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Abstract

With the introduction of compulsory long term care (LTC) insurance in Germany in
1995, a large claims portfolio with a significant proportion of censored observations became
available. In first part of this paper we present an analysis of part of this portfolio using the
Cox proportional hazard model (Cox (1972)) to estimate transition intensities. It is shown
that this approach allows the inclusion of censored observations as well as the inclusion of
time dependent risk factors such as time spent in LTC. This is in contrast to the more
commonly used Poisson regression with graduation approach (see for example Renshaw and
Haberman (1995), where censored observations and time dependent risk factors are ignored.
In the second part we show how these estimated transition intensities can be used in a
multiple state Markov process (see Haberman and Pitacco (1999)) to calculate premiums for

LTC insurance plans.
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1 Introduction

Due to increasing life expectancy long term care (LTC) insurance becomes more and more
important in all industrialized countries. In Germany this type of insurance forms part of the
social security system since 1995. For the insurers this has meant that all provider of health
assurance were obliged to underwrite this new type of business without any medical exam.
The consequence of this compulsory characteristic was, that from the beginning insurers had
to manage a large claims portfolio, which normally does not occur due to the underwriting
selection.

In this paper, we analyze part of the LTC-claims portfolio of a German health insurance.
Our main goal is to assess the influence of factors like severeness of a disease, gender and type
of care (i.e. care at home or in a nursing home) on the survival curve of the observed claims. For
this purpose we utilize the semiparametric proportional hazard model proposed by Cox (1972)
in 1972 for our data. Cox assumes that the hazard function A(¢) of the survival curve can be
modeled as a product of a general, all observations underlying baseline hazard function Ag(t)
and a covariate dependent factor.

Renshaw (1988) investigated excess mortality with a similar approach. The main difference
between the approach taken in this paper and his approach is that Renshaw identifies the
likelihood of the Cox proportional hazard model with that of a Poisson regression with offsets
depending on the unknown underlying baseline hazard. Estimation of these unknown offsets is
facilitated by using life tables, a process Renshaw calls graduation. In contrast, we estimate the
baseline hazard rate directly from the observed data using Breslow’s estimator (Breslow 1974)
of the baseline hazard rate. This has the advantage that we can use all available data, even
the censored data, while Renshaw has to model claims durations to construct the required life
tables. With help of the counting process interpretation of the Cox proportional hazard model,
we are able to assess the quality of our model using martingale based residuals (see Therneau,
Grambsch, and Fleming (1990)).

Using the estimated hazard rates of the Cox proportional hazard model as transition inten-
sities in a multiple state Markov model, we are now able to fit a multiple state insurance model.
In the work of Renshaw and Haberman (1995) a similar model was used for health insurance.
There the main interest was the estimation of recovery rates of insured persons using above
mentioned graduation techniques.

The paper is organized as follows: Section 2 gives the necessary foundations for the Cox



proportional hazard model. The estimation of required transition intensities using the Cox pro-
portional hazard model for a large data set from the German compulsory long term insurance
program is given in Section 3. Section 4 introduces a multiple state space model and necessary
actuarial setup to calculate premiums for specified long term care plan. The paper closes with

a discussion and summary section.

2 Cox Proportional Hazard Model

As an important tool in survival analysis for modeling the dependency of the survival time on
covariates serves the proportional hazard model, proposed by Cox (1972). This semiparametric

approach assumes that the hazard function for the random life time 7'
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2.1
dt—0 dt (2.1)

is the product of a baseline hazard A\¢(t) and a specific, covariate-dependent scaling factor, which
enters in the form

Mt|Z = 2z) = No(t) exp(B'2), (2.2)

where z € RP denotes the observed covariate vector and § € RP the unknown regression coeffi-
cient. Assume that 7T; denotes the life time of subject 4,7 = 1,-- -, n. Since we allow for censoring
we actually observe

Y = (min(T;, C;y),6;),i =1,---,n

where
1 T; <G
T 0 otherwise ’
is the censoring indicator for the subject specific censoring time C;. In the case of no ties among
the observed ordered death times ¢; < --- < t;, let R; denote the set of subjects, which have
survived until ¢£;—. Under the proportional hazard assumption (2.2) the partial likelihood

P(i dies at time t;|¢ survives until ¢;—)
P( a death in R; at time ¢;)
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exp(f'z)
=1 ZleRj exp(fz)

is independent of the unknown baseline hazard function and can be maximized to yield an

estimate of 3. We denote this estimate with B Cox (1975) claimed that the partial likelihood



contains most of the information about 3, which has been supported by empirical work in small
samples by Efron (1977) and Oakes (1977). In the case of ties among the observed death times
the partial likelihood can be adjusted (see Klein and Moeschberger (1997)). Various authors
(see e.g. Andersen and Gill (1982)) considered the original model of Cox in the context of
counting processes and they were able to prove asymptotic consistency and normality of the
partial likelihood estimator under regularity conditions.

In addition, the intensity process A(t) is sufficient for determining the survival function

S(t) == P(T >1t)=1— F(t) (F(t) is the distribution function) since following the relationship

S(t) = exp (- /0 t () dt> (2.3)

holds.
To estimate the underlying baseline hazard A(t) we use the Breslow estimator (Breslow

1974) Ag(t) for the cumulative baseline hazard rate Ag(t) = fot A(s) ds which is defined as

- d;
Ao(t) := - , 2.4
o) ;St > jer, exp(B1Z;(t:)) 24

where d; the number of events in ¢; and R; the risk-set at time ;.

3 Data Analysis for Compulsory Long Term Care Insurance

In 1995 the German government introduced compulsory long term care (LTC) insurance. This
required part of the German welfare system paid benefits for home care since April 1, 1995. From
July 1, 1996, the benefits were extended to care in a nursing home as well. The LTC-claimants
receive their benefits according to a three-level-system, which represents a scale for the severity

of a claim. The definition of the levels is given as follows

e Level 1: The LTC-claimant needs at least 90 minutes help per day to manage his/her

activities of daily living (like going to bed, washing, eating, ...)

e Level 2: The LTC-claimant needs at least 180 minutes help per day to manage his/her

activities of daily living

e Level 3: The LTC-claimant needs at least 300 minutes help per day to manage his/her

activities of daily living



Home Nursing Home

cens. dead recov. | Level 1 Level 2 Level 3 | Level 1 Level 2 Level 3

Home
Level 1 1012 279 28 - 444 75 118 71 34
Home
Level 2 877 598 1 47 - 296 9 208 99
Home
Level 3 308 632 2 2 20 - 0 4 87

Nursing Home
Level 1 248 85 3 11 1 0 - 108 26
Nursing Home
Level 2 451 263 2 1 6 1 7 - 116
Nursing Home

Level3 376 437 0 1 1 6 2 9 -

Table 1: Number of observed transitions in the LTC data

The basis for our statistical inference on LTC was a large data set from a German private
insurance company. The data was recorded between April 1, 1995 and December 31, 1998. It
contained data on 5603 recipients of benefits from the compulsory LTC insurance. 3511 (2092)
recipients were female (male). For each recipient, the data contained information about age,
gender, claim severity (Level 1-3), care required (at home/in a nursing home) and disease causing
LTC. In addition, transition times between care levels, care required (home to nursing home and
vice versa) and between states of LTC claimant (claiming LTC to healthy and LTC claiming
to death). There was no information available considering the transitions from healthy to LTC
claiming and healthy to death. Table 1 gives the observed transitions. Note that a single person
can have several transitions. The transition to death is denoted by dead, while a censored
transition was recorded when the person remained in a particular LTC level until December 31,
1998. It can be seen that censoring cannot be ignored and the estimation method utilized for
this data set has to be able to account for this. Recovery from LTC is a very rare event.

The data analysis will proceed in two steps. First we have a look at the survival of LTC

claimant, i.e. we will consider the state transitions from LTC-claimance to death. In the second



step, we will consider the transitions between different types of care (i.e. transitions between

care levels) as well as transitions between care at home and care in a nursing home.

3.1 Analysis of the Survival of LTC Claimants

We fit the Cox proportional hazard model (2.2) for modeling the survival of benefit recipients,

where we considered the covariates

p 1 female
Sex =
0 male
Zage(t) = Age of claimant when a state transition occurs at time t

1 care at level i at time ¢
ZLevel i(t) = ‘ i =2,3
0 otherwise

2o (1) 1 care in a nursing home at time ¢
nh =
0 otherwise

Initially, we fitted a model with all possible interactions of the above covariates. We used
Akaike’s (Akaike 1973) information criterion (AIC) to filter out covariates with highly signifi-
cant influence on the transition intensities. This criterion considers the partial log-likelihood as

evidence of significance and is defined as
AIC := —2log(L,(B)) + np,

where log(Lp(ﬁ)) is the partial log-likelihood evaluated at the estimated coefficient vector j3, p
the number of covariates in the model and n an integer. The choice of n depends on whether
one likes to fit a conservative model that includes only covariates with highly significant terms,
or a model that includes more covariates with less important terms. In our case, we have chosen

n = 2.

After eliminating covariates with no significance, we get a covariate dependent representation of

the hazard rate as follows

Alt) = Xo(t) exp[B ZAge (t) + B2 Zsex + B3 Znn(t) + Ba Zrevel2(?)
+ b5 ZLevel3 (t) + Bs ZAge (t) X Zgex + b1 ZAge (t) X Znh (t)
+ B8 Zgex X Znh(t) + Bo Znh(t) X ZLevel2 (t)

+ P10 Znn(t) X ZLevel3(t)]- (3.1)



In Table 2 we give the estimated regression coefficients fB; and its estimated standard error

se(ﬁ}), the estimated multiplier exp(ﬁ}), the Wald statistic W; = se’?é) for testing Hp : ; = 0

and the corresponding p-value (e.g. Rao (1965)).

Covariate I5} exp(fB) | se(B) W p-value
Zage 0.02421 | 1.025 | 0.0025 | 9.78 | <10~1
ZSex 0.3202 | 1.377 | 0.2811 | -1.47 | 2.5-10*
Zuh -0.5969 | 0.551 | 0.4063 | 1.14 | 1.4-107"

2 evel2 0.8180 | 2.266 | 0.0729 | 11.22 | <1071
Zevel3 1.7553 | 5.785 | 0.0734 | 23.91 | <1015

Zpge % Zgex || -0.0065 | 0.993 | 0.0035 | -1.89 | 5.9-1072
Zage X Zyy || 0.0162 | 1.016 | 0.0047 | 3.45 |5.7-107*
Zgex X Zpn || -0.4405 | 0.644 | 0.0989 | -4.46 | 8.4-10°°
Znh X Zievel2 || -0.3320 | 0.717 | 0.1446 | -2.30 | 2.2-1072
Znh X ZLevel3 || -0-6753 | 0.509 | 0.1391 | -4.86 | 1.2- 1076

Table 2: Estimated Regression Coefficients in Model (3.1)

We want now to assess the fit of Model (3.1). This will be done for quantitative and qualita-
tive covariates using separate graphical diagnostic tools. For quantitative covariates martingale

residuals M will be utilized. These are defined for each observation as follows

t
(1) = Ni) — [ Yilo) exp(5'Zis)) dof),

0
where N;(t) is the counting process of the observed events up to time t for individual 7. Y;(¢)

denotes the indicator function defined as

1 subject + under observation at time ¢
Yi(t) =
0 otherwise
Here, Ag(t) denotes the cumulative baseline hazard rate, Z;(t) the covariate vector at time ¢ and
finally B the estimated regression coefficient. The martingale residuals can be interpreted to be
the difference between observed events and expected events due to the model. If the model is

correct each residual is a martingale. They are used to check whether a quantitative covariate

follows the proportional hazard model. If proportional hazard assumption (2.2) is correct, a
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Figure 1: Martingale residuals (grouped by gender)

smooth of the residuals plotted against the value of the quantitative covariate should be constant
0. For further details on the application of this type of residuals, see Therneau, Grambsch, and
Fleming (1990). Figure 1 gives the martingale residuals, separate for women and men against
the quantative covariate Zjge. We can observe that until the age of approximately 80 years
the plot follows roughly the constant null line, whereas for higher ages the line is increasing for
women as well as for men. This shows that there are more deaths observed than expected from
the model. Therefore we add two new covariates ng and Zp,, which are defined as follows
1 if Zpge(t) > 0p and Zgex =1

ng(t) = 5
0 otherwise

as well as

1 if Z t) > 60y and Zgo, =0
Zou, (t) = Age( ) 2 6m Sex
0 otherwise

and maximize the partial log likelihood for the proportional hazard model

A(t) = Ao(t)exp[B1 ZAge (t) + B2 Zsex + B3 Zstat (t) + Ba Zievel2 (t)
+  B5 Zievel3 (t) + Bs ZAge (t) X Zgex + b7 ZAge (t) X ZStat (t)

+ /88 ZSeX X Znh(t) + 59 Znh(t) X Zleve12 (t)



+ B0 Znn(t) X Zieva3 (t) + Pr1 Zg(t) + Br2 Zoy (t)] (3.2)

with respect to the variables 6¢ and 6. A description of this approach can be found in Klein and
Moeschberger (1997) pp. 334 - 336. We find, that the partial likelihood has a global maximum at
0f = 91 and Oy = 75.25 years. The fit of Model (3.2) with 6 = 91 and 6y, = 75.25 is presented
in Table 3.

~ ~ ~

Covariate I5; exp(B) | se(B) W p-value
Zage 0.0279 | 1.028 | 0.0036 | 7.68 | 1.6-107"
ZSex 0.7637 | 2.146 | 0.3202 | 2.39. | 1.7-102
Znh -0.3724 | 0.689 | 0.4035 | -0.92 | 3.6-10""

71 evel? 0.8101 | 2.248 | 0.0730 | 11.10 | < 1071
Zevel3 1.7521 | 5.767 | 0.0734 | 23.87 | <1071
Zo, 0.2146 | 1.239 | 0.0737 | 2.91 | 3.6-10°3
Zom -0.1401 | 0.869 | 0.1041 | -1.34 | 1.8-107"

Zage X Zgex | -0.0138 | 0.986 | 0.0045 | -3.08 | 2.1-1073
Zpge X Zyp || 0.0134 | 1.014 | 0.0047 | 2.87 | 4.1-10°3
ZSex X Zp || -0.4374 | 0.646 | 0.0993 | -4.40 | 4.4-107°
Zoh X Zrevel2 || -0.3254 | 0.722 | 0.1447 | -2.25 | 2.5-1072
Zoh X Zievels || -0.6733 | 0.510 | 0.1391 | -4.84 | 1.3-10°©

Table 3: Estimated Regression Coefficients in Model (3.2) with 6 = 91 and 6 = 75.25

We assess now the model adequacy of qualitative covariates. Here, we use the so called An-
dersen plots. The basic idea of this method is to consider the interesting component Z; of the
covariate vector Z = (Z1,Z)! (Zy € RP~! is the vector of the remaining p — 1 components
of the covariate vector). We assume Z; takes a finite number of values (the values are w.l.o.g
{1,..., K}). To check the proportional hazard assumption (2.2), we group our data with respect
to the values of the covariate of interest Z; and estimate the corresponding baseline-hazard rates
Aoi(t) i =1,..., K separately for each group. At each time, when an event of interest happens
t1 < ... <ty we plot the cumulative hazard rate Ag;(t) (x-axis) against the cumulative hazard
rate of another group Ag;(t). If the proportional hazard assumption holds, the plot should follow
a straight line. In Figures 2 to 4 these plots are examined for the qualitative covariates Zgey,

Znh, ZLevel2 and Z1 evel3, respectively.
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] o
- 3 JJJ w
o w0
Al o

<«
@ °
S <

©
@ w
S 3

~
= °
S 3
o l -
S s
o 2 o
2 3

0.0 02 0.4 06 0.8 0.0 05 10 15 2.0 o 1 2 3 4 5
female level 1 female level 2 female level 3

° — o
o A ©

25
5

r
- o
BN <«
o w
3 = ™
]
- ~
n
=]
0
S -
o o
S o <
0.0 0.2 0.4 0.6 0.8 1.0 0.0 05 1.0 15 0 1 2 3 4
male levell 1 male level 2 male level 3

Figure 3: Andersen Plots grouped by Type of Care, x-axis: at home, y-axis: in a nursing home

10



0.0 0.2 04 06 08 00 02 04 06 08 10
female at home male at home

012 3 45 6

2L
0.0 02 04 06 08 1.0 12 00 05 1.0 15 20
female nursing home male nursing home
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(dotted line)

From these Figures we see that especially the covariate Zy,.yel 3 does not satisfy the propor-
tional hazard assumption; in the first years after the begin of LTC-claimance the relative risk
of dying for a person is higher than in later years. This means, that the value of the regression
coefficient is changing with time. This means we need to estimate a unknown regression function
B(t). A first approach is to fit step functions for 3(¢), which corresponds to fitting a piecewise
constant model in disjunct time intervals. As a further simplification we now estimate separate
coefficients for times T' < ¢y and T' > ¢y where ty will be optimized. For example, if we consider

the covariate Zpeye13(;) we introduce a new covariate

1 if ¢t <ty
Zto(t) =
0 if t >t

The corresponding hazard function has now the following representation
A(t) = Xo(t) expyZrevels(r) X Zi, (t) + B Z(1)],

where Z(t) is the covariate vector of Model (3.2) and v € R, 8 € R'? the are unknown regression

coefficients to be estimated.

11



For each of the 12 covariates Z;(t) in Model (3.2), we now find an optimal ¢ by considering the
partial log likelihood when the covariate Z;(t) x Z, is added as a function of ¢y and finding the
to value which maximizes this partial log likelihood. In Figure 5 the partial log likelihood as a
function of #y is shown. From this we see, that there is a strong improvement in the partial log
likelihood for the covariates for age, as well as for Level 2 and Level 3. From Table 4 we see that

all these improvements are highly significant.

Covariate | Maximum ¢y | LL (Model for T' < tg, T' > t;) | LL (Model(3.2)) p-value
ZAge 400 -15829.59 -15874.79 <1071
Z1 evel2 75 -15866.69 -15874.79 5.6-107°
71 evel3 125 -15845.82 -15874.79 2.7-1071

Table 4: Maximum of the Log Likelihood for Separate Estimation of the Covariates for Age,
Level 1 and Level 2 (grouped by duration of LTC T < ¢ty and T' > tg)

These results motivate us to add the covariates Z75(t), Z125(t) and Zsgo(t) to the Model (3.2)

which are defined by
1 t <ty to="T75, 125, 400
Zity (t) =
0 otherwise
and to consider their interaction with the corresponding covariates for Age, Level 2 and Level
3. For this model the log likelihood is improved to the value of 15801.4. The estimated regres-

sion coefficients for this model can be found in Table 5. These coefficients will be used in the

calculations in later sections.

3.2 Analysis of the State Transitions between Care at Home and Care in a

Nursing Home

Until now, we only considered the event "death of a LTC claimant” and its dependency on
various risk factors. In this section we extend the model and consider a multiple state Markov
model for the three states: care at home, care in a nursing home, death. In a first step we
estimate the transition intensities A;;, i € 1,2,3, j € 1,2,3 (see Appendix) corresponding to the
states that are illustrated in Figure 6.

Using the final model of the previous section, we can estimate the transition intensities A13(t)

(Aa3(t)) by setting Z,;(t) = 0(Z,(t) = 1). Therefore, we are now interested in estimating A1 ()

12
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Figure 5: Partial log likelihood as a function of tg for each Covariate Z;(t) of Model (3.2) with
added Covariate Z;(t) x Zy,(t)

and A9 (). For this we define the following counting processes

Ni2(t) = # transitions from at home to nursing home until time ¢

Nyi(t) =+ transitions from nursing home to at home until time ¢

and fit a proportional hazard model for the transition intensities using the remaining covariates
ZSexs Zage(t); ZLevel2(t) and Zyeve3(t). Again, we fitted first a model with all possible interac-
tions and then we took Akaike’s information criterion to reduce the model to highly significant
covariates.

For the transition intensities Aj2(¢) our final model is given by

A12(t) = Ai20(t) exp[fr ZAge(t) + B2 Zsex + B3 ZLevel 2(t)

+ fa ZLevel 3(t)]- (3-3)

13



Covariate Jé) exp(p) | se(B) W p-value

Zage 0.0401 | 1.041 | 0.0041 | 9.65 | <10°%°

Zage X Zaoo | -0.0327 | 0.968 | 0.0035 | -9.47 | <1071
ZSex 0.7986 | 2.222 | 0.3214 | 2.49 0.01
Zon -0.0531 | 0.948 | 0.4004 | -0.13 0.89

1 evel2 0.8011 | 2.228 | 0.0733 | 10.93 | <10 %°
Zevel2 X Z75 || -0.8080 | 0.446 | 0.4982 | -1.62 0.10

71 evel3 1.6420 | 5.165 | 0.0752 | 21.83 | < 10715

Zlevels X Z125 || 1.135 | 3.113 | 0.1828 | 6.21 | 5.2-10 10
Zg 0.1815 | 1.199 | 0.0743 | 2.443 0.02
Zom -0.1206 | 0.886 | 0.1052 | -1.15 0.25
Zpge X Zgex || -0.0141 | 0.986 | 0.0045 | -3.13 | 1.8-107°
Zage X Zyn | 0.0093 | 1.009 | 0.0047 | 1.99 0.05
ZSex X Znn || -0.4257 | 0.653 | 0.0996 | -4.27 | 1.9-107°
Zoh X Zlevel2 || -0.3420 | 0.710 | 0.1448 | -2.36 0.02
Znh X Zevel3 || -0-6533 | 0.520 | 0.1393 | -4.69 | 2.7-10~°

Table 5: Estimated Coefficients in Model (3.2) with Separate Estimated Coefficients for T' < #

and T > ty for Age and Level of Care

The corresponding estimated regression coefficients are presented in Table 6.

For transitions from care in a nursing home to care at home none of the covariates together
with possible interactions exhibit significant influence. A reason for this is the extrem low number
of transitions between these states. Therefore we decided to ignore the corresponding transition
intensities (i.e. to set A21 () = 0 V¢) and to consider the state ” care in a nursing home” as a stricty
transient state, from which one can only enter in the state death. This allows us to calculate
analytically the transition probabilities in the model by using the Kolmogorow equations (5.1)

given in the Appendix.

3.3 Analysis of the State Transitions between Levels of Care

Similarly, we now investigate transitions between levels of care. In Table 7 we display the cor-

responding observed transitions. Also in this context we note, that there were many more tran-

14
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Figure 6: Markov Model with States Care at Home, Care in Nursing Home and Death

Covariate I} exp(f) | se(B) W p-value
Zage 0.0305 | 1.03 | 0.0038 | 7.99 | 1.2-10"15
ZSex 0.3842 | 1.47 | 0.0956 | 4.02 | 5.9-1075

Zlevelz || 0.3191 | 1.38 | 0.0912 | 3.50 | 4.6-1074
Zievels || 0.1661 | 1.18 | 0.1279 | 1.30 | 1.9-10*

Table 6: Estimated Regression Coefficients for the Transition Intensity Aj2(f) as given by Model

(3.3)

sitions to a worse level and only few observation, where the level improved. This motivated us

to build our model as shown in Figure 7. Again we fit a proportional hazard model for the

Level 1 Level 2 Level 3
Level 1 - 624 135
Level 2 64 - 472
Level 3 5 34

Table 7: Number of Observed Transitions between Levels of Care

transition intensities A2, Aoz and A3

allowing for covariates and possible interactions. With

respect to transitions between levels of care, we also observed that the need of LTC in most

cases grows (we note a low number of transitions to better levels) and therefore we assume again

that the transitions intensities Azo, A3; and A9; are zero. For transitions between Level 1 and

Level 2 the best fitting model is given by

AM2(t) = Ai2o(t) exp(B1 Zage(t) + B2 Zsex + B3 Zstat (t)

+ b ZAge (t) X Zgex + Bs ZAge(t) X Zy(t)
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A13(%)

3. Level 3

A12(%) A23(t)

1. Level 1 2: Level 2
A1a(t)  Aog(t) As34(t)

4: death

Figure 7: Markov Model with States Level 1, Level 2, Level 3 and Death

+  Bs ZSex X Zun(t) + b7 ZAge(t) X ZSex % Znn(t))

Covariate B exp(B3) se(B) W | p-value

Zage 0.0143 1.01 0.0047 | 3.06 0.002

ZSex -0.8544 0.43 0.5588 | -1.53 | 0.130

Zuh -10.7437 | 2.6 - 107> | 3.5743 | -3.01 | 0.03

Zage X Dsex 0.0099 1.01 | 0.0069 | 1.42 | 0.150
Zrge X Znn 0.1221 1.13 0.0407 | 3.00 | 0.003
ZSex X Znh 11.7833 | 1.31-10° | 3.7654 | 3.13 | 0.002
Zage X Zsex X Zup || -0.1323 | 0.88 | 0.0429 | -3.08 | 0.002

representation:

A13(1)

A23(1)

A130(t) exp[B1 Zage(t) + B2Z8ex]s

A230(t) exp[B1 ZAge(t) + B2 Z3ex]-

16

Table 8: Estimated Regression Coefficients for A;2(t) given by (3.4)

The corresponding estimated regression coefficients are given in Tables 9 and 10

(3.4)

From Table 8 we notice the large interactions between the covariates. For the transition
intensities A13(¢) and A93(t) the model selection procedure finds a model that was only depend-

ing on the covariates Zge; and Zage, i.e. that corresponding hazard functions had following

With this set of covariate dependent hazard rates, we were now able to fit actuarial models.



Covariate Jé) exp(B) | se(B) W | p-value

Zage 0.035 1.04 | 0.0087 | 3.98 | 7-10°°
ZSex -0.368 | 0.70 | 0.1873 | -1.97 0.05

Table 9: Estimated Regression Coefficients for A;3(¢) given by (3.5)

Covariate Jé) exp(B) | se(B) W p-value

Zage 0.035 1.04 | 0.0087 | 4.06 | 4.8-10°°
ZSex -0.359 | 0.70 | 0.1865 | -1.92 0.06

Table 10: Estimated Regression Coefficients for Ag3(t) given by (3.6)

4 Actuarial Application

4.1 Model Description

In this section we apply the results of the data analysis presented in the previous section to a
multiple state insurance model. We follow the approach taken by Haberman and Pitacco (1999)
and we sketch now the necessary setup. The development of an insured risk is modeled as a
time continuous Markov process S : T x Q — {1,...,n} with finite state space Z = {1,...,n}.
Here 7 = [0,7) denotes the interval from policy begin to policy end. The insurance process is

modeled by a random cash-flow function between the insurer and the insured.

Definition 4.1 (Cash flow functions) For the insurance process S we define following cash

flow functions
(i) pi(t): A continuous premium, payed by the insured while the risk is in state i.
(1) bi(t): A continuous annuity payed by the insurer while the risk in state i

(iii) c;j(t): A lump sum paid by the insurer at time t because a state transition from state i to

state j occurs

(iv) di(to): A lump sum paid by the insurer because the risk is in state i at time t

Equiped with an adequate interest structure we can now define random present values. We

suppose the force of interest ¢ to be constant and set v = e 9.
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Definition 4.2 (Present values) For the cash flow functions given in 4.1 (i) - (iv) we define

following present values:

(i) The present value of a continuous premium p; to be paid in [u,u + du] at time t < u is:
Y (uyu+ du) == 0" (S (u) = 5)p;(u) du.

The present value for the interval [uy,u2) mit t < uy < ug is:

u2

Y (ur, ug) = / (S (u) = f)pj(u) du.

1

For a continuous annuity b; at time t for the interval [u1,us)

U2

Y2 (u, up) = / (S () = 5)b; (u) du.

1

1) The present value of a lump sum c;; when a transition from state i to state j occurs at
(ii) p p j j
time u 18

Vi (u) = " I(S(u=) = i A S(u) = j).

11) Finally we define the present value of a single payment d;(tg), payed by the insurer if the
J

risk is in state 7 at time tg as

Y, (to) = 0"t 1(S(u) = 5)d; (to)-

Finally, we have to define actuarial values, which provide the basis for calculating premiums

and reserves.

Definition 4.3 (Actuarial Values) Actuarial values are expected present values. Let us sup-
pose that at time t the insured risk is in state i, then the actuarial values are given as conditional
expectations of the present values, i.e. we are interested in E[Y;(u)|S(t) = i] for lump sum pay-

ment and E[Y(u,u + dt)|S(t) = i] for annuities. Therefore, we define:

(i) The actuarial value of a continuous premium p; for the infinitesimal interval [u,u + du)
s given by

BIY)" (uyu + du)|S(t) = i] = v* " Py(t, u)p; (u) du.

For the interval [u1,u2) the actuarial value is
u2

BIYY (wr,w)|S(0) =] = [ 0" Pyt ulp, du.

1
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(it) Similiarly for a continuous annuity b;(t), the actuarial value is

u2
BV (i, u)|S0) = i) = [ 0Py (1, 0)d; du

ul

(i) For a lump sum cji(u), payed by the insurer because a transition of the insured risk from

state j to state k occurs, the actuarial value is
E[Y,7*(u)|S(t) = i] = v~ Pyj(t, u) Ajk (u)cjr (u) du

for the interval [uy,us) the actuarial value is

U2

E[thj’“(ul,u2)|5(t) =i] = / U“ftPij (t,u)cjp(w) Ak (u) du

u1

(iv) Finally for a lump sum d;(to), payed by the insurer because the insured risk is in state j

at ty the actuarial value is

E[Y % (to)|S(t) = i] = v'°~"Py;(t, to)d; (to)

The calculation of premiums is now based on the equivalence principle, i.e. the expected amount
of premiums has to equal the expected amount of benefits. For the cash flow between insurer
and insured this means, that at policy begin (¢ = 0) the actuarial value of all benefits has to be
the same as the actuarial value of the premiums. This equivalence principle can now described

as follows:

Definition 4.4 For the insurance process S(t) with policy end at T we define

Bi(t,7) = /Uu_t > Pt u)bj(w) | du
t LJ€S
+ / VYOS T Pt u) e (w)ejr(u) | du
t LIES k#j

+ > D Pyt u)d,(w)

wu>t JjES
to be the sum of all expected benefits at time t, given S(t) =i and similarly
T
Pi(t, ) :/ vt ZPij(t,u)pj(u) du
t jes

to be the expected value of all premiums at time t, given S(t) = i.
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This allows us to describe the equivalence principle formally

Definition 4.5 (equivalence principle) For an insured risk with policy end at T and initial

state S(0) =1 the equivalence principle is satisfied if and only if
P1(0,7) = B1(0,7) (4.7)

This principle does not yet define a fixed premium amount, because it only has to be satisfied
at policy begin. There exist many examples in life assurance, where premiums are growing for
higher ages due to the increasing risk of death. To get constant premium for the whole policy
duration we have to build up reserves (i.e. in the first years the insured has to pay higher
premium that will bee used later to cover the risk in the last years). For Equation (4.7) this
implies that at each time ¢ < 7, Pi(¢,7) < Bi(t,7) has to be satisfied.

The difference between the actuarial values of premiums and benefits is called the prospective
reserve at time ¢

Vi(t,T) = Bl(t,T) - P1(t,7').

With these preparations and the estimation of the transition intensities, we are now able to
calculate premiums for a multiple state model in long term care insurance. The two models
which we considered already in the previous are shown in Figures 8 and 9. In the first model
we focus our attention to transitions between the different types of care (at home - nursing
home). The transitions surrounded by the dotted line can be estimated from the data, while
there is no information available in the data about the transitions 1 — 2, 1 — 3 and 1 — 4.
Therefore, we have to construct the remaining intensities from other data sources. The mortality
rates for healthy individuals we derived from the Bavarian Lifetable 1986 - 1988, incidence
rates for LTC (i.e. transition intensities from healthy to LTC claimance) we took from a table
published by the Custodial Insurance, Japan (see for example Rudolph (2000), Appendix C.1).
This might be problematic, since the definition of LTC varies in the different countries. To
calculate transition probabilities of hazard rates for the model shown in Figure 8 we have to
solve the following Kolmogorov differential equations for the transition probabilities P;;(z,t)

(see (5.1) in the Appendix)):

SPUED) = —Pul)0n ) + A + M)
%Plg(z, t) = PH(Z, t)>\12 (t) — P12(Z, t) ()\23 (t) + )\24(75)),
%Plg(z, t) = PH(Z, t)>\13 (t) + P12(Z, t)>\23(t) — P13(Z, t)>\34(t),
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1: healthy
2: care at home

3: care in a nursing home

4: dead

1: healthy
2: care level 1
3: care level 2

4: care level 3

5: dead

Figure 9: State transitions in LTC insurance - level of care

%PM (Z, t) = PH(Z, t)>\14 (t) -+ P12(Z, t)>\24 (t) + P13(Z, t)>\34 (t), (48)

with solution

Ps3(z,t) = exp <— /t Az (1) du) ;
Psy(z,t) = 1— Ps3(z,t),

Pys(z,t) = : Py (z,u) Ao (u)Psg(u, t) du,
Pyy(z,t) = 1— Pa(z,t) — Pa3(z,1),
Pyy(z,t) = t Py (z,u) A 12(u) Pog(u, t) du,

P13(Z, t) = /t[PH(Z, u)>\13 + P12(Z, u))\23 (u)ng(u, t)] du,
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P14(Z, t) = 1- P11(Z, t) — P12(Z, t) — P13 (Z, t). (4.9)
For the model shown in Figure 9 a similar system of differential equations had to be solved.

Since in life insurance premium calculation is based on 1-year transition rates we have to derive

a set of 1-year transition probabilities from our estimated transition intensities.

For every combination of LTC-duration d and age x we calculate one year transition rates from
state 4 to state j. Let p; j(z,d) denote the one year transition probability from level of care i to

level of care j of a z-year old person who has been a LTC-claimant for d years:

We use now the estimated transition intensities given in Section 3 and the fact that for a

survival function F' with discrete hazard rates );; the following holds:

F(t1) — F(t2)
Pti1<T<tT>t) = —F——"==1— 1—)) = At 1— X))
(t1 <T < ta|T > ta) () || ( t) E t; ” ( )
t1<t;<ts t1<t;<ts t1 <t <t;

Therefore we can estimate the one-year transition probabilities as

pii(diw) = Y Nj(te, Zage =) [[ (1= Xij(ti, Zage = 2)), (4.10)
d<tp<d+1 d<t; <ty

where Xi,j(t) are the estimated transition rates for LTC-claimants.

In order to simplify the notation in the following we will denote the transition probabilities
only in dependency on the insurance duration n. For the model shown in Figure 8, it follows
that

pij(n) = P(S(n+1)=4|S(n) =1) i€ {1,2,3,4}, j€{2,3,4}

and p;;j(n) = 0 for j < 4. Note that these transition intensities still depend on age, gender, level
of care (model shown in Figure 8), respectively type of care (model shown in Figure 9). For
example in the model that distinguishes between care in a nursing home and care at home, we
have for the transition probability from State 2 (care at home) to State 4 (death) for an x-year

old female person:

p2a(d,z) = Z 5‘24(tlcu ZAge =2, Zny =0, Zgex =1)
dftk<d—|—l
H (1 - 5\24(151, ZAge =, Zyn =0, Zgex =1)).
d<t; <ty
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With (4.10) we are now able to determine easily the actuarial values for this model. Let By, ; (0),
J € {2,3} denote the actuarial value at the beginning of insurance contract for an individual
with entry age x where a lump sum c;; is payable at the moment when an active live changes
to "care at home” (State 2) or to "care in a nursing home” (State 3). Let w denoting the
actuarial end-age, i.e. for the random variable life time 7' we define P(T > w) := 0. Recall that
Pij(n,m) = P(S(m) = j|S(n) = i) for n < m, which can be calculated by using a discretized
version of (4.9). In particular, the following holds

w—z—1

By, (0) = Z Pi1(0,9)p1;(i)v'c;
i—0

In this formula we consider the probability of an insured person for a transition to state j in year
i P11(0,4)p1;(¢) and multiply this probability with the discounted actuarial value of the benefit

viclj. Building the sum over all years ¢ gives us the expected value of the payments.

Similarly for a annuity b;, payable while an insured person is in state j, j € {2,3} we have

w—zx—1

Bl,bj = Z Plj(O,i)vibj.
1=0

Here we consider the probability of a person of being in state j after ¢ years Py;(0,¢) and multiply
this value with the discounted actuarial value of the annuity b;. Finally, the actuarial value of
the expected total payment to be payed by the insurance is given by 2222(3175]. (0) + B1,cy;(0))
which has to be equal to P ; by the equivalence principle. This determines the annual premium
7. The actuarial value of the payments for a single annual premium 7 is given by

w—zx—1

Py (0) = Py1(0,4)v'T.

The same approach can be used to calculate the actuarial values for the model presented in
Figure 9. For further details of the calculation see Rudolph (2000).
4.2 Calculation of Premiums

In this section we calculate premiums for the Long Term Care-plan "PET” sold by a German
health insurer. For this purpose a computer program in C was written, that calculated the

appropriate premiums based on the estimated intensities of the Cox proportional hazard model
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presented earlier together with the actuarial model given above. Input parameters were annuities,
whose values could vary depending on the level and type of care required. In the plan "PET”,
an insured person can contract a fixed amount that serves as a daily cash allowance. In case of
LTC which requires care at home, the individual receives a certain percentage of this allowance.
In particular, the individual is payed 25 % of the agreed allowance in Level 1, 50 % of the agreed
allowance in Level 2 and 75 % of the agreed allowance in Level 3. For care in a nursing home,

an insured individual receives 100 % of the agreed allowance.

Since the data does not include any information with respect to the transition intensities from
active to disabled and from active to death, we used the life table for Bavarian males and
females (1986-1988), as well as the LTC incidence rates of custodial insurance, Japan. Since
these incidence probabilities are commercial rates and therefore subject to high loading, a direct
comparison of the calculated premium rates and the ones offered by the German health insurer
is not very reasonable (see Table 11). However, we see that the premium rates based on the Cox
proportional hazard model behave similar with respect to age and the proportion between the

genders to the premium rates offered by the German health insurer.

5 Discussion

In this paper we have shown, that not only graduation techniques, but also the direct applica-
tion of the proportional hazard model is an appropriate tool for estimating hazard intensities
in actuarial models. The advantage of this approach is in addition to the inclusion of informa-
tion contained in censored observations the availability of a number of graphical and analytical
methods for controlling the model. With splitting observation time into several disjoint inter-
vals and estimating coefficients for each of those intervals separately, we achieved a significant
improvement over the basic model. This improvement would have been difficult to achieve with
the Poisson approach followed by Renshaw and Haberman (1995). In future works, efforts will
be put in developing models in which time continuous regression coefficients, perhaps modeled
as polynomial splines, could be included. Since for the data used we also have information about

the diagnosis which leads to LT'C, we also want to include this information.

have seen that not only age, but also the time spent in LTC, as well as other factors like severe-

ness of the claim and type of care offered have significant influence on the survival of a patient.
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Premium based on Cox Premium offered by
Proportional Hazard Model | German Health Insurer
Age | Female Male Female Male
20 2.81 2.31 2.12 1.70
25 3.50 2.89 2.92 2.33
30 4.41 3.65 3.90 3.10
35 5.63 4.67 5.05 4.01
40 7.28 6.06 6.44 5.13
45 9.48 7.91 8.16 6.52
50 12.49 10.42 10.39 8.36
95 16.67 13.93 13.32 10.86
60 22.56 18.90 17.31 14.40
65 30.98 26.04 22.01 18.84
70 42.91 36.40 29.04 25.71

Table 11: Comparison of monthly payable premiums for DM 10 daily allowance calculated for the
plan "PET” of a German Health Insurer. Left columns: Premiums calculated using the Markov

Model shown in Figure 8, Right columns: Premiums offered by a German Health Insurer.

Appendix: Time-continous Markov Chains with Countable State
Space

To obtain an actuarial basis for premium calculation we need some basic concepts of the
theory of time-continuous Markov chains with numerable state space. A description of actuarial
methods in the context of Markov Chains can be found in Chapter 1 of Haberman and Pitacco
(1999). Let S : 7 x Q — Z be a time continuous Markov chain, where 7 := [0,00) is the

parameter space and Z C N a countable state space. Consider now the transition probabilities
Pij(z,t) :== P(X(t) = j|X(2) = i)

defined for all z <t and ¢,z € T and 7,5 € Z. The corresponding transition intensities are given

by
. Py(t,t+dt)
Xii(t) = 1 “w\m P
i) T dt
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Furthermore we define with

Ai(t) = Z Aj(t)
J#i
the intensity for leaving state i. Important relationships between transition probabilities and

transition intensities are given by the forward Kolmogorov-differential equations (e.g. Karlin

and Taylor (1981), Chapter 14):

CPs(et) = 32 Pl s ) — Pugle A1) (5.1)
kik£j
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