LUDWIG-

MAXIMILIANS- | | INSTITUT FUR STATISTIK
e SONDERFORSCHUNGSBEREICH 386

KlGppelberg, Maller, Van De Vyver, Wee:

Testing for Reduction to Random Walk in
Autoregressive Conditional Heteroskedasticity Models

Sonderforschungsbereich 386, Paper 266 (2001)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT



http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Testing for Reduction to Random Walk in Autoregressive
Conditional Heteroskedasticity Models

CLAUDIA KLUPPELBERG!, ROSS A. MALLER?,
MARK VAN DE VYVER?, DERICK WEE*

L Center for Mathematical Sciences, Munich University of Technology,
D-80290 Minchen, Germany
cklu@ma.tum.de, www.ma.tum.de/stat/

2 Department of Accounting and Finance, University of Western Australia,
Nedlands Western Australia 6907
rmaller@ecel.uwa.edu.au, www.ecel.uwa.edu.au/rmaller/Welcome.html/
3 Department of Accounting and Finance, University of Western Australia,
Nedlands Western Australia 6907
mvdv@bigfoot.com, www.bigfoot.com/ mvdv
4 Department of Accounting and Finance, University of Western Australia,
Nedlands Western Australia 6907
derickwee@hotmail.com

Summary: The AR-ARCH and AR-GARCH models, which allow for conditional het-
eroskedasticity and autoregression, reduce to random walk or white noise for some val-
ues of the parameters. We consider generalised versions of the AR-ARCH(1) and AR~
GARCH(1,1) models, and, under mild assumptions, calculate the asymptotic distributions
of pseudo-likelihood ratio statistics for testing hypotheses that reflect these reductions.
These hypotheses are of two kinds: the conditional volatility parameters may take their
boundary values of zero, or the autoregressive component may take the form of a unit root
process or not in fact be present. The limiting distributions of the resulting test statistics
can be expressed in terms of functionals of Brownian motion related to the Dickey-Fuller
statistic, together with independent chi-square components. The finite sample perfor-
mances of the test statistics are assessed by simulations, and percentiles are tabulated.
The results have applications in the analysis of financial time series and random coefficient
models.

Keywords: AR-ARCH and AR-GARCH models, conditional heteroskedasticity, autore-
gression, unit root, Dickey—Fuller test, pseudo-likelihood ratio test.
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1. INTRODUCTION

This paper derives the large-sample distribution of pseudo-likelihood ratio tests for
an autoregressive (AR) model which exhibits generalised autoregressive conditional het-
eroskedasticity (GARCH) type behaviour. The null hypotheses considered are:

(i) the AR structure has a unit root; or

(ii) the model has no autoregressive structure; and

(iii) there is no heteroskedasticity.

Simulation experiments show the asymptotic theory to be fairly accurate once the sample
size exceeds 100 or so.

The processes we consider are of special interest for asset price modelling, or, more
generally, for econometric data modelling. They take the form

X'é :aXi_l—{—eiai, i:2,3,...,n, (11)

where the residuals ¢; are i.i.d. with expectation 0, variance 1 and a finite fourth moment
(we assume only this throughout), and the variance function satisfies

0} =B+ Agic1+ 0071, i=2,3,...,n (1.2)

(with o9 = ). In (1.1) and (1.2), a, 8, A and 0 are parameters with 5 > 0, A > 0 and
d >0, and g;_1 is a non-negative, measurable function of {X; 1, X;_o,..., X1} alone. We
will analyse in detail the versions:

gi—1 = ¢€;107 1 = (Xjm1 — aXi_p)? (1.3)
and
gi-1 = X7 4, (1.4)
and a further version,
gi—1=€;_1, (1.5)

will be included in the simulations. (1.1) — (1.3) specify the well known AR-GARCH(1,1)
model (if 6 > 0; otherwise an AR-ARCH(1) model). Thus the model can be thought of as
a generalised autoregression, possibly with unit root, and with GARCH effect included. In
the unit root case the specification (1.3) defines a GARCH(1,1) process in the differenced
series X; — X;—1. On the other hand, (1.4) or some other formulation of the conditional
variance may be indicated by the data. Nicholls and Pagan (1985, p. 444) suggest this
model in connection with varying coefficient regressions. We give a unified approach to
testing hypotheses concerning (1.1) and (1.2), confining ourselves mainly to (1.3) and (1.4)
for illustration throughout.

The cases when o = 1 or & = 0 in (1.1) are of special interest, and we may wish to test
these hypotheses as a potential simplification of the data. A further useful simplification
occurs when A = § = 0 in (1.2), because then (1.1) reduces to random walk for X; in the
case a = 1, or to i.i.d. increments X; (thus, to a random walk for Xy + -+ + X;) in the
case a = 0. There is a strong motivation for such simplifications in the pricing of claims
contingent on the value of the asset, in particular, because option pricing models based on
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GARCH models are difficult to implement whereas for random walk the well understood
Black-Scholes or binomial tree based pricing methodologies apply. Consequently it is
worthwhile to consider the following program. Fit the model (1.1)—(1.2), with (1.3), (1.4),
(1.5), or some other specification of g;_1, with a view to testing if the data is unit root
(a = 1), or has no autoregressive component (a = 0); or if there is in fact no conditional
heteroskedasticity (A = § = 0), so the data is sufficiently well modelled by random walk,
by i.i.d. white noise, or as an AR(1) model.

In this paper we work out the asymptotic distributions, as sample size n tends to infin-
ity, of pseudo-likelihood ratio statistics for testing the above hypotheses, after constructing
estimating equations from a pseudo-likelihood under which the ¢; are assumed i.i.d. with a
standard normal distribution. The large-sample distributions are given as combinations of
integrals of a standard Brownian motion (SBM) (or, in one case, as a mixture of chi-square
and truncated chi-square random variables), but are quite easy to use when the residuals
have no skewness and kurtosis 3, for example.

In the case of ARCH, part of our program has been considered by Demos and Sentana
(1998), who conjectured a limiting result when g;_; satisfies (1.3) and o = 0 (so the AR
component is not present), and when the ¢; are standard normal. (They also considered
higher order ARCH and GARCH models but we restrict ourselves to the first order cases
since the main ideas are apparent for them.) They draw attention to the extra power
available by taking into account the “boundary hypothesis” nature of the tests, as our
analysis does.

A systematic investigation of a wide class of boundary hypothesis tests is in Andrews
(1999, 2001), and various of his earlier papers, but his results do not include those given
here, as we discuss in more detail in Section 3 below. Our models are more general
in allowing the AR component, and also in allowing a general function g; 1 in (1.2).
With emphasis on the AR rather than the ARCH/GARCH component, our results can be
regarded as testing for ARCH/GARCH type effects in an autoregressive process, possibly
with unit root. Seo (1999) derives some large-sample results for t-ratios from this point of
view, but does not consider the boundary hypotheses for reduction to random walk. Davis
and Dunsmuir (1996) give an asymptotic analysis of the MA(1) process when it is in or
near the unit root case, using related ideas (see also Davis and Mikosch (1998)).

For general background on ARCH we refer to Engle (1982, 1995), Bollerslev, Chou,
and Kroner (1992) and Gouriéroux (1997), and for GARCH, Bollerslev, Engle and Nelson
(1995); see also Shephard (1996) for a good discussion of statistical aspects of the models.

The remainder of the paper is laid out as follows. Section 2 sets out the assumptions
made and outlines the methods we will use. Section 3 states the main results in the form
of Theorem 3.1. To see how well the asymptotics work in finite samples, we report some
simulations and tabulate percentiles of the test statistics, in Section 4. Some discussion of
the results and their applications is in Section 5. Proofs are in the appendices. We restrict
ourselves throughout to an AR-ARCH type of alternative (6 = 0 in (1.2)), since, as for
the ARCH/GARCH case, this will suffice in general, as we show in Appendix C.

2. MODEL ASSUMPTIONS AND METHODOLOGY

In (1.1), the €; depend on the values of the unknown parameters, though this is suppressed
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in the notation. When the parameters take their “true” values, denoted by a subscript 0,
the ARCH version of the model will be written as

X; =aoX;_1+ei/Bo+ Aogi_1, 1 =2,3,...,n, (2.1)

with X1 = ey1. Here ¢; is the value of ¢; when the parameters take their true values. The ¢;
are i.i.d. random variables (rvs) with expectation 0, variance 1 and finite third and fourth
moments pug and pg. Collect the parameters into a parameter vector 8 = (a, 8, ), with
“true” value 0y = (v, Bo, Mo). 0 and O lie in the parameter space © = R x (0, 0c0) x [0, 00).
The first hypothesis we consider is

HSY 1 00 € QW = {1} x (0,00) x {0}, ie., 0 =1, By >0, Ao = 0. (2.2)

Under H, él), the process X; is a mean zero random walk, whatever the choice of g;. As the
“maintained” hypothesis, we take

Hy:0pe71:=R x(0,00) x[0,00), i.e.,ap €R, Bo>0, \g >0. (2.3)

(2.2) is a boundary hypothesis relative to (2.3), as discussed in Vu and Zhou (1997),
Demos and Sentana (1998) and Andrews (1999, 2001). However, the results and methods
in the latter papers do not apply directly to our problem, as we discuss in detail later. We
proceed by modifying the methods of Vu and Zhou (1997) (hereafter, “VZ”), whose general
formulation and method of approach lends itself easily to the further generalisation required
here. We will show that, with probability approaching 1 as n — oo (WPA1), there exist

maximisers 05" and 6, in Q) and 7 of the log-pseudo-likelihood function L,(0) (taken
conditional on X;) which are consistent for 6y, and we derive the asymptotic distribution
(as m — 00) of the “deviance” (minus twice log-pseudo-likelihood ratio) statistic

d) = —2(L,(01) — L£,(6,)) (2.4)

for testing H(()l) versus Hj. This deals with the unit root (random walk) aspect. For the
white noise version, we consider instead the null hypothesis

H 10y € Q@ .= {0} x (0,00) x {0}, ie., a9 =0, By >0, Ao =0, (2.5)

under which the X; become the increments of a random walk (i.e., i.i.d. rvs), to be tested
against Hi. A similar analysis can be made in this case, resulting in maximisers QA,(LZ) and

0,, of L,,(0) under Héz) and H;. Again, under the assumptions made so far, we can derive
the asymptotic distribution of

dP) = =2(L,(0) — Ln(6n)), (2.6)

the deviance statistic for testing H(()2) versus Hy. These results are stated next.



3. MAIN THEORETICAL RESULTS
Our results can be summarised as:

Theorem 3.1. Suppose the X; satisfy (2.1) for i.i.d. e; with expectation 0, variance 1
and finite third and fourth moments, and that g;_1 satisfies (1.3).

(i) Suppose further that H(()l) as specified in (2.2) holds. Then dV as defined in (2.4)
satisfies
JO 2 (W?(1) —1)°

" wWR(y)dy

where W (-) is an SBM on [0,1], Z = /g — IN/\/2, with N a standard normal random
variable independent of W (-), and I1(Z > 0) is 1 if Z > 0 and 0 otherwise.

(ii) Suppose instead that Héz) as specified in (2.5) holds. Then the deviance statistic
d%z) for testing Héz) versus Hy satisfies

Z%1(Z > 0), as n — oo, (3.1)

d? B N2y 721(Z > 0), as n — oo, (3.2)
where
13 (pa —1)% = p3
Z7=—15 N+ 3 Na,
V2(ps — 1) 2(pa — 1)

and N1 and No are independent standard normal rvs.

(iii) Alternatively, suppose g;—1 satisfies (1.4). Then, under Héz), (3.2) remains true
as stated, while, under Hél),
JO D (WP(1) - 1)?
T Ay WRy)dy

Z = m {—J2 (qul(l) e —1— 2 W2(1)>
+h3 /01 Wi (y)dWi(y) + \/pa — 1 — i3 /01 Wf(y)sz(y)} : (3.4)

with (W1(-), Wa(+)) an SBM in two dimensions, and Jy, := fol WE(y)dy, k> 1.
When ps = 0 and pg = 3, as is the case for example when the e; are N(0,1), and
gi—1 satisfies (1.3) or (1.4), Z in (3.1), (3.2) and (3.4) is standard normal. In this case

Z*1(Z > 0), as n — oo, (3.3)

where

d(?) E2¢ N? 4+ NZI(Ny > 0), as n — oo, (3.5)

where N1 and Ny are independent standard normal rvs.

Remarks. (i) In (3.1) and elsewhere, «B» means convergence in distribution.
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(ii) We show in Appendix C below that the results of Theorem 3.1 remain true as
stated for the GARCH(1,1) model.

(iii) Andrews (1999, 2001) gives a very extensive and intensive analysis of the boundary
hypothesis testing problem for a wide class of models. While our approach is similar in some
respects to his, there are some crucial differences in the models we treat, and our results are
quite different. In both cases (his Assumption 3, our (B.5) below) an important calculation
is to establish the joint convergence of the normed first and second derivative matrices of
the log-pseudo-likelihood to a limiting random vector. One of our main contributions, and
difficulties, is to find this limit for the cases we consider. (A somewhat similar approach
is used by Davis and Dunsmuir (1996) in the MA(1) model.) Andrews (2001) considers
a GARCH(1,1) model and gives a result comparable to (3.5) (but without the chi-square
component corresponding to «, the AR parameter). Andrews, like us, forms a pseudo-
likelihood from i.i.d. N(0,1) rvs. He does not include the unit root case (3.1) or (3.3),
and this extension to the non-stationary case requires significantly different calculations.
One point of distinction is that the limit of the normed second derivative matrix for an
ordinary GARCH model is non-random, which allows the use of Andrews’ Assumption 3*.
But this is not general enough for (3.1) and (3.3), and we need to bring in extra theory —
we use results concerning convergence of stochastic integrals of Kurtz and Protter (1991)
— to handle it. Andrews’ calculations for the ordinary GARCH model rely heavily on the
stationarity assumption.

To keep the paper mostly self-contained we give a separate development which, fur-
thermore, for our specific setup, avoids some of the restrictions Andrews and others in this
area have to apply in general. A common assumption, for example, which seems essential
to approaches such as that of Andrews, is that the parameters be restricted to a compact
parameter space. Our analysis avoids this requirement, which in effect introduces further,
unnecessary bounding parameters which may be quite artificial in some situations. We
allow the extra generality of the g; 1 in (1.2). On the other hand Andrews’ model is
more general in some respects; he includes a stationary sequence of regressor variables in
the mean equation of the model, and the innovations are required only to be stationary
martingale differences, whereas ours are assumed i.i.d. In this regard, our assumptions
are kept simple so as to give a clear development but our methods can be generalised to
these situations. Andrews also allows for an extra GARCH-AR parameter (i.e., in the vari-
ance, rather than the mean, equation), 7, which disappears under the null and is handled
by methods of Davies (1977, 1987). He considers test statistics other than log-pseudo-
likelihood ratio statistics (Wald and score tests) and again obtains quite general results.
No doubt our methods could be applied similarly for these cases too.

4. SIMULATIONS OF AR-ARCH AND AR-GARCH MODELS

To assess the asymptotic results, we evaluated the finite sample percentiles of the deviance
statistic for various sample sizes, for various models, by conducting a Monte Carlo study.
Simulations were done with the software package Mathematica (Wolfram Research (1999)),
using all the standard packages, with the exception of the routine used to maximise the
log-pseudo-likelihood. For this we used the package Global Optimization (Loehl (1999)).
A detailed description of our experiment is in Van De Vyver (2001). Briefly, for each of
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the two series satisfying (2.1) with e; ~ N(0, 1), and for each of 3 choices of g;_1, namely,
(1.3), (1.4), and (1.5), we simulated 1000 series of length n, where n = 100, 500, 1000,
according to the two null hypotheses:

H(()l): Random Walk; i.e., a partial sum of i.i.d. N(0,1) rvs;
H(()2): Gaussian white noise, i.e., a sequence of i.i.d. N(0,1) rvs.

Thus, for Hél) the true parameter values were ag = 1 and Sy = 1, and for Héz) they
were ag = 0 and By = 1 (with Ag = dp = 0 in both cases). For each series the likelihood
was maximised under the null and alternate models and the value of the deviance statistic
calculated. Percentiles of the finite-sample distributions of the d,, were then found.

Our experience confirmed others’ observations, that maximisation of the log-pseudo-
likelihood for ARCH/GARCH type models is very sensitive to the initial parameter esti-
mates used. To minimise the effect of this, for each replication the parameter vector was
estimated five times, each time from a randomly generated set of starting parameter esti-
mates. The null and alternative models were simultaneously estimated for each starting
value.

The only constraints imposed on the optimization routine were the non-negativity of 3,
A and 0 (where applicable), and a conditional variance stationarity constraint (A+6 < 1)
in the case of the GARCH model. Additional initial values of o and e are required in
calculating the variance equation. Two candidates for the initial variance estimate are the
sample variance and the theoretical expected value, /(1 — A — §). For series of length
n = 100 and 1000 we found no difference in the deviance statistics or parameter estimates
obtained using either starting method (to at least the tenth decimal place).

From the 1000 replications, we estimated the 90th, 95th and 99th percentiles of the
empirical distribution of the deviances from the appropriate order statistics, and these are
given in Table 4.1, along with the asymptotic values calculated from (3.1), (3.2) or (3.3)
(in the “c0” row) for comparison. We report in Table 4.1 results also for the choice of g;
in (1.5); the theory for this can be developed by methods similar to those in Section 6.

Consistent with other reports in the literature, we found the “standard” Mathematica
Time Series package to have some difficulty in finding the maximum of the likelihood func-
tion, for some samples. This is apparently intrinsic. For details related to specific software
issues see Fiorentini, Calozari and Panattoni (1996), McCullough and Renfro (1998), Jer-
rell (2000) and Brooks, Burke and Persand (2001). Zumbach (2000) shows analytically, via
a change of co-ordinates, that the difficulties evident in practical applications of (1.3) are
due to a nearly degenerate property of the model. However, our procedure always resulted
in reasonable estimates. For users of other programs, we mention here that some of our
“difficult” samples were handled straightforwardly by E-Views, or SAS, or both, while we
often found samples which our procedure handled but were not dealt with correctly by
one or another of these programs. Some forms of (1.1) and (1.2) were more difficult to
estimate than others. This suggests that the implications of Zumbach’s (2000) analysis
may depend on the form of the (G)ARCH model assumed. The optimization algorithm we
employ seems well suited to these types of models and may usefully be employed in other,
similar, situations.

INSERT TABLE 4.1



5. DISCUSSION

Simulation Results

The percentiles given in Table 4.1 suffice for our purposes, but are for illustrative rather
than for testing purposes; while the individual deviances were determined to three-figure
accuracy by the program, the percentiles are not estimated to that order of precision. They
were estimated directly from the empirical distribution function, but since the models under
consideration are heavy-tailed, the high quantiles will be strongly influenced by extreme
peaks of the time series. An alternative estimation procedure using extreme value theory
and taking the size of the peaks into account would be preferable for general use. For a
presentation and discussion of this kind of methodology for stationary time series we refer
to Borkovec (2000a), Embrechts et al. (1997, Chapter 6 and Section 8.1), and references
therein. Fuller simulations and estimations for our setup are reported in Van De Vyver
(2001). (See also Beletski, May and Szimayer (2001) and Gleisberg (2001).) The standard
errors of the estimated percentiles in Table 4.1, calculated using normal approximations,
vary from about 10% of the tabulated values for the 90th and 95th to about 20% of the
values for the 99th percentiles.

Perhaps the most striking conclusion to be drawn from the table is that when the
innovations are normally distributed, the form of g; makes little difference to the percentiles
of the distribution of the deviance statistic either in finite series of length greater than about
100, or asymptotically, at least when the underlying distribution of the series is given by
the null: random walk or white noise. (The form of g; may well be of importance in the
non-null case and/or when the residuals do not have us = 0 and p4 = 3.)

We note a somewhat closer correspondence between finite sample and asymptotic
results, for the series lengths considered, for ARCH than for GARCH models, as might be
expected. The length of the series, n, plays the expected role, with the results for n = 1000
somewhat closer to the asymptotic values than for n = 100, in most cases.

Calibrating Time Series

Typical applications to financial data sets of our models would take the X; to be In(S;),
or In(S;/S;—1), where S; is an asset price or exchange rate series. (1.1) — (1.2) with « =0
and g; = X2 = (In(S;/S;_1))? represents the GARCH(1,1) model intensively studied in the
econometrics and stochastics literature. The tail behaviour of the stationary distribution,
the extremal behaviour and the limiting behaviour of the AR-ARCH(1) model have been
investigated in Borkovec and Kliippelberg (2000), Borkovec (2000a,b) and Embrechts et
al. (1997, Section 8.4). Bollersev, Engle and Nelson (1995) provide an interesting survey
of some time series analyses that use economic and financial data sets, illustrating the
types of data properties that the various models are intended to capture. Pagan (1996,
Section 5) provides an informative discussion of considerations needed in establishing that
the alternate as well as the null model is economically sensible. Our methods are able to
accomodate these kinds of models; for example, the models of Duan (1995) and Ritchken
and Trevor (1999).

Stationarity
Stationarity of the processes we consider is not an issue in the context of this paper as
our working makes clear. But in practice, if the null hypothesis is rejected and a conditional
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heteroskedasticity model of the AR-ARCH or AR-GARCH type is thought appropriate
for the data, then the precision of parameter estimation and questions of stationarity or
otherwise become important. Parameter estimation in these models has been considered
for example in Ling and Li (1998) and their references, and the stationarity of the models
has been resolved for the AR(1) process with ARCH(1) errors in Borkovec and Kliippelberg
(2000).

Dependence on Paramelers

The distributions in (3.1), (3.2) and (3.3) in general depend on the parameters us and
14, which must be estimated from data if the result is to be used in this generality. The
first summand on the righthand side of (3.1) is the square of the Dickey-Fuller “¢”—statistic
for testing the unit root (random walk) hypothesis in an autoregressive process. This of
course is the contribution of the AR in the AR-ARCH type setup. When the distribution
of the underlying residuals is normal, or, more generally, us = 0 and pg4 = 3, we get for
the righthand side of (3.2) a x? rv plus an independent 50-50 mixture of x? and a point
mass at 0, consistent with the conjecture of Demos and Sentana (1998).

ACKNOWLEDGEMENTS
We are grateful to David Hendry, Adrian Pagan and other participants in the Queens-
land Finance Conference (Brisbane, October 1999) for encouragement and helpful com-
ments. Thanks also to Alexander Szimayer, Anke Gleisberg, two referees and the Editor
for an especially careful reading of the paper and constructive suggestions. The first author
gratefully acknowledges the hospitality of the Department of Accounting and Finance at
the University of Western Australia during a visit to that Department.

REFERENCES

Aitchison, J., and Silvey, S. D. (1958). Maximum-likelihood estimation of parameters
subject to restraints. Annals of Mathematical Statistics 29 813-828.

Andrews, D.W.K. (1999). Estimation when a parameter is on the boundary. Econometrica
67, 1341-1383.

Andrews, D.W.K. (2001). Testing when a parameter is on the boundary of the maintained
hypothesis. Econometrica, 69, 683—-784.

Beletski, T., May, A. and Szimayer, A. (2001) Testing for conditional heteroscedasticity in
financial time series. Preprint. Research Center caesar, Bonn.

Bollerslev, T., Chou, R. Y., Kroner, K. F. (1992). ARCH modeling in finance, Journal of
Econometrics, 59, 5-59.

Bollerslev, T., Engle, R. F., and Nelson, D. B. (1995). ARCH models. In: R. F. Engle and

D. McFadden, Eds, The Handbook of Econometrics, Vol 4, pp. 2959-3038, North Holland,
Amsterdam.

Borkovec, M. (2000a). Extremal behavior of the autoregressive process with ARCH(1)
errors, Stochastic Processes and their Applications, 85, 189-207.

Borkovec, M. (2000b). Asymptotic behavior of the sample autocovariance and autocor-
relation function of the AR(1) process with ARCH(1) errors (submitted for publication).
http://www.ma.tum.de



Borkovec, M., and Kliippelberg, C. (2000). The tail of the stationary distribution of an
autoregressive process with ARCH(1) errors, Annals of Applied Probability, to appear.

Brooks, C., S. P. Burke, and G. Persand (2001). Benchmarks and the accuracy of GARCH
Model Estimation. International Journal of Forecasting, 17, 45-56.

Davies, R. B. (1977). Hypothesis testing when a nuisance parameter is present only under
the alternative. Biometrika 64, 247-254.

Davies, R.B. (1987). Hypothesis testing when a nuisance parameter is present only under
the alternative. Biometrika 74, 33-43.

Davis, R. A. and Dunsmuir, W.T.M. (1996). Maximum likelihood estimation for MA(1)
processes with a root on or near the unit circle. Econometric Theory, 12, 1-29.

Davis, R. A. and Mikosch, T. (1998). Gaussian likelihood based inference for non-invertible
MA(1) processes with « noise. Stochastic Processes and Applications, 77, 99— 122.

Demos, A. and Sentana, E. (1998). Testing for GARCH effects: a one-sided approach.
Journal of Econometrics 86, 97-127.

Duan, J. C. (1995). The GARCH option pricing model, Mathematical Finance, 5, 13-32.
Durrett, R. (1991). Probability: Theory and Examples Wadsworth, California.

Embrechts, P., Kliippelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for
Insurance and Finance. Springer, Berlin.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the
variance of the United Kingdom inflation. Econometrica 50, 987-1007.

Engle, R. F. (Ed.) (1995). ARCH: Selected Readings. Oxford Univ. Press.

Fiorentini, G., G. Calzolari, and L. Panattoni, (1996). Analytic Derivatives and the Com-
putation of Garch Estimates, Journal of Applied Econometrics, 11, 399-417.

Gleisberg, A. (2001). ARCH und GARCH Modelle im Test gegen das Black-Scholes Mod-

ell. Dialomarbeit, Department of Mathematics, Technical University Darmstadt, Darm-
stadt, Germany.

Gouriéroux, C. (1997). ARCH Models and Financial Applications. Springer Series in
Statistics. Springer-Verlag, New York.

Jerrell, M., 2000, Applications of public domain global optimization software to difficult
econometric functions, Arizona: Northern Arizona University, 1-22.

Kurtz, T. G. and Protter, P. (1991). Weak limit theorems for stochastic integrals and
stochastic differential equations. Annals of Probability 19, 1035-1070.

Lee, J. H. H. (1991). A Lagrange multiplier test for GARCH models. Economics Letters
37, 265-271.

Ling, S. and Li, W. K. (1998). Limiting distributions of maximum likelihood estimators for

unstable autoregressive moving-average time series with general autoregressive heterosc-
dastic errors. Annals of Statistics, 26, 84—125.

Loehl Enterprises, 1998, Global Optimization: Global Nonlinear Optimization using Math-
ematica, v2.4, Naperville, IL.

McCullough, B. D.; and C. G. Renfro, (1998). Benchmarks and software standards: A case
study of GARCH procedures. Journal of Economic and Social Measurement, 25, 59-71.

10



Nicholls, D. F. and Pagan, A. R. (1985). Varying coefficient regression. E. J. Hannan, P. R.
Krishnaiah and M. M. Rao (Eds), Handbook of Statistics, 5. North Holland, Amsterdam.

Pagan, A. (1996). The econometrics of financial markets. Journal of Empirical Finance,
3, 15-102.

Ritchken, P. and Trevor, R., (1999). Pricing options under generalised GARCH and stoch-
astic volatility processes. Journal of Finance, 54, 377-402.

Seo, B. (1999). Distribution theory for unit root tests with conditional heteroskedasticity.
Journal of Econometrics 91, 113-144.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In: O. E.
Barndorff-Nielsen, D. R. Cox and D. V. Hinkley (Eds), Time Series Models in Economet-
rics, Finance and other Fields. Chapman Hall.

Silvey, S. D. (1959). The Lagrangian multiplier test. Annals of Mathematical Statistics
30 389-407.

Van De Vyver, M. (2001). PhD thesis, Department of Accounting and Finance, University
of Western Australia.

Vu, H. T. V. and Zhou, X. (1997). Generalisation of likelihood ratio tests under nonstan-
dard conditions. Annals of Statistics 25, 897-916.

Wolfram Research Inc., (1999). Mathematica, Version 4.0.0.1, Champaign, IL.

Zumbach, G. O. (2000). The pitfalls in fitting GARCH(1,1) processes, in: C. L. Dunis
(Ed.), Studies in Computational Finance, Kluwer, 179-200.

APPENDICES: PROOFS

As outlined in Section 2, we follow the VZ approach to prove Theorem 3.1. Under
certain conditions on the model and a “maximising function” (which in our case will be
the log-pseudo-likelihood function £,(#)), VZ show that, WPA1 as n — oo, there exist
unique maximisers of £, () in the null and alternate spaces which are consistent for 6,
and derive the asymptotic distribution of the deviance statistic. The VZ “A” conditions,
specifically: (A1), existence and continuity of first and second derivatives of £,,(0), taken
to be one-sided at boundary points, and (A2), there is a closed cone Cqa) with vertex at
6 such that Coay NN = QW NN for a closed neighbourhood A in R? of 6, and similarly
for Q) and 7, are satisfied for our setup. However, some of the “B” conditions are not
satisfied, so we must modify their methods. The approach given here can be used in other,
similar, situations as well, so we keep the exposition general for as long as possible, only
resorting to the specifics of the models when necessary.

Proofs are collected in the following four appendices. Appendix A lists the derivatives
of the log-pseudo-likelihood, and some related quantities, Appendix B contains basic lem-
mas, Appendix C has the main parts of the proof of Theorem 3.1 and Appendix D verifies

condition (B.6) of Lemma B.1 for H(()l) and g;_1 satisfying (1.3).

APPENDIX A: DERIVATIVES.
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The log-pseudo-likelihood of the observables X,,, X,,_1,..., X3, conditional on Xq, is

R S R |
0) = 2;1]&(01.) 2;@ 5 (n—1)In(27) (A.1)
where
02 =B+ Agi_1, i =2,3,..., (A.2)

and, throughout, we use the relation ¢; = (X;—aX;_1)/0;. Straightforward differentiation,
allowing for g; 1 to depend on «, 8 and/or A in general, gives

6_8,? 22X e? do?  0Oel 5 do? and oe? _i@af (A.3)
oa o o2 9o’ OB 285 O\ o2 0N’ '
ket 0L, (0) 0*L,,(0)
Sn(0) = 90 and F,(0) = — 502

be the first derivative vector and negative second derivative matrix of £, (). From (A.1)
— (A.3) we get for the elements of S,,(0):

n 1= (2X;_1¢; 2 _ 1) do2 n le=(e2-1
o (B BT TS e
and no, o
aaﬁ; _ %Z (e a; 1) %A . (A.4b)
Noting that ) ) )
R s
i () =S ()= v

and with F,,(0) = [F;.?(0)], r,s,= 1,2, 3, we then get from (A.4)

X? 4X; 18, (262 —1) 002\ 002 (e2 —1) 9?02
11 i—1 t—1¢4 i \Sq i
Fu (0) = 3@2 B < o? < o} - 0',? Ja > ofe" o2  0a? >
(A.6a)
Fi2(g) - 0L, lz 261 i1 26,% —1) 9o} 907 (] — 1) d*d
" T 0adB 2 —~ o}  da ) 0B o  0adB)’
(A.60)
0L 1 — 2e; X 252 —1) 902\ 002 (2 —1) 0%0?
13 _ n _ - iAi—1 7 ) T ) )
Fu(0) = dad\ 2 Zz:: << o} O > O\ o? 8a8/\> ’
(A.6¢)
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f22(9) _ _3 Ly, — 12{(261 _1)(801 )2_ (61' _1)6 0; }, (A6d)

" 032 2 o} 0B o  0p?
%L 1< [(2e7 —1) 002 002  (e2 — 1) 9%0?
23 _ n _ - 7 ) T ) 7
Fur0) = =559x = 3 ; { or 9B O\ o2 868)\} ’ (4.6e)
and
0L, 1. [(2e2—1),007 (62 — 1) 007
33 _ no_ - ) 1 \2 7 [
Fa0) = ON2 2 ;{ o} ( o\ ) o2 0N } ' (A4.6f)
Also, from (A.2)
Oc? 0gi_1 0%0? 0%c? 0%c? d9i_1.0
¢ = )\ = 0 = L = ? U - ’ A'7
Dax 1, Do o, 902 lo,  0adfls,  dadxle,  da (4.7a)
80’1'2 . 891_1 . 30'3 . 891_1 .
9B ey (1+A B ) b = oX log (gi-1+ A 2)) ) 6o IO (A7)
0%} 0%} 09i—1,0 %0} 09i—1,0
Ll = d = ’ d Ll = —. A.
982 1o, =% Bpanle, ~ o 0 MM axe s, B (4.7¢)

APPENDIX B: BASIC LEMMAS.

The next lemma provides the basis for Theorem 3.1. In what follows, Op(1) denotes a
random variable bounded in probability (relatively compact) as n — oo, and op(1) denotes
a random variable which tends to 0 in probability as n — 0o. Apin(M) (Amax(M)) denotes
the minimum (maximum) eigenvalue, and M2 denotes the left Cholesky square root, of
a positive definite matrix M. “T” denotes a transpose. For n > 1 and A > 0, N, (A)
denotes the neighbourhood

Np(A) ={0:(0—00)"G,(0 —0p) < A%} . (B.1)

In Lemma B.1, we write Q for Q) or Q3 and d,, for dV or d@.

Lemma B.1. (i) Suppose there is a deterministic diagonal nonsingular matriz G,, with
Amin (Gn) — 00 (n — 00) such that

G128, (69) = Op(1) (B.2)
and
Jim lmsuplimsup P{__inf  hwn (G2, (00)G, /D) <} =0, (BY

Then there are pseudo-mazimum likelihood estimators (pseudo-MLEs) 0 and 0., which
for each A > 0 uniquely mazimise L,,(0) on N,(A)NQ and N,,(A) N1, respectively, on an
event which has probability approaching 1 as n — oo and A — oo. These estimators are
consistent for 6.
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(ii) Suppose in addition that
G PFY2(00) = Yo + op(1), (B.4)

where Y, is a lower triangular matriz with positive diagonal elements, having, apart from
the diagonal element, zeroes in the first column; that

(G,;Wsn(eo), Yn> B (s, v), (B.5)

asn — 0o, for some a.s. finite random vector S and a.s. finite, nonsingular, matriz’Y (in
(B.5), joint convergence of all elements is required); and that, as n — oo, for each A > 0,

sup || G2 (Fu(0) — Fal00) G2 Do, (B.6)
0EN, (A)

Then, as n — oo,
FiY2(00)Sn(60) B3 Y15 = 7, (B.7)

for a finite random vector Z = (Z1, Zs, Z3), and

dp = 2(L(0,) — Lo (09)) B 22 + Z21(Z5 > 0). (B.8)

Proof of Lemma B.1: As mentioned, we follow the proof of Theorem 2.1 of VZ, replacing
(B3’) of VZ (note that VZ do not use their (B1) in the proof of their Theorem 2.1), which
does not hold here, with the weaker condition (B.6). The proof of Theorem 2.1 of VZ can

then be carried through with minor modifications to find 9}9). Potentially, 9}9) depends
on A but a standard argument in analysis allows us to choose éﬁbl) not depending on A,
still with 0% ¢ N, (A), on an event which has probability approaching 1 as n — oo and
A — oo. This is our pseudo-MLE of 6y in €2. Similarly, we can get a pseudo-MLE én in T,

and these are clearly consistent for 6. This establishes Part (i) of Lemma B.1.
For Part (ii), (B.7) follows immediately from (B.4) and (B.5). To prove (B.8), write

2(Ln(0) = La(00)) = 20059 — 00)" S (80) — (05 — 00) " F (0) (01 — 60o)
= I (01) + 7 (O), (B.9)

where 6,, = afly + (1 — a)ér(Ll) for some 0 < a <1,
ha(6) = —|F71/2(00)Sn(60) — F/2(60) (6 — 6) 17 + 55 (60) F H(60)Su(60)  (B.10)

and
ra(0) = (0= 00)" (Fa(60) = Fu(0n)) (9 — 6).
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In view of the preceding, given € > 0, we can take A > Ay(e) and n > ng(e, A) such that
the event

By := {0 € N, (A), 0, € Ny(A), |F2(00)Sn(00)]* < A2 Amin (Y, Yn)/4}

has probability at least 1 —e. Suppose E, occurs. In (B.9) we then have 6, € N, (A)
WPAT1, and consequently from (B.1) and (B.6) we get r, (éfll)) Zo. (B.9) then gives

2(Ln () = L1 (00)) = hn(0) + 0p(1). (B.11)
If 0 € N, (A), so that |G71/2(9 —0p)| < A, we have from (B.4) that
Fu2(00)(0 — 00) = Y.L G1/*(0 — bo) + 0p(1).
As in VZ we then get from (B.11)

2(L, (V) — L1,(60))
=— inf  |F7H2(00)Sn(00) — FL/2(00)(0 — 00)| + SE (00) Ft (60)Sn (60) + 0p(1)

BEN,, (A)NQ
=— _inf |F2(00)Sn(00) = V,L G0 = 00)| + S (60) F,  (60)Sn (o) + op(1).
BEN,, (A)NQ
(B.12)

(B.12) differs from VZ in that the norming is by random matrices F,(6y) and Y,, rather

than by G,,. Nevertheless, proceeding, we transform from 6 to ' = YT:‘FG}LM(H — 6o), so
that N, (A) transforms to N;,(A), say. Now (A2) of VZ requires a cone Cg with vertex at
6y € © which coincides with © on a neighbourhood of 6, i.e, Cq N N, (A) = QN N, (A).
We can take

Cao =00+ {0} x R x {0},

which transforms via 6’ to
{(YIGY2(0 - 0y) : 0 € Cq} = {0} x R x {0} = Cq, say.

This holds because of the conformation of Y,,; apart from the positive diagonal elements,
only the (3,2) element of Y;, may be nonzero; and G,, is diagonal with positive elements.
Note further that if

|9,|2 < A2/\min(YgYn)7

then 6 such that 0’ = YT:‘FGiLm(H — b)) satisfies

(0 —00)TGL (0 —00) = (0 —00)TGL2Y, (YIY,) 'Y TGY2(0 — 6,)
= (QI)T(YnTYn)_lel < |9/|2/\maX(YnTYn)_1 < sz

so # € N, (A). Thus 6’ € N/, (A), so
N (A) D {0 :10']? < A2 Auin(Y,TY) ). (B.13)
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From (B.12)

2(La(0) = La(00))

= inf | FY%(00)S,(0) — 0’| + ST (80) F; L(00)Sn(60) + op(1). (B.14)
9'cN! (A)NCq

Let én € 69 be such that

| /2(00)80(00) = On| = inf |F; 12 (60)Sn(00) — O']-
0'eCa

Since Cn contains 0,

inf |7, 2(00)Sn(00) — 0" < |, 2(00)Sn(00)> < A% Amin (Y, Y2 ) /4,
0'eCq

on E,. Tt follows that |0, |2 < A2Amin(YTY,,), so 0, € N’ (A). Thus from (B.14)

2(L,(6)) — L1(60))

= — inf |F;Y2(00)Sn(00) — 0| + ST (00)F(60)S, (0o) + op(1). (B.15)
0'eCq

A similar analysis for 0,, gives

Q(En(én) — L, (90))

= — inf |F;Y%(00)Sn(00) — 0'| + ST (60) F;7 (Bo)Sn(b0) + 0p (1), (B.16)
QIECT

where C, = R? x [0, 00); notice that C; = 6y + R? x [0, 00) transforms to C. via 0/ =
\ & Gy ?(0—6y), again because of the conformation of ¥;, and G,,. Subtracting (B.15) from
(B.16) we get

d, = inf |F7%(00)Su(6o) — 07 — inf |F7%(60)S,(60) — 6] + op(1)

B inf |Z-0)2— inf |Z—0)? (B.17)

with Z = (Z1, Z3, Z3) as in (B.7). Hence

dn B inf  |Z—02— inf |Z-0
0c{0}xRx{0} 6ER? x[0,00)
= Z3 + 25 — Z31(Z3 < 0) = Z7 + Z31(Z3 > 0). (B.18)

This is (B.8), and completes the proof of Lemma B.1.
The method of proof of Theorem 3.1 will be to verify the conditions of Lemma B.1 for
the model version and null hypothesis currently assumed. Now (B.2) follows from (B.5),
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and (B.3) follows from (B.4), (B.5) and (B.6) because Y, as a positive definite matrix, has
no mass at 0. The verification of (B.6) under the assumptions of Theorem 3.1 consists of
routine but tedious calculations and is relegated to Appendix D. It then only remains to
demonstrate (B.4) and (B.5).

Before embarking on these calculations, we find a simplified asymptotic representation
for G,, Y 2.7:n(90)GT_L /2 which holds for all the versions we consider. Inspection of the
derivatives listed in Appendix A suggests taking for GG,, a diagonal matrix of the form

G, = diag(an, n, by), (B.19)

where a,, — oo and b,, — oo are deterministic sequences whose definitions will depend
on the choice of Hy, and on the choice of the sequence g;—; in (1.2). For H(()l) we take
a, = n?, and for H(()2), a, = n. Under (1.3), take b, = n, while b,, = n3 is appropriate
under (1.4), as we will see. With these choices, the following will be shown to hold:

Lemma B.2. Assume H(()l) or Hé2) for either model specification (1.3) or (1.4), and
suppose that, as n — oo, each of

n

R 1
W Z(e’? - 1)97:—]_70, b_ Z(ef - 1)97;2_170, (BQOCL)
™ oi=2

"oi=2

n

1 2 0gi-1,0 1 <, o, 0gi-1,0 1 2 0Ggi—1,0

1 n
eiXi_ i— B.20c
Vi, & X190 (B.20c)

is op(1), where gi_1,0 is the value of gi—1 under the current null hypothesis. Then

- n -

1
dYx2,o0 0
Boan i—2
—1/2 —1/2 1 1 zn: .
Gn fn(QO)Gn = 2/88 268\/@ P 91—1,0 —+ OP(l) (B21)
1 &,
PP T Zgi—l,o
i 2000n = |

(with the remaining elements filled in by symmetry).
Proof of Lemma B.2: Pre- and post— multiplying F,,(6) by G;l/z, where G,, is given
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n (B.19), gives

FIO) FR0) FLO)

22 23
G 2T (0)G = Fo0)  F20) (B.22)
n \v/nb,
T (0)
br,

(with the remaining elements filled in by symmetry).
Now, (A.6a) and (A.7a) mean that, in all cases,

119
fn(o_ ZX’L 1

G, BOan i

as required for (B.21).

1 . . .
Under H(() ), X,_1 is a mean 0 finite variance random walk and we take a,, = n?, so

by (A.6b), (A.7a) and (A.7b)

Fillo) 1 zn:eiXi—l — Op(1/v/n) = op(1). (B.23a)

1=2

T p3/2
na,, /30/ n3/2

This follows by noting that e; X;_1 is a martingale difference sequence with respect to H;,
the o—field generated by the sequence {e;,e;_1,...,e1}, having variance Var(e; X;_1) =
EX? | = (i — 1)By. Alternatively, under Héz), Xi—1 = V/Boei_1, €ie;_1 is a mean 0
stationary sequence, and we take a,, = n, so by the ergodic theorem,

F2(00)

nay,

1 n
= ﬂon E €;€;_1 :Op(l), (323b)
1=2

again. This deals with the (1,2) element in (B.21).
Now assume (B.20). From (A.6¢), (A.7), (B.20a) and (B.20c) we have in all cases

n n

7%3(90) 1 1 2 8gz’—l,o
7 b —= B3/2 b ZeiX’i—lgi—l,O — W Z(ez - 1) 8@ = OP(l). (B.24)
v ¥ntn 0 VUnOn j—3 nin ;9

Next use 2¢? — 1 =1+ (2¢? — 2) and the ergodic theorem in (A.6d) to get

F200) 1 =, _n-1 1 )
- _26%2(26”'_1)_250 n Z(e—l) 250+0P(1) (B.25)

07" =2



and similarly, using (A.6e) and (A.7),

F2(6)) dgi-1,0
n _ - i — 1 !
b, 250\/nb Zg Lot g \/nb Z gi-1.0 = 250\/nb Z K o8

1
L i 1) (by (B.20 d (B.20b)). B.26
25(2)%;9 1o +op(l) (by (B.20a) and (B.20b)) (B.26)
Using (A.6f),
F33(00) dgi-1,0
n _ _ 1 ’
bn 2/831) Zz:: — 10 5(2)1) z_; g’L 1,0 — 2501) Z €; N
— %Tb ng_l +o0p(1) (by (B.20a) and (B.20b)). (B.27)
071 =2

Substituting (B.23) — (B.27) in (B.22) gives (B.21).

APPENDIX C: PROOF OF THEOREM 3.1.
Case 1: Suppose (1.3) holds, so g;—10 =e€? ;07 ; = (X;—1 —aX;_»)?, and suppose
Case 1(a): Hél) tag =1, 0 = 0.
Under H" we have 62 = 02 = B, and X; is a random walk whose increments have

expectation 0, variance 3y and finite third and fourth moments p3 and pu4. Take a, = n?
and b, = n. First we check (B.20). For (B.20a),

IRS 2 2 P 1< 2 4 R

- Z(ei —1Defy >0 and Z(ei —1)ef ;=0 (C.1)
=2 1=2

hold by the ergodic theorem, as {(e? — 1)e? ;} and {(e? — 1)e}_,} are mean 0 stationary

sequences. Next, we have

dgi—1 dgi—1 dgi—1
= —2X; 2(X;-1 —aX;_ = —2X;_26;_ d =0= ,
da e 2( 1 2) 6o 2¢i-1V flo an ap le, oA 6,
so for (B.20b) we need
1 n
—~7 > (e = 1)Xi_sei 1 = op(1), (C.2)
=2

The sum in (C.2) is a martingale with respect to #H;, and an easy calculation of its variance
establishes the required convergence via Chebychev’s inequality. For (B.20c), we use:

Lemma C.1. Assume e; are i.i.d. Tvs with expectation 0, variance 1 and finite fourth
moments, and X; =Y e;. Then

1 < P
W Z einL'_]_e,?_l = 0. (03)
1=2
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Proof of Lemma C.1: Using Chebychev’s inequality, we see that the normed martingale
Y5 eiXi—1/n is Op(1) (i.e., stochastically bounded), hence

1 1 < 1
—n3/2 z;eiXi—le'?—l = —n3/2 z;eiXi_1(e?_1 — 1) + W z;eiXi_l
1= 1= =

1 n
= n3/2 Z ei(Xi—2 + 61'—1)(61'2_1 - 1) + OP(l/\/ﬁ)
i=2

1 < 1 <
= 32 ;eiXi%(e?A -1+ 372 ;eiei—1(€?_1 —1)+o0p(1)

1 n
=32 Z%’Xi—z(@?_l —1)+op(1).
i=2

The last equality follows from the ergodic theorem, since the sequence {e;e;_1(e? ; — 1)}
is stationary with mean 0. Now the sequence {e;X; 2(e? ; — 1),H;_1} is a martingale
difference sequence with variance proportional to i — 2, so the last term is op(1), and thus
(C.3) holds.

From (C.1) — (C.3), (B.20) and thus (B.21) follows by Lemma B.2.

Now we demonstrate (B.4). With an application of the weak law of large numbers,
(B.21) leads in the present case to

R ]
X? 0 0
2 Z i—1
o i 11
—-1/2 —-1/2 _ 0 =
G, ' Fn(00)G,, 282 26 +op(1). (C.4)
1 M4
’ % 2
Taking the Cholesky square root we get
- L En:X? 1 0 0 -
2 i
Pon® =
1
G2 F(00) = 0 0 +op(1), (C.5)
Bov2
0 1 M4 — 1

which is of the form required in (B.4).
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Finally we check (B.5). From (A.4) and (A.7) of Appendix A we obtain

[ oeiXic1 ]
nvBo
G S, = | S (C6)
n n — Qﬁ()\/ﬁ . .
(6112 - 1)63—1
L 2yn

From this and (C.5) we see that it will suffice to find the joint limiting distribution of

[ U DR OIP A DI - PSP SRV SR B
(n\//g—_()iz:;erz—17 2/80\/5 Zz:;(ez 1)7 2\/5 ;(ez ]-)ei—la /8077,2 ;X’i—l) . (07)

To deal with (C.7), consider the matrix product

Xi_1 [ 1
Vit " i/ Vi
1
0 ﬁ 0 (612 - 1)/\/5 - AinBin7 say, (08)
0
0 0 % (e —1)ei 1 /v/n

which forms the summand in (C.6). For 0 <t <1 let

An(t) = Apyn and  By(t) = Bin

([-] denotes the integer part), then, with AL!(#) as the (1,1) element of A, (t),

1 1

G %8, (600) = /2 / Ap(t)dBn(t) and 501HQZXE_1= /1 / (A (®)%dt.  (C.9)
n i=2 n

Now {Bi,}1<i<n are the terms of a martingale triangular array with respect to {#;}, so
by Theorem 2.2 of Kurtz and Protter (1991), from the joint convergence of (A, (t), By (t))

to a limit process, (A(t), B(t)), say, we can deduce the joint convergence in the Skorohod
topology on [0, 1] of

(An(t),Bn(t), /0 tAn(s)dBn(s)> to (A(t),B(t), /0 tA(s)dB(s)). (C.10)
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This will give the required joint convergence in (C.7). Since X; = Z’l e;, the joint conver-
gence of A, (:) and B, (-) will follow from that of

[nt]

\/_Z & \/—Z \/152(63—1)61'2_1 ; (C.11)

=2

in D3[0,1], and we deduce this from a martingale invariance principle (e.g., Durrett (1991,
p. 374)) as follows. Take a linear combination

Y; = ure; +us(el — 1) +usz(el — 1)e?_,, (C.12)

where u = (uy, us,u3) are constants with u? + u2 + u2 = 1. Y; is a martingale difference
sequence with respect to H;, and by the weak law of large numbers

= ZE (YA Hi 1) Z {uiEe + u3E(e] — 1)* + 2uuzE(e1(e] — 1))
+u3E( —1)%e} |+ 2uiusE(er(e3 — 1))el | + 2uquzE(e? — 1)%e?
1 n
= > {ud + ud(pa — 1) + 2ugugps + ui(pa — 1)efy + 2uguspze] | + 2uguz(pa — 1)ef_, }
=2

P
S out +ud(pg — 1) + 2ugugps + ui(pg — 1) g + 2ugus s + 2ugus(py — 1). (C.13)

The last expression is u” Msu, where

1 U3 M3
M3 = H3  H4 — 1 Ha — 1 . (014)
p3 pa =1 pa(pa —1)

We need also to check the Lindeberg condition in the form

1 n

=" B(Y2I(|Yi] > ev/n)|Hi—1) 3 0, for each € > 0,

n

i=2

and this follows easily by similar calculation as in (C.13). We conclude that the vector in
(C.11) has asymptotic distribution that of M v/ *Ws(t), where Ws(t) is SBM in 3 dimen-
sions, Wg( ) = (W1(t), Wa(t), W5(t)), say. Consequently, calculating the Cholesky square
root of M3, we see that G;l/ZSn (Ap) converges in distribution to

/0 Wi (y)dW1 (y)

1
/ At M 2dWs(t) = B8y 1) ¢ VT Ll Wa(1)
0 2030 2030

s (1) + g — 1 — i3 Wall) + <u42—1> Wald)

L 2 2
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Since All(t) converges weakly to Wi(t) (see (C.9)), the limit in distribution of (C.5)
is given by replacing the (1,1) element of the matrix with \/Jo, where

Ji= / WH(y)dy (C.16)

(as in (3.4)). Taking the inverse of the limit of the matrix in (C.5) gives
— 1 -
— 0 0
V2
0 V28 0

—BoV2 2
Vita — 1 pa—1

1
(G2 m00)) B (C.17)

Pre-multiplying the matrix in (C.15) by the one in (C.17) gives (since we have joint con-
vergence of all elements)

| Wiawi /5 2

1 4,2
F12(0)S,(00) 2 %Wl(l)—i—\/i'wl ; )| = | 2| (C.18)

—1 Z
I u42 Wa(l) . :

from which we identify the Z3 needed in (B.8) as

Zs = /s — 1 W3(1)/V2. (C.19)

This is distributed independently of Z;, the first element in (C.18). Thus the limiting
distribution of d%" can be found from (B.8) as

(i wawawi(v)”

4 — DWE(1)I(W3(1) <0), C.20
TTW2 )y (ks = 1)W3(1)I(W5(1) < 0) (C.20)

+

DN | =

which is of the form required in (3.1). This proves (3.1), subject to verifying (B.6), which
is done in Appendix D.

Case 1: Suppose (1.3) holds, so g;_10 =¢€? ;07 ; = (X;_1 — aX;_»)?, and suppose
Case 1(b): Héz) tap = 0= Ao

Next assume (1.3) and (2.5), so that X; = e;0;0 = €;4/Bp is now an ii.d. sequence.
Only some minor modifications to the previous analysis are needed. Again take b, = n,

23



but this time let a, = n. (B.20a) holds as before. (B.20b) requires, instead of (C.3),

So(e? — 1)e;_2ed 1 /n 20, and (B.20c) requires Sy eiel (/n £ 0. These hold by the
ergodic theorem. Instead of (C.6), use

€i€i—1
G7Y28,(00) = Z (e2—1)/260 |, (C.21)
\/_
(ef —1)ef_1/2
and, from (B.21), in place of (C.4) write, by virtue of the weak law of large numbers,
1 0
G2 F(00)G % = +op(1) (C.22)
0 Fy

where F» is the lower right 2 x 2 block in (C.4). Again, the Cholesky square root of this
is of the form required in (B.4). In place of (C.12) use the martingale difference sequence

1
Y, = uieze;_ 1+%(e —1)+2U3(e —1) 1,

and with an analysis similar to (C.13) we obtain

G128, (00) B M)*Ws(1),

where i ) i
1 0 %
Ms=| o0 , .23
: 15 10, (€:23)
py pa—1 pa(pa—1)
L2 45, 1

and W3 = (W1 (t), Wa(t), Ws(t)) is SBM in 3 dimensions. We find that Z satisfies

Zy = W1(1)7 Zo = V (,u4 - 1)/2 W2(1)7 (0.2461)

7 = ﬁ Wh(1) + \/ L § 1) (C.240)

Hence (3.2) of Theorem 3.1 follows if we verify (B.6) for the present setup. We omit the
details of this.

Case 2: Suppose (1.4) holds, so g;_; = X? ;, and suppose
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Case 2(a): Hél) tag=1,A = 0.
The appropriate b, is b, = n® and for Hél) we take a, = n2, so
G, = diag(n?, n, n®). (C.25)

(B.20) holds here immediately as an application of the functional central limit theorem
(note that the partial derivatives of g;—; are 0 in this case), so (B.21) holds and we have

- 1 n -
— Y X7, 0 0
pon®
—1/2 -1/2 _ 1 Z 1 C.2
G, " Fn(00)G, " = 262 25%2 +op(l)  (C.26)
=2
2B2n3 Z

(with the remaining elements filled in by symmetry). Under H(()l) the first derivatives

satisfy
- eiXio1 ]

nv/Bo
G 25, (00) = 3 ¢ — 1 (C.27)
! ! i=2 260V 7
(61'2 - 1)Xi2—1
B 26077/3/2 _

and differ from (C.6) only in the third element. From (C.26) and (C.27) we see that we
need the joint asymptotic distribution of

1 1 O
<nZeX’L 1, \/—Z 7 n3/2z X’L2 1 2 ZX’L 1 3ZX1'4—1) *
1=2

1=2

(C.28)
Instead of (C.8), this time consider
Xi—1 0
0 % = Avinéiny say. (029)
0 e? —1)/v/n
ooxz ( )/
2,8071

This can be written in the form [ A, (t)dB,(t) in a similar way as before. Once again the

required joint convergence will be obtained if (A, By) EaS (A(t), B(t)), say. But this is
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immediate from the convergence of the normed martingale

nt]
Z ei, €2 —1) (C.30)
=2

to M1/2W2( t), where Wg(t) = (W1y(t),Wa(t)) is an SBM in 2 dimensions and M, =
Var(eq,e? — 1) is the upper left 2 x 2 block in (C.14). Calculations similar to (C.15) give

1
| wimam
G128, (00) B 2“; Wy (1) + V4 ;Bl_ug Wa(1) . (C.31)
0
/W1 VAW (y) + Y 1_“3/ WE(y)dWs(y) |

Once again we have the convergence of the first component of .7:;1/2(90),9”(00) to
Z1, as in (C.18). For the (2,3) components, note that the lower right 2 x 2 block of

G;1/2.7:n(90)GT_Ll/2 in (C.26) converges (jointly with the other quantities) to

1 / 1 J2
— W2( - 22
B3 Bo il 1A P
— | Wi( / Wi o 4
Bo /o il i Bo
where Jj, is given by (C.16). The matrix in (C.32) has inverse Cholesky square root
BoV'2 0
NN > | (C.53)
Jy— J2 Jy— J3
and consequently
-1 . . -
V2
-1 0 V2 0
(G;l/zf}/z(ﬁo)) kt & . (C.34)
0 —BoV2J; 2
Jr— J2 Jy—J3

Thus .7:;1/2(00)Sn(90) converges in distribution to (771, Zs, Z3), where Z; is as in (C.18),

_ M3 pa —1— 3
2, = w0+ W) (C.35)
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and (with Ji as in (C.16))

Zy = m {—J2 (qul(l) e —1— 2 W2(1)>
+1u3 /01 WE(y)dWi(y) + \/pa — 1 — i3 /01 Wf(y)sz(y)} : (C.36)

From this we obtain Z; and Z3 as required for (B.8) and then (3.3) follows.
When ps = 0 and pyg = 3, as they are in the simulations reported in Section 5, Z3 is
standard normal. We leave this for the reader to check.

Case 2: Suppose (1.4) holds, so g;_1 = X? |, and suppose
Case 2(b): Héz) tap = 0= Ap.

Under H(()2)7 X; = ei/Bo, 50 gi—1 = X2 | = €2 | and this model is exactly the same as
for Case 1: g;—1 = e2 ;. So we again arrive at (3.2) for the limiting distribution.

Remarks: The AR-GARCH Case. Lee (1991) observed that the Lagrange multiplier
test, based on the log-pseudo-likelihood, for the hypothesis \g = 0 = §p in GARCH, is the
same as for the hypothesis Ao = 0 in ARCH. This is because when the true model is random
walk, a GARCH model is over-parameterised in that the § and § parameters cannot be
separately identified. The same is true for the general conditional heteroskedasticity model
in (1.2) (including the AR-GARCH model) under the mild conditions we have imposed.
For the model specified by (1.1)-(1.3) (now with ¢ included), and assuming (B.20), we

have instead of (B.21), for G;1/2fn(90)G;1/2 the 4 x 4 matrix

— n -

1 2
Boa X2, 0 0 0

1=2

1

1 n

- Gi—1, _
/8(2) Bgvnbng o BO

.o Lo +op(1)
2
221 9;— o gi—1,0
ngn; 1—1,0 Bg /—nbn; 7
1

(with the remaining elements filled in by symmetry). In the limit as n — oo this is singular,
WPAL1, due to the asymptotic linear dependence between the 8 and d parameters. Just as
in Lee (1991) we can now use the theory of Aitchison and Silvey (1958) and Silvey (1959)

to show that the limiting distributions of the d,, statistics for testing H(()l) tag =1, =
0 =g or H(()2) tag = 0= Ao = Jp are still given by (3.1), (3.2), or (3.3), in the respective
cases.

APPENDIX D: VERIFYING (B.6) WHEN H" HOLDS AND g;_; = 2,02 ;.
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Let 6 € N, (A) N7 (see (2.3) and (B.1)) with A > 0 and take
G, = diag(ay,n,b,) = diag(n?, n,n). (D.1)

Thus, using (B.1) and with 6y = (1, o, 0),

n*(a—1)%+n(B — Bo)? +nr? < A% (D.2)

Now

0l =B+ Agi—1 =B+ Ae;_q107 1 =B+ ANXi1 —aX;0)?, i=3,4,... (D.3)
has

%‘;2 = 20X, 2(X; 1 —aX;_3) = —2)X;_26;_10;_1 and % =2\X7 ,.
So we have from (A.6a)

X2

n2‘}—11(9) F11(4y) ‘_ 22‘ i-1 X2 1‘

g;

An= (4X 18 2A(2€2 — 1)Xz'—2€z'—10¢—1 A= (67 - 1)X7,
ﬁ‘ Z < 3 — 7] Xi—2€i—10'i—1‘ + ﬁ‘ Z o

=2 z 1=2 ?
(D.4)

By (D.2), |« = 1] < A/n, |B — Po| < A//n, and A < A/\/n. Assume n is so large that
A/\/n < Bo/2, then B > By — A/v/n > Bo/2, and so 02 > By/2 (almost surely — we will
omit this qualifier from now on). This means that any o; in a denominator is bounded
away from 0. As a mean 0 finite variance random walk, the X; satisfy max;<i<p |X;| =
Op(y/n) as n — oo, and as an i.i.d. sequence with finite fourth moment, the e; satisfy

P
maxi<i<n ed/n = 0, thus maxi<i<n || = 0p(n1/4). Consequently

eic10i1 = Xi_1 —aX;_a = /Poei_1+ (1 — ) Xi_a = \/Boeir + Op(1/v/n) = op(n'/*),

(D.5)
uniformly in 1 < ¢ < n. This also shows that maxi<i<,e? = op(y/n). It follows from
(D.5) that

07 —ojy=B—Po+Aei_107_1 =O0p(1/y/n) + op(1) = op(1), (D.6)
thus, also,
1 1 |02—020| 2|02 —0-20|
_ | = W« 2 Wl — 1 D.7
“712 ‘71'20 030120 N 5(2) or(1) ( )

uniformly in 1 < ¢ < n. These show that the first sum on the righthand side of (D.4) is
op(1). The second and third sums on the righthand side of (D.4) are also op(1), using the
estimates obtained above. This deals with the (1,1) term.
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(D.3) shows that do?/98 = 1, so (A.6b) together with maxi<ij<, €7 = op(y/n) gives

12 12 _Q’Xz 1 6061
‘]—" - Fa2(00)| < 3/2‘Z< v >Xi_1‘

0

(2e2 - 1)X 261 101
ng/z\z |

’L

\/50‘ < 1 )
X’L 1€, \ —7 — —1 ‘

(3

n3/2

1
g;

1 | — X; — aX;_1 — VBoe;
< n3/2 ‘ ZXi—l( : : Pocs)

(262 — 1) X;_06i_105_1
ﬁ‘ Z 1 o} ‘ (D-8)

From (D.7) we get
1 1
‘7@4 0:'10

= op(1), (D.9)

uniformly in 1 < < n, so the second term on the righthand side of (D.8) is

op (Z |e,-|/n) = op(1), (D.10)

i=2
by the weak law of large numbers. For the first and third terms we need
E;0; — 6061' = )(z - aXi_l - 6061' = (1 - Q’)Xi_l = Op(l/\/ﬁ), (Dll)

which gives ¢; = e;v/Bo/0; + op(1). Thus the first term on the righthand side of (D.8) is
Op(1/y/n) = op(1). The third term is Op(n=3/23" , e2|e;_1|), which is Op(n~1/2) by
the ergodic theorem. This deals with the (1,2) term.

(D.3) shows that do2/0\ = €2 02 |, so (A.6¢) gives

—7 ‘f13 frlb3(90)‘

2 3 3
‘ 881 10-1 1 €iC;_ 1/80 ‘ ‘ 8 _1 1— 281 10— 1‘
~ - z 1
n3/2 Z 1372 Z o

1 61 10;—-1 (6 —1)61 1\/
n3/2‘2< o2 - Xie 2‘

’LO

g2 102 | —eie? 1 Bo)X; 1 1< 1 1
’L i—1M0 2
Xireie? (= — = ‘
~ n3/2 ‘ Z 0_13 ‘ + n3/2 ‘ Zz:; i—1€4€;_q (O_Z,?, 0_3 >

20

2% |

o}

n3/2‘z< ef —Veicioic1 (¢ —1)61 1\/_> N 2“ (D1

Uz ’LO
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Note that

e —e; = ((Xi —aXi1)? —oje}) /o]
= (1— ) Xi_1(X; — aXi_1 + \/Boei) Jo} + (0}y — 0)e} o}
= Op(1/v/n)(gi0i + /Boei) + efop(1) = op(1)(1 + €?), (D.13)

by (D.5). So e? = (1+0p(1))e? +op(1). In the first term on the righthand side of (D.12),

use

2 2 2 2 2 2 2 2
€i€;_10;_1 — eiej_1P0 = (ei€i_1 — esej_1)o;_1 +eie;i_1(o;_1 — Po),

(D.6), and, from (D.13),

eigi1 —eieiy = (6 —ei)ei_y + (g1 —efq)es

= (Xi — aXi—1 = Vhoei)ei_1/oi + (050 — 03)eiei_1 /o + op(1)(1 + ei_1)es]

= Op(l/\/ﬁ)Op(\/ﬁ) + Op(l)(l + 0p(1))|6¢|6i2 + Op(l)(l + 6,?_1)|€i|.
Since X;_1 = Op(y/n), uniformly in 1 < i < n, we can sum over 1 < i < n and divide by
n3/2 to see that the first term on the righthand side of (D.12) is op(1). The second term
on the righthand side of (D.12) is op(1), by a similar analysis as in (D.9) and (D.10). The

third term on the righthand side of (D.12) is op(1) by (D.13). The fourth term on the
righthand side of (D.12) can be handled similarly to the first and second terms; note that

(e7 — D)ei1 — (] — 1)ei—1 = (e] — ef)ei_1 + (] — 1)(gi—1 — €i—1),

and use (D.13). Next, (D.3) shows that do2?/98 = 1, so 9?02/03% = 0 and (A.6d) gives

Lr200) - 7200 = | Z (Eh - Edob)

0,0
noo9 2
< l‘z (ei — ;)
— nl< o
=2 ?

1] — 1 1
IS @2 — ) (= - = ‘ D.14
saled-n (G -5) (D14

The first term on the righthand side of (D.14) is op(1), using (D.13). The second term on
the righthand side of (D.14) is also op(1), using (D.9).
For the (2,3) component use (A.6e) to get

1 1
g; 0,0

i L (22— Dkt (2 Del
;\fﬁ?’w)—fz%eo)\:%\;( 1% )|

1
: o T30

7

1o (262 — 1)e2 02 . —(2e2 — 1)e2_ i 1
e e e E ]
Nl o ni i ;
(D.15)
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The second term on the righthand side of (D.15) is op(1), by (D.9). For the first,

(2512 - 1) €i— 1012 1 (263 - 1)6?—150 = 2(52 - 62)512 1Uz 1t (26 - 1)( €i 1012 1 i—150)
= (2(e7 —€f) + (2¢] = 1)) (71071 — €71 B0) + 2(cF — e})ei_1 fo- (D.16)

The last term is op(1 + €2 ;) by (D.13), and this will give a term of

op (1 + Ze?_l/n) =op(1), (D.17)
i=2
n (D.15). Also, using (D.5) and (D.11),

e 1ol 1 —e2 B0 = (gim10i—1—/ Boei) (€i—10i—1+ v/ Boei) = Op(1/\/n)op(n'/*) = op(1).
(D.18)
Thus the first term in (D.16) is of order op(1)(1 + €2 ;) and so gives rise to a op(1) term
as in (D.17).
Finally for the (3,3) component, (A.6f) gives

1| 33 33 ‘ 1 ‘ (267 —V)ef_joi_y (267 —1)ej_ 133 ‘
—|F22(0) — F2°(6p)] = — E _
n‘ ( ) ( 0) n i—2

4 4
o, ()

< i‘ zn: (26} — Dej_107_q — (2] —1)ei 153 50 ‘ 2(2(3. ~1)ed 1 1 ‘
— 2n . ot 2n — ’ -1 014 0',?0 '

(D.19)

The second term on the righthand side of (D.19) is treated as in (D.15), noting that

1 n
= 12ef — ey 5 E(1265 — e})
=2

by the ergodic theorem. For the first,
(25 —1)ej Ei— 1‘71 1 (26 1) 3 15(2) :2( € )53 10 (26 —1)(e; Ei— 103 1 i—153)
= (2(52 —ef) + (2¢] — 1))( €i- 101 1 ef 180) + (eF - ) i—150- (D-20)

The last term is op(ef ; + e?ef ;) by (D.14) which will give an op(1) contribution to
(D.19) when averaged over 1 < i < n. Next, 2 ;02 ; =e? o+ op(1) by (D.5), so
ei_10i1 — €i_1fy = (ei_1071 —ei_1B0)(op(1) + €71 o)

= op(1)(op(1) +€i_1f0);

uniformly in 1 < ¢ < n, using (D.18) again. This will also give an op(1) contribution to
(D.19) when averaged over 1 < i < n. This completes the proof of (B.6) for this model.
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