dose groups where the dose is in increasing order
dy < dy < ... <dj and the outcome of an experiment is Y, = 1.k, j = 1..n;.
The distribution of Y;; can be binary, poisson, continuous or survival prob-
ability, belonging to an exponential family having parameter ;. We wish
to have 6; in non decreasing order, given that d; < d;;1,7 = 1...k. That is
truth only if all the estimates fulfil the isotonic relationship. If there is some-
where a violator such that #,,; < 6; for some i, then the isotonic estimator
of (0;,0;11) = (0;,,) is needed to be found.
The PAVA starts with 0 = (6,0, ...,0;). If 0 is isotonic then 6* = 6.
Otherwise, both violators 6#;.1,6; are replaced by their weighted average
0 — . — wih; + w;i10; 14
i i+l w; + Wit
This process is repeated using the new values and weights until an isotonic
set of values is obtained.
Within our paper we focus on cases where the response is binary, and therefor
0; = p; (the probability of occurrence of an event ) and w; = n; the number
of observations in each dose group.
Hastie and Tibshirani [7] define the degrees of freedom of a smoother, as the
trace of the smoother matrix S. Let By, be the set of indexes ¢ corresponding
to observations p; that are estimated through p; and k € (1,1). The smoother
matrix will have the following form
ﬁ if © and j € By for some £
Sij - sEBy, ’ (1)
0 otherwise

, and w;, w;;1 are both replaced by w; + w;;1.

Therefore tr(S;;) = [, and the degrees of freedom are equal

— Wi
- ZZZ ZZ'LUS

SEBy
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to the number of level sets. That means that the degrees of freedom of an
isotonic smoother are not pre-specified but depend on the data, since the
number of level sets as well as their width are automatically selected from
PAVA. So, arguments as the number of knots used in other type of smoothing
(for example in splines) are not required.

In figure 1 an example of the univariate approach is depicted. The Chronic
Bronchitis reaction incidence is considered to increase as long as the dust
concentration increases. The dust is summarised in seven constant risk in-
tervals. The isotonic regression is plotted with the equivalent estimator using
spline with four degrees of freedom.

2.2 Some important features of the isotonic framework
2.2.1 Test for trend

This approach has some advantages compared to parametric smoothing. No
specific assumptions apart from monotonicity is required from the form of the
dose-response relationship. An other important advantage of this method is
that the test applied to assess significance of the predictor is a test for trend,
since the H; alternative is the isotonic transformation of the response. In
a search of such an adequate test, recall that many commonly used tests
for trend give results that depend on the form in which the dose is used.
However isotonic regression not only provides one of the most reliable tests
for trend [10][2], but is also expected to increase the power by setting the
isotonic transformation of the response as alternative to the constant risk Hy
assumption [11]. This test is known as the isotonic Likelihood Ratio test [6]
and follows a weighted X? distribution.

We define the following hypothesis:

Hy : equality of 6;
H; : 0; are isotonic
H, : 0; is unrestricted

Then consider Ty; and Ti the statistics that test Hy against H; and H,
against Hs respectively. Note that T}, tests the adequacy of the isotonic
assumption against any other possible shape of the response, and once the
Ty gives a significant result, it is important to apply it in order to conclude
about the isotonic transformation. The test have the following forms:

Toy = —2(L(0n,)) — L(0n,))
Ty = _Q(L(eHl)) - L(9H2))
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where L(0y,) is the log-likelihood under the hypothesis H;. Then

k
P(Ty1 > ¢) = ZPlkw (X7, > (] (2)

P(Tyy >c¢) = Zplkw (X7, > (] (3)

where P(l, k,w) denote the probablhtles that under Hy and given k starting
dose-levels the isotonic regression will build [ level sets. For a more detailed
description of the weights P(l, k, w) see 2.4 in [6].

However, this approximation does not hold in binary response if the number
of events per dose group is small i.e. less than 5 events [2]. Furthermore
when more than one explanatory variable is taken into account, the likeli-
hood ratio test does not follows any known distribution, and that force us to
apply Monte Carlo methods to infer.

2.2.2 Changepoint model

Additionally to its nonparametric nature the isotonic procedure can fit a
changepoint model. The monotonicity transformation fitted by pooling ad-
jacent violators is always a step function and therefore automatically detects
cutpoints for the explanatory variable without any prior information about
the location of the shifts. This feature facilitates potentially the threshold
value detection, since it returns a small set of candidate locations.

On analysing dose-response relationships we wish often to model the response
with respect to isotonic restrictions regarding more than one explanatory
variable. On this aim the isotonic procedure as smoother can be extended
to multidimensional isotonic regression [1] and [3] and the additive isotonic
models [9][12]. These two methods are briefly described in the following
sections keeping in mind that although we focus on applications were the
response is binary, these methods work very well also with continuous and
Poisson data.

3 Models under order restrictions

3.1 The multidimensional isotonic model

The isotonic smoothing through PAVA can be extended to more than one
dimension, applying an iterative algorithm. For the case of two explanatory
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variables for example, imagine the data in a form of a matrix. The algorithm
works out by calculating iterative the isotonic-rows matrix and the isotonic-
columns matrix. Those two matrices converge to a single matrix which is
isotonic with respect to the partial order. That means that for every two
elements of the matrix, x;;, x4, having ¢« < k and or j <[ then x;; < x4;. The
result can be visualised as a surface that is non decreasing as long as any
of the predictors increases. The algorithm combines both the explanatory
variables in [ constant risk groups, and therefor each step in the response
variable corresponds to a specified bivariate group. Of course this procedure
can be extended to more than two variables, but note that if more than three
isotonic predictors need to be included in the model, the use of this approach
is not recommended due to its great computational complexity. The model
for k predictors takes the following form:

Di :¢*($175172,---;~Tk) (4)

where ¢* is the isotonic transformation.

A main problem arising from this method is that the convergence is not
guarantee in case that the data contain many zero-weighted cells. Therefor
the data need to be in pre-selected groups. Even if those groups are very
thin and selected objectively (for example using quantiles) that can effect
somewhat the results since we reduce the candidate changepoint locations.
However, this procedure captures interactions between the explanatory vari-
ables, feature that the additive model described in a next section does not
provide.

The Likelihood Ratio test has no longer any known large sample approxima-
tion. Then, the tests used to assess significance for the predictors are exact.
Permutations are used to calculate the p-value of the overall fit and con-
ditional permutations for the effect of each variable included in the model.
The the conditional for partial significance procedure can be summarised as
follows: In each response Y; = 0,1 corresponds a vector x; = (21, Tog, ..., Tk;)-
To test the effect of the j-th predictor adjusted for the rest k& — 1 predictors
we split the vector x; and then we combine (Y;, Z1j, .., Tj—14, Tji1,is s Thi)
and d;; randomly. In each combination the isotonic regression and the cor-
responding Dewviance - defined here as two time the negative change in the
likelihood between isotonic model and constant-response model - are com-
puted. To reject then the non-effect assumption the 95th quantile of the
empirical distribution of the deviance is compared to the observed deviance.
Of course on can test all predictors at once if so desired by combining Y; to
x; and then following the same procedure as described above. Following the
same idea one can construct confidence surfaces for the estimates, simulating
under Hy or H;. The width of those intervals can useful informations. In
cases where a non significant result is obtained, confidence bands can help
us to distinguish between statistical and substantial consistency in the risk.
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In case of significant result, one can simulate under the assumption that the
isotonic estimates are true to estimate the adequacy of the transformation
against any other possible shape (that would be equivalent with a test T}2).

3.2 The additive isotonic model

The main advantage of those models compared to multidimensional versions
is that the data do not need to be in pre-selected groups, although on the
other hand they do not capture interactions. (Note: it is possible to modify
the model 5 in order to include interactive terms, but that will slow down
the convergence rate). Additive isotonic models start from the assumption
that the risk (response) does not decrease as long as the predictors increase,
and extend GAMs by letting isotonic transformation act like a ”smoother”.
The local scoring algorithm usually used is here replaced by PAVA and the
contribution to the risk of each isotonic variable is a non decreasing step
function. Nevertheless it is often the case that some covariates need to enter
linearly in the model, leading to a semiparametric model. The additive
isotonic model with £ isotonic predictors and s linear predictors takes the

following form:
k

W) =3 (i) + Zﬁx 5)

J=1

where h is a link function and ¢* denotes the isotonic transformation function.
Note that the degrees of freedom of each isotonic term are equal to the
number of level sets i.e. the ”steps” in to which the isotonic transformation
ends up. Once the model is formulated, the isotonic Likelihood Ratio test can
be used to infer about the explanatory variables and to test the accuracy of
the transformation. The large sample approximation described by Robertson
et al. [6] does not hold here, so permutations test need to be applied again in
finding the empirical distribution of the test. The procedure would be similar
to this described in section 3.1 for the multidimensional regression. Additive
isotonic models can prove to be a useful tool for exploratory analysis, since
they speed up the checking of variables as possible predictors by rejecting
those in whom the best isotonic transformation performs poorly [12].
[sotonic regression automatically detects changepoints for the explanatory
variables and combines them in constant risk groups. Therefore additive
isotonic models are more than adequate to indicate the location of threshold
values [9]. That can be accomplished by pooling adjacent level sets of the
variable of interest and examining the change in the likelihood function. A
large difference warn for threshold value location, otherwise both groups can
be pooled together and the procedure goes on (see section 5).
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4 The reduced isotonic regression (RI)

4.1 Description of the method

It has been proved that in many applications the use of the isotonic regres-
sion overfits somewhat the data whereas a model with fewer level sets (and
therefore df) fits better [8]. Therefor it is of great importance once we fit the
isotonic regression, to proceed a backward elimination in order to improve
the parsimony of the model and get a nested set of constant response levels.
The PAV procedure detects violators of the monotonicity assumption and
builds the level sets by amalgamating a neighbourhood until there are no
more violators. Some of the resulting level sets could be pooled together, es-
pecially those with few elements or those whose estimated values don’t differ
a lot. In order to compute the reduced isotonic regression two steps have to
be considered:

e Which level sets have to be pooled together?
e When to stop the elimination’s procedure?

Several methods can be applied to answer those questions. M. Schell [8] pro-
poses a F-test when the response is continuous. When the response is binary
P.Baccetti reduces the partial fitted functions in the additive isotonic model
5 by comparing a rather arbitrary count to the change in the likelihood [10].
No matter which backward procedure is used, it is be necessary to compare
the reduced isotonic model to its ” parent model”. There is so far no distribu-
tion theory for these models, so simulations must be used to choose between
simpler and more complex models. That means that under the assumption
that the reduced model is the correct one and a given observed change in the
likelihood (between reduced and isotonic model), we can extract simulated
data. Then, if the 95% interval of the simulated changes in the likelihood
contains the observed one, we conclude to the reduced model.

Focusing on binary response we reduce the multidimensional model by basing
the pooling in a corrected Chi-squared test. To make the elimination pro-
cedure more clear, we will describe the backward algorithm used to reduce
the degrees of freedom in a two-dimensional isotonic regression. Consider
that the binary outcome depends now on two isotonic predictors of m and n
dimensions respectively and imagine the result as a mn matrix. The entries
are the estimated isotonic proportions p; for each bivariate group. Since
Ipf| < |pi| = mn , the level sets [ are combinations of the mn groups. Our
main is to reduce those combinations to k£ < [ with respect to the outcome.
The criteria for elimination will be the following:

1. No level set is allowed to contain less than 1% of the total sample
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2. The X? test with continuity correction and one degree of freedom is
used to determine if the fitted values are significantly different in two
adjacent level sets

3. We will start the pooling from the pair that gives the greater p-value
Thus the algorithm can be described as follows:
e Obtain the usual isotonic regression estimator with [ level sets

e Compute the X? test statistics for every adjacent level set and select
to pool those level sets whose combination gives the greater p-value

e Repeat step two until all p-values< a

Obviously the reduced isotonic regression depends on the choice of a. For a=1
the reduced isotonic regression is identical to the isotonic level sets whereas
for a=0 we get a single level set.

The use of a=0.05 in the backward elimination will not yield a 0.05-level test
as usual. We applied the reduced monotonic regression to random noise data
(independence of the risk variable from both predictors dust and time) hav-
ing the same sample size and groups as in our application: the result shows
that the procedure will not lead to a singleton level set with a probability
of about 64%. This finding is comparable to that of M.Schell - for the uni-
variate case the F-test: using a=0.05 the nominal 5% level is exceeded with
probability 50,2%, and in Miller and Siegmund’s study (they dichotomised a
continuous variable according to a maximal X? test) they found an excess of
49%. Not surprising since we use a maximally selected p-value in each pool-
ing. Therefore correction needs to be made to assess the correct significance
level a* that will yield to a 5% test. All we need is to simulate with random
noise data:

1. Produce random noise data

2. Assess in each data set the isotonic estimators and their reduced equiv-
alents using a* = 0 and retain the p-value from the last Chi-squared
test when only two level sets remain to pool

3. The corrected a* is the 5% smallest from the set of those ”last” p-values

In the case of one explanatory variable M. Schell proposes a empirical for-
mulae for assessing the correct a* = 0.012n7%3%! for sample size between 50
and 800.
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5 Threshold value procedure (ThP)

The reduced isotonic regression facilitates even more the threshold value
detection by shrinking the possible candidates. An other equivalent approach
is recently proposed [1] in order to assess thresholds. In assessing a threshold
value the constant risk categories corresponding to the isotonic predictor of
interest are lumped together starting now from the two lowest groups and
the loss in the fit

LRrhershora = —2log(Lg) — (—2log(Lg—1))

(here Ly, denotes the likelihood function that corresponds to k starting groups)
is analysed. As long as the fit does not decrease significantly the categories
are pooled together. If the fit decreases significantly the cutpoint between
the categories is used as threshold. This threshold procedure (ThP) can be
combined either with additive models, where the partial isotonic function
¢3(dij) is considered as objects of reduction, or with multidimensional iso-
tonic regression, by lumping adjacent bivariate level sets.

This method can be thought as a variable selection procedure, were one has to
choose between two different representations of the same predictor to include
in the model. Since the degrees of freedom for each term are the number of
the resulting level sets, the change in the Likelihood Ratio test should follow
a X? distribution with one degree of freedom. This approximation is widely
used in the case of fractional polynomials to choose between two possible
different degrees of the same explanatory variable.

The main problem rising from this idea is the lack of an appropriate test
statistic in order to define more clearly what exactly ”a large change in the
likelihood” is. Simulations have shown that the Likelihood ratio test is not
X2 distributed. Setting

Hy:No treshold can be assessed

simulated data sets have been drown assuming that p; = a+fd;, (i.e. the pro-
portions are linearly dependent on the predictor) for several «, 3, and num-
ber of observations per dose group. The figures show that the X?Z approxima-
tion is not always consistent. The distribution changes by pooling (figure 2),
and depends on the value of a and 3 (figures 3 and 4). So further investigation
remains to be done on this area, in order to estimate if possible, the theo-
retical distribution of the likelihood test. Note that it is quite complicate to
find the theoretical distribution of the test LRrnreshord = To1,6 — To1,k—1 : the
main problem above the unequal weights is that the distributions (see equa-
tion 2) corresponding to Tp;, and Tpy 1 are not independent. An other
criterion that can be used here is AIK criterion, especially in the additive
models context. The procedure will be the same as before, but now the AIK
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information will indicate a ”gap” in the goodness of fit i.e. threshold value
location.

6 Simulations study

Although the hypothesis of no threshold value existence is not clearly defined,
we allow ourselves to attempt some experiments to estimate the performance
of the approaches described above under several circumstances. The reduced
isotonic regression and the threshold estimation procedure have been applied
in simulated data sets in order to investigate first their behaviour as tests
for trend (Hy,: constant risk against Hy,: increasing trend) and second their
capability to detect thresholds (Hy,: no threshold against Hyp: threshold).
Before trying any simulations, it would be necessary to estimate whether the
approximation for a* proposed [8] holds. The result was not favourable for
the approximation: the values resulting from the formulae where far from
the values resulting from simulations. Also in our application we have to use
an a* assessed through simulations, as described in previous section.

First data sets have been drawn under the assumption that a threshold truly
exists (Hyp) and the risk is a two-steps function of the dose assuming eight
dose groups with equal number of observations in each group (100). The
power of reduced isotonic regression as test for trend (Hy, against Hy,) is
not satisfactory only in some situations: in table 1 the probability to get a
single level set (P,eq(ls = 1)) is quite large and becomes even larger if the
"step” in the true function is less than 5%. The same probabilities corre-
sponding to threshold procedure are about zero. However, simulating under
Hy, the error of type I is very large using Th.P (for example using the same
sample size and 5% risk in each group, the probability to get more than one
level set is 90,6%), whereas using RI the error of type I is controlled to re-
mains to 5%. So, Th.P is inconvenient as test for trend, and should be used
only in cases that the increase in the risk is proved.

The probabilities to assess the correct cutpoint are comparable using both
methods. As expected, it decreases as long as the ”step” in the true function
becomes shorter, having success of about 50% when the increase is of 5%
(Preq(cut) and Pyyes(cut)in table 1). The location of the cutpoint does not
effect the capability of the procedures to detect it (table 2).

To simulate under no threshold existence Hy, we assumed linear regression
using different slopes. The results are depicted in table 3. The probability
for each group limit to be assessed as a threshold is approximately normal
distributed around the level set that corresponds in a increase in the risk
from the first dose group of about 10% for RI or 5% for ThP.
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Assumed regression Prea(ls = 1) Preg(cut) Pipres(cut)
0.05 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0.032 0.851 0.831
0.05 0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.411 0.387 0.408
0.10 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.108 0.698 0.711
0.10 0.10 0.40 0.40 0.40 0.40 0.40 0.40 0.000 0.992 0.961
0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.30 0.007 0.895 0.851
0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.15 0.004 0.888 0.828
0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.275 0.443 0.543
0.10 0.10 0.10 0.10 0.20 0.20 0.20 0.20 0.028 0.762 0.747
0.15 0.15 0.15 0.15 0.30 0.30 0.30 0.30 0.000 0.898 0.871
0.20 0.20 0.20 0.30 0.30 0.30 0.30 0.30 0.157 0.596 0.597
0.20 0.20 0.20 0.35 0.35 0.35 0.35 0.35 0.009 0.857 0.835
0.25 0.25 0.25 0.30 0.30 0.30 0.30 0.30 0.672 0.313 0.262

Table 1: Simulations under the existence of a threshold value. As P,.4(ls = 1)
we denote the probability to get a single level set and P(cut) is the probability
to assess the correct cutpoint as threshold.

Assumed regression P,eq(cut) Pipres(cut)
0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.30  0.852 0.828
0.15 0.15 0.15 0.30 0.30 0.30 0.30 0.30 0.864 0.829
0.15 0.15 0.15 0.15 0.30 0.30 0.30 0.30  0.867 0.815
0.15 0.15 0.15 0.15 0.15 0.30 0.30 0.30  0.872 0.818
0.15 0.15 0.15 0.15 0.15 0.15 0.30 0.30  0.867 0.789

Table 2: Simulations under the existence of a threshold value-different loca-
tions of the threshold

7 Application

7.1 Additive Models

The data are summarized in table 4. A preliminary exploration of the data
has been performed by applying generalised additive models using natural
cubic splines. The independent variables ”time since first exposure” and
"dust concentration” enter the model as smooth terms and smoking enters
linearly. The overall examination of the fitted functions indicated a rough
but in general increasing trend for dust effect. The variable ”time since first
exposure” presents also an increasing trend. In total eight outliers have been
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a, Threshold group (RI) Threshold group (ThP)
0.05, 0.05 4 2
0.10, 0.05 4 2
0.05, 0.10 2 1
0.05 0.025 bt 3

Table 3: Simulations under the absence of a threshold value (linear regression

total without CBR with CBR
Nonsmokers and ex-smokers
Dust (mg/cm)  1.43(0-15.05)  1.43(0-15.4) 1.45(0.36-8)

Time (in years)  24(1-66) 23(1-55) 33(8-66)
Smokers

Dust (mg/cm)  1.40(0.20-15) 1.07(0.20-15) 4.62(0.25-12.07)

Time (in years) 25(3-51) 24(3-51) 28(6-49)

Table 4: Descriptive statistics table

detected and dropped out. Using the Likelihood Ratio test [7], all three
predictors have been significant. The reader should keep in mind that the
judgement about the trend regarding the partial fit, does not need to be very
strict, since GAMs are often objects of over-interpretation and pure local
effects can confuse. In any case, the isotonic Likelihood Ratio test applied
in next parts will provide the answer we need.

Using the sample and informations resulting from the GAM analysis we fit-
ted additive isotonic models of the form 5. The fitted isotonic function for
dust concentration is presented in figure 5. The next step in our analysis
is to establish if the isotonic assumption for dust concentration holds, by
comparing the full model to the model without dust, resulting in the isotonic
Likelihood Ratio test. Although the change in the likelihood function and
the equivalent change in the degrees of freedom can guide us to some prelim-
inary conclusions, p-values need to be assessed applying permutations test.
With D and D* denoting the original sample deviance and the deviance in
the permuted data set respectively, the test can be described as below: In
every worker having disease status ¢; we assign a vector (d;, t;, s;, ¢;) having
elements the dust, time and smoking habits observations and the endpoint.
To test for constant dust effect, against the increasing risk alternative and
adjusting for time and smoking, we break up the vector to (d;) and (t;, s;, ¢;)
and then we combine them randomly. For every combination an additive
isotonic model is fitted and the deviance D* of the model is assessed. Then
the 95th quantile of the empirical distribution of D* gives the critical value
that if exceeded by D, Hj is to be rejected. Table 5 summarises the results
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Model -2log(Lik) df p-value
¢* (time) + 0.68smoking 1318.68 5
o5 (time) + ¢5(dust) + 0.71smoking ~ 1260.22 9  0.001

Table 5: Additive isotonic fit. The p-value is assessed using 1000 permuta-
tions

Group’s limit -2log(Lik) df
4.94 1260.22 9
6.23 1275.47 8
7.72 1281.74 7
9.27 1298.98 6

Table 6: Threshold value estimation using additive isotonic models

from fitting the additive isotonic model without and with dust effect, as well
as the result from the permutations test for each city sample. Obviously, the
dust presents a significant isotonic influence to the risk.

In the estimation of a maximal allowed dust concentration we proceed as
described in the previous section. We start pooling dust groups and we ex-
amine the change in likelihood. In order to conclude which difference is large
enough to indicate a threshold value limit, we compare it to 2.71(=X?,),
since we delete one level set and therefore one degree of freedom. Following
this idea a threshold value at 4.94 mg/cm is found (table 6). We conclude at
the same threshold even using AIC criterion in the elimination procedure.

7.1.1 Multidimensional regression

A three-dimensional model 4 is applyied using time, dust and smoking as
possible predictors. We depicte the results in figure 6. The same permuta-
tions procedure as described in section 7.1 is applied to test the conditional
influence of dust separate for the sample of smokers and nonsmokers (fig-
ure 7). The test results in p-value = 0.01 for smokers and p-value = 0.23
for non smokers. Simulated data sets have been used also to construct con-
fidence surfaces for the isotonic estimators. For non smokers we simulated
under the constant risk assumption, whereas for smokers the surfaces corre-
spond to H i.e. the isotonic estimates. Their width is not remarkably large,
except perhaps the third and last dust groups, so the consistency of the risk
for non smokers and the isotonic transformation for smokers are rather likely
to occur.

In estimating the reduced model, we used simulations to assess the corrected
a-level. Let us call a* the value of a that yields an 0.05-level test of H, versus
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H, in the backward procedure. We produced 1.000 random permutations of
the response variable as if it was independent on the explanatory variables.
We fitted in each permutation the isotonic and reduced isotonic regression.
Then to get the a* that leads to 0.05-significance test we picked the 50th
smallest p-value when only two level set remain. Moreover, the 49th and
51th lowest p-values give the 95% confidence limits for a*. Figure 8present
the reduced model corresponding to smokers. For this application we used
in the backward elimination procedure ¢*=0.00038 (0.00036-0.00039) to get
a 5% level test.

The change in the -2logLikelihood between isotonic and reduced model is
14.30. We proceed a last step in order to compare the reduced model to
its equivalent isotonic: simulating (1.000 simulations) under the assumption
that the reduced model is the correct one, we conclude that such a large
change in the Likelihood as the observed could have occur with probability
p-value = 0.533. Thus we conclude to the more parsimonious model, and we
have found a useful stratification for both variables, that splits them in two
groups of high and lower risk. Moreover, it is obvious that a threshold value
between 4 and 5 mg/cm can be obtained.

7.1.2 Classification

The additive isotonic model, the multidimensional isotonic model and the
generalised additive model have been applied to Chronic Bronchitis data
and the ROC curves have been estimated as an index of their classification’s
capability. All three of them have been found to be significant under the
null hypothesis "true area = 0.5” (p<0.001). The areas and their standard
error were 0.630 (0.008), 0.635 (0.008) and 0.649 (0.008) respectively. The
generalised additive model seems to classify slightly better than the other
two methods.
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8 Discussion

Although much debated from many statisticians, the use of step functions
in modelling can prove to be very useful in lots of cases. Step functions are
easy to interpret and by fitting changepoint models they summarise the pre-
dictors in such a way to define groups of constant response. This feature can
be desired in many studies. As an example we refer the case of car insurance
studies where the main is to define groups of drivers having common risk
to produce accident regarding some prognostic factors in order to assess the
convenient fee for each group. Recently methods elegant and simple, as the
classification and regression trees, are getting always more popular to fit such
changepoint models.

Even more than splitting the explanatory variables in constant response
groups, it is sometimes of great importance to establish dose-response re-
lationship. This requirement is important in cases that the aim of a study
is to prove causality between factors and outcome. On this direction, we
wish that the regression function has a monotonic shape. That is crucial in
medical studies, where the researcher want to test whether the increasing
exposure in a risk factor is associated to an increasing disease rate.
Monotonic regression combines both desired characteristics described above
resulting in a monotonic step function. The more efficient algorithm to fit
the model is PAVA. The test for trend that is provided is very powerful,
however his theoretical distribution should be used with caution in cases of
small event rate.

In modelling with more than one predictor there are two ways to fit the data
under the monotonicity assumption. The additive isotonic model does not
contain any interactive terms so far, but its advantage is that the predictors
can be used as continuous if so required. Multidimensional regression is use-
ful to model the relationship when the predictors are suspected to interact.
The disadvantage of this approach is that the explanatory variables can not
be more than three, and they need to be in pre-selected quantiles. The main
problem arising from both methods is the luck of an appropriate approxima-
tion for the distribution of the test statistic. Conditional permutations need
to be used in order to test the effect of each predictor that makes the use of
the model cumbersome. However, since the test is a test for trend (the mono-
tonic transformations is the alternative to the constant risk assumption) it
is sometimes important to assess despite the computational complexity.
The reduced isotonic regression has also been introduced. The procedure
focuses on finding a subset of the level sets resulting form the isotonic regres-
sion. The model becomes more parsimonious but the selection of the best
model should be based again on simulations. The constant risk assumption
can be rejected if the reduced isotonic regression results to more than one
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level set. Given that the elimination’s procedure has be designed so that
eliminates the error of type I, the power of the test is satisfactory.
Monotonic regression can be used in the threshold value assessment context.
Defining as threshold the first cutpoint of the reduced level sets, reduced
isotonic regression can also provide a threshold value detection procedure,
presenting good results for thresholds that correspond to more than 5% in-
crease.

An other similar approach to the threshold problem is by pooling adjacent
level sets and then testing the homogeneity of the pooled levels by a Likeli-
hood Ratio test. Although the procedure appears to yield satisfactory results,
similar to those taken from the reduced isotonic regression, it is unlikely that
the X? approximation for the Likelihood Ratio test works correctly. How-
ever both approaches can be used in combination with other threshold value
detection procedures, as additional tool.

Further developments of isotonic models are also possible, as the introduc-
tion of random effects, their combination with smoothing splines. It would
be interesting also to investigate the introduction of the isotonic smoothing
to dynamic Cox model.
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