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1 Introduction

In today’s financial world, Value-at-Risk has become the benchmark risk measure. Following the
Basle Accord on Market Risk (1988,1995,1996) every bank in more than 100 countries around
the world has to calculate its risk exposure for every individual trading desk. The standard
method prescribes: estimate the p-quantile of the profit/loss distribution for the next 10 days
and p = 1% (or p = 5%) based on observations of at least 1 year (220 trading days). Standard
model is the normal model. Finally, multiply the estimated quantile by 3. This number is
negative and its modulus is called Value-at-Risk (VaR). The factor 3 is supposed to account
for certain observed effects, also due to the model risk; it is based on backtesting procedures
and can be increased by the regulatory authorities, if the backtesting proves the factor 3 to be
insufficient. The importance of VaR is undebated since regulators accept this model as a basis
for setting capital requirements for market risk exposure. A textbook treatment of VaR is given
in Joriot [50]. Interesting articles on risk management are collected in Embrechts [32].

There were always discussions about the classical risk measure, which has traditionally been
the variance, and alternatives have been suggested. They are typically based on the notion of
downside risk concepts such as lower partial moments. The lower partial moment of order = is

defined as

T

LPM,(x) = / (x —r)"dF(r), zeR,
—0o0

where F' is the distribution function of the portfolio return. Examples can be found in Fish-

burn [39] or Harlow [47] including the shortfall probability (n = 0), which is nothing else but

the VaR. An axiomatic approach to risk measures can be found in Artzner et al. [1]; cf. Em-

brechts [31]. For some discussion see also Rootzén and Kliippelberg [77].

Standard model in the Basle account is the normal distribution which has the property that it
is sum stable, i.e. for a dynamic model we obtain

VaR (10 days) = V10 VaR(1 day),



and for a multivariate model; i.e. a portfolio with weights w; for asset ¢ and correlation p;;
between assets ¢ and j, 1,7 =1,...,q,

q
VaR(portfolio) = | Y pjjwiw;VaR;VaR,; .
i,7=1

However, the obvious disadvantage of the normal model is that it is wrong and can dangerously
underestimate the risk. This is even visible in Figures 1.1 and 1.2.

This is the starting point of the present paper. Taking also extreme fluctuations of financial
data into account we want to answer the following questions:

— How does one estimate VaR from financial time series under realistic model assumptions?

— What is the consequence of VaR as a risk measure based on a low quantile for portfolio
optimization?

Statistical estimation of risk and portfolio optimization are two important issues in risk manage-
ment, influenced by the choice of risk measure. Pricing of derivatives and hedging of portfolios
are other important issues and the VaR has found its way also to the hedging problem. In
incomplete markets, which is the setup for all “realistic” pricing models, the traditional ”hedge
without risk” (perfect hedge) has been replaced by a "hedge with small remaining risk” (so-
called quantile-hedging); see Follmer and Leukert [40] and Cvitanic and Karatzas [24]. This is,
however, not a topic for this paper.

We first turn to the risk estimation problem.

In the simplest case, it is assumed that the only source of risk is the price of the portfolio
itself, i.e. the risk is modelled in terms of price changes, which are independent and identially
distributed (iid), the underlying planning horizon is At = 1 (1 day), and we estimate just the
quantile (without multiplying by 3).
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Figure 1.1. DAX closing prices during 29/8/95-26/8/96 (250 data points in total). The cor-
responding differences, which are the daily price changes (returns), are plotted in the right-hand
graph. It is obvious that the returns are not symmetric and that there are more and much more
pronounced peaks (in particular negative ones) than one would ezxpect from Gaussian data.

Generally speaking, estimation of a small quantile is not an easy task, as one wants to make
inference about the extremal behaviour of a portfolio, i.e. in an area of the sample where there
is only a very small amount of data. Furthermore (and this is important to note), extrapolation
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Figure 1.2. Histogram of the daily price changes of the DAX closing prices with fitted normal
distribution. Also fitted is a GPD distribution to the left hand tail. The corresponding quantiles
are estimated by the normal quantile, the GPD quantile and the empirical quantile.

even beyond the range of the data might be wanted, i.e. statements about an area where there
are no observations at all.

Under the acronym let the tails speak for themselves, statistical methods have been developed
which are based only on that part of the sample which carries the information about the extremal
behaviour, i.e. only the smallest or largest sample values. This method is not solely based on
the data but includes a probabilistic argument concerning the behaviour of the extreme sample
values. This leads to a class of semiparametric distributions which can be regarded as plausible.

As a basic reference to modelling and quantifying of extreme events we refer to Embrechts,
Klippelberg and Mikosch [33], henceforth abbreviated by EKM. The DAX data example, which
we analyse in Section 2 can be found in greater detail in Emmer, Kliippelberg and Triistedt [36].

Unfortunately, most financial time series are not independent, but exhibit some very delicate
temporal dependence structure, which is often captured by Markovian volatility models. Conse-
quently, over the last decades a variety of stochastic models have been suggested as appropriate
models for financial products.

In a continuous time setting the dynamics of a price or an interest rate process is often modelled
as a diffusion process given by a stochastic differential equation (SDE)

dX; = M(Xt)dt + U(Xt)th, t>0, Xog=ux, (11)
where W is standard Brownian motion, u € R is the drift term and o > 0 is the diffusion

coefficient or volatility. Two standard models in finance are of the above form:

(i) The Black-Scholes model: (X;);>0 models the price process of an asset, here p(x) = px for
p € R and the volatility o(z) = oz for o > 0. The resulting model for the price process is
geometric Brownian motion.

(ii) The Vasicek model: the process (X;);>o models an interest rate, the drift term y is linear
and the volatility ¢ > 0 is some constant.

Both models can be considered in the framework of Gaussian models, however, as indicated
already, financial data exhibit in general fluctuations which cannot be modelled by Gaussian



processes or simple transformations as in the two standard models above. In principle there are
two different remedies for the problem.

A first concept sticks to Brownian motion as the driving dynamic of the process, but introduces
a path-dependent, time-dependent or even stochastic volatility into the model. These models
are commonly referred to as volatility models, and include diffusions given by the SDE (1.1).
We investigate their extremal behaviour in Section 3.

The second concept replaces the Gaussian driving process in the Black-Scholes or Vasicek model
(or any other traditional model) by a process with heavy-tailed marginals as for instance a Lévy
process with non-normal noise. We consider this approach in Section 5 in the context of portfolio
optimization.

A discrete time counterpart to (1.1) is the following model.
X =p(Xp1)+0(Xy-1)en, neN, (1.2)

where p is the conditional mean, o the conditional volatility and (e, )pen are iid rvs with mean
0 and variance 1. Examples, also Markovian models of higher order, include for instance ARCH
and GARCH models, which have been successfully applied in econometrics.

There is one stylized fact in financial data which models of the form (1.2) can capture in contrast
to linear diffusion models of the form (1.1). This is the property of persistence in volatility. For
many financial time series with high sampling frequency large changes tend to be followed by
large changes, settling down after some time to a more normal behaviour. This observation has
lead to models of the form

Xp =0nen, mneN, (1.3)

where the innovations ¢, are iid rvs with mean zero, and the volatility o,, describes the change
of (conditional) variance.

The autoregressive conditionally heteroscedastic (ARCH) models are one of the specifications of

(1.3). In this case the conditional variance o2 is a linear function of the squared past observations.

ARCH(p) models introduced by Engle [37] are defined by
p
0721:0504-204]‘)(37]-, 050>0,041,...,Oép_120,04p>0, n € N, (1.4)
j=1

where p is the order of the ARCH process.

There are two natural extensions of this model. Bollerslev [12] proposed the so-called generalized
ARCH (GARCH) processes. The conditional variance o2 is now a linear function of past values
of the process Xfl_j, j = 1,...,p, and past values of the volatility o?l_j, j=1,...,q. An
interesting review article is Bollerslev, Chou and Kroner [13], a nice collection of some of the

most influential articles on ARCH models is Engle [38].

The class of autoregressive (AR) models with ARCH errors introduced by Weiss [89] are another
extension; these models are also called SETAR-ARCH models (self-exciting autoregressive).
They are defined by

Xp = f(Xn—la ---aank) +open, MEN, (1.5)

where f is again a linear function in its arguments and o,, is given by (1.4). This model combines
the advantages of an AR model, which targets more on the conditional mean of X,, (given the



past), and of an ARCH model, which concentrates on the conditional variance of X, (given the
past).

The class of models defined by (1.5) embodies various non-linear models. In this paper we focus
on the AR(1) process with ARCH(1) errors, i.e.

Xn=aX, 1+ /B+AX2 e, nEN,

where a € R, £, A > 0, (e )nen are iid symmetric rvs with variance 1 and X is independent of
(eén)nen- This Markovian model is analytically tractable and may serve as a prototype for the
larger class of models (1.5). Note also that this model is of the form (1.2).

Two early monographs on extreme value theory for stochastic processes are Leadbetter, Lindgren
and Rootzén [62], henceforth abbreviated as LLR, and Berman [9]. They contain all basic results
on this topic, and it is this source from which all specific results are derived.

The only models of the form (1.2), whose extremal behaviour has been analysed in detail are
the ARCH(1) (by de Haan, Resnick, Rootzén and de Vries [46]; see also EKM [33], Section 8.4),
the GARCH(1,1) (by Mikosch and Starica [69]), and the AR(1) model with ARCH(1)-errors
(by Borkovec and Kliippelberg [18] and Borkovec [15, 16]). The interesting feature of all these
models is that they are able to model heavy-tailedness as well as volatility clustering on a high
level.

In Section 5 we turn to the second question posed at the beginning. We consider a portfolio
optimization problem based on the VaR as a risk measure. Traditional portfolio selection as
introduced by Markowitz [65] and Sharpe [82] has been based on the variance as risk measure. In
contrast to the variance, the VaR captures the extreme risk. Consequently, it is to be expected
that it reacts sensitive to large fluctuations in the data. This is what we investigate here.

We concentrate on the Capital-at-Risk (CaR) as a replacement of the variance in portfolio
selection problems. We think of the CaR as the capital reserve in equity to set aside for future
risk. The CaR of a portfolio is commonly defined as the difference between the mean of the
profit-loss distribution and the VaR. We define the CaR as the difference between the mean
wealth of the market (given by the riskless investment) and the VaR of our present portfolio;
i.e. we consider the excess loss over the riskless investment.

We aim at closed form solutions and an economic interpretation of our results. This is why we
start in a Gaussian world, represented by a Black-Scholes market, where the mean-CaR selection
procedure leads to rather explicit solutions for the optimal portfolio. As a first difference to the
mean-variance optimization, this approach indeed supports the commonly recommended market
strategy that one should always invest in stocks for long-term investment.

As prototypes of models to allow for larger fluctuations than pure Gaussian models, we study
Lévy processes, which still have independent and stationary increments, but these increments are
no longer normally distributed. Such models have been used as more realistic models for price
processes by Barndorff-Nielsen and Shephard [8], Eberlein and his group (see [27] and references
therein) and Madan and Seneta [64]; they are meanwhile well understood. The class of normal
mixture models supports the observation that volatility changes in time. This is in particular
modeled by the normal inverse Gaussian model and the variance gamma model, which have also
been recognised and applied in the financial industry. However, as soon as we move away from
the Gaussian world, the optimization problem becomes analytically untractable and numerical
solutions are called for. We present solutions for the normal mixture models mentioned above.



The data analyses, simulations and figures presented have been created with the software S-Plus.
Most routines for extreme value analysis are contained in the software EVIS written by Alex
McNeil and can be downloaded from http://www.math.ethz.ch/finance/.

2 Starting-kit for extreme value analysis

Let X, Xy,..., X, be independent and identically distributed (iid) random variables (rvs), rep-
resenting financial losses, with distribution function (df) F' (we write X 4 F).

The classical central limit theorem states that for iid rvs such that £X = p and varX = 02 < oo
the partial sums S, = X1 +--- + X, n € N, satisfy

lim P ((Sn —nu)/Vno? < (L‘) =N(z), z€R,
n— o0

where N is the standard normal df. This result, which holds in a much wider context than just
iid data, supports the normal law for data which can be interpreted as sum or mean of many
small effects, whose variance contributions are asymptotically neglible.

Consequently, the normal model is certainly questionable, whenever extreme risk has to be
quantified. Empirical investigations of financial data show quite clearly that the large values, in
particular the large negative values, are much more pronounced than could be explained by a
normal model.

In the following we present the basic notions and ideas of extreme value theory for iid data. All
this and much more can be found in EKM [33]; for more details on the DAX example we refer
to Emmer, Kliippelberg and Triistedt [36].

2.1 Sample maxima

The simplest extreme object of a sample is the sample maximum. Define
M, =Xy, Mn:max(Xl,...,Xn), n>1.
Then
P(M, <z)=F"(z), zeR,

and M, 1 zp as n — oo almost surely, where zp = sup{z € R: F(z) < 1} < oo is the right
endpoint of F.

In most cases M, can be normalized such that it converges to a limit rv, which together with
the normalizing constants determines the asymptotic behaviour of the sample maxima. The
following is the analogue of the CLT for maxima.

Theorem 2.1. [Fisher-Tippett theorem]
Suppose we can find sequences of real numbers a, > 0 and b, € R such that

lim P((My, —bn)/an <z)= lim F"(apz+b, <z)=H(z), z€R, (2.1)

n—o0 n—o0

for some non-degenerate df Q@ (we write F € MDA(Q)). Then Q is one of the following three
extreme value dfs:



, _ 10, z <0,
o Frechét ®,(z)= { exp (—2-9) £> 0. for a>0.
e Gumbel A(x)=exp(—e™®), zeR.
. | exp(—(—2)%), <0,
o Weibull V,(z) = { 1, >0 for a>0.

The limit distribution Q is unique up to affine transformations; we say it is of the type of Q.

All commonly encountered continuous df are in MDA(Q) for some extreme value df Q; see
EKM [33], pp. 153-157. Here are three examples.

Example 2.2. (a) Exponential distribution: F(z) = 1 — exp(—Az), > 0, A > 0, is in
MDA (A) with ¢, = 1/), dy = Inn/\.

(b) Pareto distribution: F(z) = 1 — (75)%, = > 0, ka > 0, is in MDA(®,) with ¢, =
(n/k)Y®, d, = 0.

(¢) Uniform distribution: F(z) =z, z € (0,1), is in MDA(¥,) with ¢, =1/n, d, = zp = 1.

Taking logarithms and invoking a Taylor expansion in (2.1) we obtain

F e MDA(H) <= lim nF(cyz+d,)=—-InH(z)=:7(z), z€R. (2.2)

n—oo

This MDA condition is a version of Poisson’s limit theorem. It can be embedded in the more
general theory of point processes as follows.

For iid rvs X, X1,..., X, and threshold u,, we have
card{i : X; > up,i=1,...,n} < Bin(n, P(X > up)).

Define for n € N "
Nu(B) =" ey (B)I{X; > un}, B eB(0,1],
i=1

where B(0, 1] denotes the Borel o-algebra on (0, 1] and ¢ the Dirac measure; i.e. ¢;/,(B) = 1 if
i/n € B and 0 else. Then N, is the time normalized point process of exceedances.

The above equivalence (2.2) extends to the following result.

Proposition 2.3. Suppose that (X,)nen is a sequence of iid rvs with common df F. Let (up)nen
be threshold values tending to xr as n — oo. Then

li_)rn nP(X >uy) =7€(0,00) <= N, 4 N Poisson process(T), n — 0.
n—oo

From this follows the asymptotic behaviour of all upper order statistics, for instance,

P(M, < uy) = P(Na((0,1]) = 0) = P(N((0,1]) =0) =e™7, n— .



2.2 Generalized Extreme Value Distribution (GEV)

For statistical purposes all three extreme value distributions are summarized.

Definition 2.4. [Jenkinson-von Mises representation]

_Jep{-(1+&x) 5} ifE#0,
Hep(z) = { exp{—e™*} if¢&=0,

where 1 + &z > 0 and £ is the shape parameter.

The GEV represents all three extremal types:

o £ >0 Fréchet Q¢((z —1)/&) = Py ¢(),
e £ =0 Gumbel Qu(z) = A(z),

o £ <0 Weibull Q¢(—(z+1)/6) =T (x).

Additionally, we introduce location and scale parameters 1 € R and ¢ > 0 and define Q¢ (z) =
Qe(x — p)/1p. Note that Qg is of the type of Q.

This representation is useful for any statistical method which can be based on iid maxima.
These are then modelled by the GEV and the parameters are fitted leading to tail and quantile
estimates; see EKM [33], Section 6.3. The method has its limitations, in particular, if the
dependence structure cannot be embedded in an iid maxima model. Moreover, as for instance
the method of annual maxima, it can also be a waste of data material, since it may only use
annual maxima, but ignore all other large values of the sample. An excellent remedy, also for
non iid data originates in the hydrology literature and has been developed and very successfully
applied by Richard Smith and his collaborators for the last decades; see Smith [84] and references
therein.

2.3 The POT-method (“Peaks Over Threshold”)

We explain the POT-method and show it at work for the DAX closing prices of Figure 1.1. A
superficial glimpse at the data shows already some of the so-called stylized facts of financial data.
There are more peaks than can be explained by a normal model and, in particular, the negative
peaks are more pronounced than the positive ones. On the other hand, the data are simple in
their dependence structure; an analysis of the autocorrelations of the data, their absolute values
and their squares gave no indication of dependence. Consequently, we assume that the data
are iid. We want to remark, however, that many financial data are not iid, but exhibit a very
delicate dependence structure; see Sections 3 and 4.

We proceed with a simple exploratory data analysis, which should stand at the beginning of
every risk analysis. In a Q@Q-plot, empirical quantiles are plotted against the theoretical quantiles
of a given distribution. If the chosen model is correct, nearly all data points will (if the sample
size is large enough) lie on the 45-degree line. If the chosen distribution is correct up to its scale
and location parameter, the plotted points will still be on a straight line, however with different
slope and intersect. Linear regression gives rough estimates for the scale and location parameter,
and these are often used as starting values for more sophisticated estimation methods. Figure 2.5
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Figure 2.5. Normal QQ-plot of the daily price changes of the DAX closing prices. The fit is
in particular in the region of interest ot the left end very bad.

shows a normal QQ-plot of the data. The left end of the plot shows clearly that the left tail of
the underlying distribution is much fatter than the left tail of a normal distribution.

Taking the modulus of the negative values of the given sample enables us to apply extreme value
theory as introduced above to the left tail of the distribution of daily price changes. This is a
sample of size n = 108 and will be the basis for the estimation of VaR.

One of the main ingredients of the POT-method is the following result.

Theorem 2.6. [Balkema and de Haan [3]/Pickands [71]]

_ Futap(u) [ (I+&a) M8 if&#£0,
FeMDAU) = TR -{ & i¢=0,

where 1+ &x > 0, for some (positive measurable) function B(u).

Interpretation. For a rv X with df /' € MDA (H¢) we have

- X —u [ (A +ex)TE if € #0,
J%?}P<ﬁ(u) >x‘X>“>_{ e if € =0,

i.e. given X exceeds u, the scaled excess converges in distribution.

Definition 2.7. [Excess distribution function, mean excess function (MEF)]
Let X 4 F be a rv with xp < oo. For fired u < xp we call

Fy(r)=P(X-u<z|X>u), z+u<zp,
the excess df of X or F' over the threshold u. The function

e(u):E[X—u|X>u]:/mF§((i))dt, u<zp, (2.3)

1s called mean excess function of X or F.



It is easy to calculate the mean excess function of an exponential distribution, which is a constant,
equal to its parameter. The mean excess function of a distribution with a tail lighter than the
tail of an exponential distribution tends to zero as u tends to infinity; for a distribution with
tail heavier than exponential, the mean excess function tends to infinity; see Figure 6.2.4 of
EKM [33].

Now let X1,..., X, denote the sample variables. As usual, 2™ = max(z,0) denotes the positive
part of z and cardA is the cardinality of the set A. The empirical function

1
card{i: X; >u,i=1,...,n

en(u) = }Z(Xi_u)+7 U207
=1

estimates the mean excess function e(u).

The right-hand side of Figure 2.8 shows the empirical mean excess function of the DAX data
corresponding to the left tail. At first, the function is decreasing, but further to the right, it
has an upward trend. This shows that in a neighbourhood of zero, the data might possibly be
modelled by a normal distribution, but this is certainly not the case in the left tail; there, the
distribution turns out to have a tail that is clearly heavier than an exponential tail.
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Figure 2.8. The absolute negative price changes (left-hand side) and the corresponding empirical
mean excess function (right-hand side) of the DAX values.
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Theorem 2.6 motivates the following definition.

Definition 2.9. [Generalized Pareto distribution (GPD)]

1-(1 —1/¢ ' 0,
Ge () :{ L= (11 e/ 7e£0

for 14+ &x > 0. £ € R is the shape parameter and 8 > 0 is the scale parameter.
The GPD represents three different limit excess dfs:

e £ > 0 Pareto with support >0

e ¢ = ( exponential with support z > 0,

10



e ¢ < 0 Pareto with support 0 <z < —fg/¢.

These results are applied to model data above a high threshold u as follows:

(1) the point process of exceedances by a Poissonprocess(7),
(2) the conditional excesses by a GPD(«, ),
(3) the stochastic quantities of (1) and (2) are independent.

2.4 Estimate tails and quantiles by the POT-method
Assume that (X,),en are iid and X, Lx2LFp Fora high threshold u define
N, = card{i: X; >u,i=1,...,n}.

Define F(u) = 1 — F(u) = P(X; > u), then

— F
Fuly) = P(X—u>y| X >u) = % y>0,
equivalently,
Flu+y) = F(u)Fu(y), y>0. (24)

Estimate F(u) and F,(y) by the POT-method:

n

= 1< N,
F(u) = ;ZI(Xi >u) = —%.
i=1

Approximate

_ Y\ Ve
Fu(y)%<1+£g> ) QERa

and estimate £ and 8 by E and B (see below). This results in the following tail and quantile
estimates:

° Tail estimate

— ~ _1/‘?
Flu+vy) = %(14—5 > , y>0. (2.5)

W)l

. Quantile estimate

—~ " 75
Z, = u—l—g\((m(l—p)) _1>, pe(0,1). (2.6)

A standard method to estimate the parameters £ and § is maximum likelihood (ML) estimation.
It is based on numerically maximising the likehood function for the given data, which are the
excesses over a threshold u. However, one should bear in mind that the estimation procedure
often relies on a very small data set as only the excesses will enter the estimation procedure.
For this reason one cannot always rely on the asymptotic optimality properties of the ML-
estimators and should therefore possibly use other estimation methods for comparison. For

11



example, the classic Hill estimator could be used as an alternative approach. For a derivation
and representation of the Hill estimator as well as a comparison to other tail estimators, see e.g.
EKM [33], Chapter 6.

As already mentioned, the ML estimation is based on excess data, hence making it necessary
to choose a threshold parameter u. A useful tool here is the plot of the empirical mean excess
function in Figure 2.8. Recall that for heavy-tailed distributions the mean excess function in (2.3)
tends to infinity. Furthermore it can be shown that for the generalised Pareto distribution, the
mean excess function is a linear function (increasing if and only if the parameter ¢ is positive).
Hence, a possible choice of u is given by the value, above which the empirical mean excess
function is approximately linear. Figure 2.8 indicates a reasonable choice of v = 10, with
corresponding N, = 56. This indicates that the generalised Pareto distribution is not only a
good model for the extreme negative daily price changes, but already for about half of them.
The ML-estimators are then found to be

~ ~

£ =0.186, B =11.120,

which enable us to estimate the lower 5%—quantile of the daily price changes.
Threshold
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Figure 2.10. Ezireme value analysis of the data. The upper left-hand plot shows the estimated
shape parameter £ with pointwise confidence intervals based on the normal asymptotics of the
estimator, depending on different threshold values u. The upper right-hand plot shows the fit of
the conditional df, and the lower left-hand plot the tail-fit of the DAX daily price changes: the
plotted data points are the 56 largest absolute price changes; the solid curves show the estimated
df and tail based on these data. In the lower left-hand plot, the vertical line marks the estimated
95%—quantile, the curve above is the corresponding profile likelihood. The lower right-hand plot
shows the estimated 95%-quantile with pointwise confidence bounds depending on the threshold
values.
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This estimator leads for the DAX data of Figure 1.1 to the following table.

empirical | normal | GPD
VaR(1day, p = 0.05) | -30.654 | -29.823 | -42.856

As is obvious from this Table and Figure 2.10 estimation of the quantile by means of extreme
value theory results in a much larger risk estimate as for the empirical and normal method.

The estimates fit the given data quite nicely, even in the far end tail. This confirms that
the assumption of an underlying heavy tailed distribution is well in line with the data. In
this context, the corresponding estimate of the lower 5%—quantile of the VaR seems far more
plausible than those obtained under the assumption of a normal distribution.

Confidence intervals for the estimated quantile can easily be obtained from the plotted profile
likelihood. The 95%—confidence interval can be read off the horizontal line. It is the interval
[34.37,60.51], i.e. with probability 0.95 the 95%—quantile will lie in the interval [34.37,60.51].
Not surprisingly, the confidence interval is rather wide, in particular to the right, where very few
data are to be found. For the definition and mathematical properties of the profile likelihood
we refer to Barndorff-Nielsen and Cox [6].

3 Continuous-time diffusion models

In this section, which is based on Borkovec and Kliippelberg [17], we study the extremal be-
haviour of diffusion processes defined by the SDE

dXt = //J(Xt)dt + O'(Xt)th, t> 0, X() =, (31)

where W is standard Brownian motion, u € R is the drift term and o > 0 is the diffusion
coefficient or volatility.

The stationary distributions of the processes under investigation are often well-known and one
might expect that they influence the extremal behaviour of the process in some way. This is
however not the case: for any pre-determined stationary distribution the process can exhibit
quite different behaviour in its extremes.

Extremal behaviour of a stochastic process (X;);>o is as a first step manifested in the asymptotic
behaviour of the running maxima

M; = max X,, t>0.
0<s<t

The asymptotic distribution of M; for t — oo has been studied by various authors, see Davis [25]
for detailed references.

It is remarkable that under quite natural conditions running maxima and minima of (X;);>o
given by (3.1) are asymptotically independent and have the same behaviour as the extremes of
iid rvs. We restrict ourselves to the investigation of maxima, the mathematical treatment for
minima being similar.

The diffusion (X;);>0 given by the SDE (3.1) has state space (I,7) C R. We only consider
the case when the boundaries I and r are inaccessible and (X;);>¢ is recurrent. We require
furthermore that o?(x) > 0 for all x € (I,7) and that there exists some ¢ > 0 such that
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f;+5(1 +|u(t)])/o? (t)dt < oo. These two conditions guarantee in particular that the SDE (3.1)

—E
has a weak solution which is unique in probability; see Karatzas and Shreve [52], Chapter 5.5.C.

Associated with the diffusion is the scale function s and the speed measure m. The scale function

is defined as
s(z) = / exp (_2/:, ;‘2(8)dt> dy, zer), (3.2)

where z is any interior point of (I,r) whose choice, by the convergence to types theorem, does
not affect the extremal behaviour. For the speed measure m we know that m(I) > 0 for every
non-empty open subinterval I of the interior of (I,7). We only consider diffusions with finite
speed measure m and denote its total mass by |m| = m((l,7)). The speed measure of model
(3.1) is absolutely continuous with Lebesgue density

2

m(x)zm, ze(l,r),

where s’ is the Lebesgue density of s. In this situation (X;);>o is ergodic and its stationary
distribution is absolutely continuous with Lebesgue density

h(z) =m'(z)/Im|, =€ (7). (3.3)

Notice that the connection between stationary distribution, speed measure, scale function, drift
term and diffusion coefficient (given by (3.2)-(3.3)) allows us to construct diffusions with arbi-
trary stationary distribution (see Examples 3.6 and Theorems 3.4 and 3.5).

Throughout this section, we assume that the diffusion process (X;);>o defined in (3.1) satisfies
the usual conditions, which guarantee that (X;);>0 is ergodic with stationary density (3.3):

s(r)=—s(l) =00 and |m|< occ. (3.4)

For proofs of the above relations and further results on diffusions we refer to the monographs
Karatzas and Shreve [52], Revuz and Yor [76], Rogers and Williams [78], or any other advanced
textbook on stochastic processes.

The following formulation can be found in Davis [25].

Proposition 3.1. Let (X;);>0 satisfy the usual conditions (38.4). Then for any initial value
Xo=ye(l,r) and any uy T 1,

lim |PY(M; < w) — F'(w)] =0,

t—00

where F is a df, defined for any z € (I,7) by

1
F(z) =exp (— ) ., x € (z,71). (3.5)
mls(z)
The function s and the quantity |m| also depend on the choice of z. O

Various proofs of this result exist and we refer to Davis [25] for further references. Davis’ proof
is based on a representation of such a diffusion as an Ornstein-Uhlenbeck process after a random
time-change. Standard techniques for extremes of Gaussian processes apply leading to the above
result. (The idea is explained in the proof of Theorem 3.8).
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As already noted the scale and speed measure of a diffusion (X;);>o depend on the choice of
z and hence, are not unique. Different scale and speed measures (and therefore different z)
lead to different df’s F' in Proposition 3.1. They are, however, all tail-equivalent. This follows
immediately by a Taylor expansion from (3.5) and the fact that s(z) — oo as z 1 r.

Corollary 3.2. Under the conditions of Proposition 3.1 the tail of the df F' in (3.5) satisfies
Fo)~ (Il [ S wdy)  ~ (mls(a) ™, o 1r.
z

The extremal behaviour (in particular the behaviour of the maximum) of an iid sequence with
common df F is determined by the far end of the right tail . In our situation the asymptotic
behaviour of the maxima M; is determined by the tail of F' as in (3.5): if F' € MDA(Q) with
norming constants a; > 0 and b; € R, then

a'(My—b) 5 Q, t—o0. (3.6)
The notion of regular variation is central in extreme value theory and we refer to Bingham,
Goldie and Teugels [11], which we henceforth abbreviate by BGT.

Definition 3.3. [Regular variation]
A positive measurable function f on (0,00) is regularly varying at oo with index o (we write

f e R(a)) if

mli}rglo ) =t%, t>0.

The following results describe the different behaviour of diffusions (3.1) with stationary density
h by the df F' which governs the extreme behaviour.

Theorem 3.4. Assume that the usual conditions (3.4) hold.
(@) Ifp=0, then S = (—00,00) and F(z) ~ cx ' as x — oo for some c > 0.
(b)  Let p and o be differentiable functions in some left neighbourhood of r such that

im L o*(2) = an im o (z) exp | — ) = —00
%I—%d:r p(zx) =0 d 3:—»7" p(zx) p< 2/z 02(t)dt> ,

then B
F(z) ~ |p(@)|h(z), xtr.

Theorem 3.5.  Assume that the usual conditions (3.4) hold and r = oco.
(a) If 0?(x) ~ 2'7%(x)/h(x) as  — oo for some § > 0 and £ € R(0), then
_ 5 s
F(x) ~ 3% Lzr), x— 0.
(b)  If o%(z) ~ cxdLle—ad’ /h(z) as x — oo for some § € R and a, ,¢ > 0, then

— 1
F(x) ~ §caﬁx‘5+’3_2 exp(—az®), = — .
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The following example describes the simplest way to construct a diffusion process with prescribed
stationary density h.

Example 3.6. Define dX; = o(X;)dW;, t > 0, and Xq = = € (I,7) and o%(z) = o%/h(z) for
o > 0 and some density h. Then pu(z) =0, s'(z) = 1 and (X;);>0 has stationary density h. As
a consequence of Theorem 3.4(a) this example has a very special extremal behaviour, which is
— independent of h — the same for all h.

Next we investigate an analogue of the Poisson process approximation for iid data; see Proposi-
tion 2.3. Since (X;);>0 has sample paths with infinite variation, we introduce a discrete skeleton
in terms of a point process of so-called e-upcrossings of a high threshold u by (X;);>¢. For fixed
e > 0 the process has an e-upcrossing at ¢ if it has remained below u on the interval (¢t — €,1)
and is equal to u at ¢. Under weak conditions, the point process of e-upcrossings, properly
scaled in time and space, converges in distribution to a homogeneous Poisson process, i.e. it
behaves again like exceedances of iid rvs, coming however not from the stationary distribution
of (X¢)i>0, but from the df F' which describes the growths of the running maxima M;, ¢t > 0
(see Proposition 3.1).

Definition 3.7. Let (X;);>0 be a diffusion satisfying the usual conditions (3.4). Take € > 0.

(@) The process (Xy)¢>0 s said to have an e—upcrossing of the level u at to > 0 if

Xe<u for te(to—ety) and Xy =u.
(b) Fort >0 let N.,(t) denote the number of e-upcrossings of u by (Xs)o<s<i- Then
N{(B) = N¢u, (tB) = card{e-upcrossings of u; by (Xs)o<s<s : ; € B}, BeB(0,1]
is the time—normalised point process of e-upcrossings on the Borel sets (0, 1]. O

Immediately from the definition e—upcrossings of a continuous time process correspond to ex-
ceedances of a discrete time sequence. As we known from Proposition 2.3 the point process of
exceedances of iid data converge weakly to a homogeneous Poisson process. Such results also
hold for more general sequences provided the dependence structure is nice enough to prevent
clustering of the extremes in the limit.

For diffusions (3.1) the dependence structure of the extremes is such that the point processes of e-
upcrossings converge to a homogeneous Poisson process, however, the intensity is not determined
by the stationary df H, but by the df F' from Proposition 3.1. This means that the e-upcrossings
of (X¢)¢>0 are likely to behave as the exceedances of iid rvs with df F'. The extra condition (3.7)
of the following theorem relates the scale function s and speed measure m of (X;);>0 to the
corresponding quantities sy, and mg, of the standard Ornstein-Uhlenbeck process, defined by

z b
Soul(z) = \/27r/ e’/2dt  and ml (z) =1/s,(z), =z€R.
0
Theorem 3.8. Let (X;)i>o satisfy the usual conditions (3.4) and uy T r such that

tl—l)rgotF(Ut) = tl_l)r& W =TE€ (0,00) .
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Assume there exists some positive constant ¢ such that

M (30 (5(2))) 8'(2)
Stu(sau (5(2))) ™/(2)
Then for all starting points y € (I,7) of (X¢)i>0 and € > 0 the time-normalised point processes

N} of e-upcrossings of the levels u; converge in distribution to N as t 1 oo, where N is a
homogeneous Poisson process with intensity T on (0, 1].

>c, Vze(lr). (3.7)

Proof. The proof invokes a random time change argument. An application of Theorem 12.4.2
of LLL [62] shows that the theorem holds for the standard Ornstein-Uhlenbeck (O;);>0 process.
Denote by

Zt:sou(Ot), tZO, and Y%:S(Xt), tZO,

the Ornstein-Uhlenbeck process and our diffusion, both in natural scale. (Y});>o can then be
considered as a random time change of the process (Z;);>o; i.e. for all t > 0,

Yi=2Z, as.

for some stochastic process (7;);>0. The random time 7; has a representation via the local time
of the process (Yt)tzo. This is a consequence of the Dambis-Dubins-Schwarz Theorem (Revuz
and Yor [76], Theorem 1.6, p. 170), Theorem 47.1 of Rogers and Williams [78], p. 277 and
Exercise 2.28 of [76], p. 230. For z € ([,r) denote by L;(z) the local time of (Y;)o<s<; in z. Then
by the occupation time formula (cf. Revuz and Yor [76], p. 209)

o0 tm/ 8—1 s s SI s
o= [ neamaien = [ ng‘(iofg(i&)))))) m,(g(j)ds, 150,

Notice also that 7; is continuous and strictly increasing in ¢; i.e. it defines a random time. Under
condition (3.7) we obtain

Tt—Tt_EZCé‘, tZO
Moreover, It6 and McKean [49], p. 228 proved the following ergodic theorem

E a.s. 1

t m]

The following approximations can be made precise and implies Proposition 3.1.

P <max X > ut> = P <max Y, > s(ut)>
0<s<t 0<s<t
= p < max Zs > s(ut)> ~ P < max Zg > s(ut)>
0<s<7t 0<s<t/Im|
i 1 t/|ml
(o > stu ) (o (-0)
t
= exp<—7>, t— o0, utr.
s(ug)[ml

For the point process convergence we use Theorem 4.7 of Kallenberg [51] and prove that for any
ye(r)

lim PY(NX, (tU) =0) = P(N(U) = 0),

£,U
t—o0 tatd
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where U is an arbitrary union of semi-open intervals. O

Theorem 3.8 describes the asymptotic behaviour of the number of e-upcrossings of a suitably
increasing level. In particular, on average there are 7 e-upcrossings of u; by (X)o<s<; for large
t. Notice furthermore, that we get a Poisson process in the limit which is independent of the
choice of ¢ > 0.

The next lemma provides simple sufficient conditions, only on scale function and speed measure
of (X)i>0, for (3.7). Notice that by positivity and continuity, (3.7) holds automatically on
compact intervals. It remains to check this condition for z in a neighbourhood of r and I.

Lemma 3.9. Assume that for c1,cy € (000]
1 s"(z)  m"(z) > ¢ z71r,
S (G ) e i -5
or (Grigelionis [45]) that for dy,ds € (0, 0]

s2(2)h(z) In(]s(2))) dy z7Tr,
s'(z) —>d2 z11,

(3.9)
then (3.7) holds.

In the following we investigate some examples which have been prominent in the interest rate
modelling. All examples have a linear drift term

pwle)=c—dr, ze(l,r), forceR,d>0,

which implies that the stationary version of (X;);>¢ has mean c/d, provided it exists, and is
mean reverting with force d. For financial background we refer to Lamberton and Lapeyre [61]
or Merton [66].

Furthermore, (X;);>o has state space R or Ry, hence F' € MDA(®,) for some o > 0 or F €
MDA(A). Note that (3.6) implies that

M,
a—t 4, if FeMDA(®,) (3.10)
t
and Mo b M
P2 4 A and b—t 5 1 if FeMDA(A). (3.11)
ag t

Figures 3.11, 3.13, 3.15 and 3.16 show simulated sample paths of the different models. For
simulation methods of solutions of SDEs see Kloeden and Platen [56]. The solid line indicates
those norming constants which describe the increase of M, for large ¢, i.e. in MDA (®,) we plot

at (see (3.10)) and in MDA (A) we plot b; (see (3.11)).

Furthermore, all models in this section except the generalised Cox-Ingersoll-Ross model with
v = 1 satisfy condition (3.8) of Lemma 3.9, hence the Poisson approximation of the e—upcrossings
is also explicitly given for uy = a;x + by and 7 = —In Q(x), where Q is either @, or A.

Example 3.10. [The Vasicek model (Vasicek [87])]
In this model the diffusion coefficient is o(z) = o > 0. The solution of the SDE (3.1) with
Xo = z is given by

Xt:E—i-(ZE—g

t
)e_dt + U/ e_d(t_s)dWs, t>0.
d 0
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Figure 3.11. Simulated sample path of the Vasicek model (with parameters ¢ =d = o = 1) and
corresponding normalising constants b;.

(X¢)¢>0 has state space R, mean value and variance function

2

d X, =2 <1 2dt)—>02 t—
a arXy = — (1 — — .
11 varAg 2d € 2d, o0

c c
EX, = _¢
+ (z 7

—dt c
— % —
t=7 )e

d

It is well-known and easy to calculate from (3.2)-(3.3) that (X;);>¢ has a normal stationary
distribution, more precisely, it is N(§, %), where N(a,b) denotes the normal distribution with

mean a and variance b. The assumptions of Theorem 3.4(b) are satisfied giving

where H(z) is the tail of the stationary normal distribution; hence F' has heavier tail than H.
It can be shown that F' € MDA(A) with norming constants

o o c o Inlnt+ In(o?d/27)
aqt = —F/—— and b:—vlnt+—+ .
NI TV d ' a/d Vint

Example 3.12. [The Cox-Ingersoll-Ross model (Cox, Ingersoll and Ross [23])]
In this model o(z) = o/ for 0 > 0 and 2¢ > o%. It has state space (0,00), for Xg = z it has
mean value function

EXt:§+<m—§)e_dt — g, t — oo

and variance function

2 2d 2d 2
varXt:%<1—(l+<m—§)?>e2dt+<x—§)?e3dt> — %, t— 00.

From (3.2)-(3.3) we obtain that the stationary distribution H is F(%, i—gl) Theorem 3.4(b)
applies giving



where A > 0 and G(z) is the tail of the F(% +1, 3—{5) distribution. The gamma distributions
are in MDA (A) and the norming constants for F' are
2

o? o 2c d
— L and b= (Int+ S hnlt+n(=—n)).
“=5q M 2d<n Tt n(r(2c/a2))>

o 200 400 600 800 1000

Figure 3.13. Simulated sample path of the Coz-Ingersoll-Ross model with p(z) = ¢ — d,
c € R,d >0 and o(z) = Jz. (The chosen parameters are ¢ = d = o = 1). The stationary
distribution 1s a gamma distribution. The solid line shows the corresponding norming constants
by.

Example 3.14. [The Generalised Cox-Ingersoll-Ross model]
In this model o(z) = oz” for v € [%, o0). The process is ergodic with state space (0, 00).

We distinguish the following four cases:

vy=1/2 : 2c > o2, d>0 (see Example 3.12)

1/2<y<1 c>0, d>0

vy=1 : c>0, d>—oc%/2 (3.12)
v>1 : c>0,deR or ¢=0,d<0.

For % < v <1 the mean value function of (X;);>¢ is given by

5+(x—f)e—dt =S i d>o0

S
EX; = Z _ ) ,—dt :

d—l—(x d)e —o0o if d<O0

T+ ct —oo if d=0

as t — oo where Xy = x. The lack of a first moment indicates already that for certain parameter
values the model can capture very large fluctuations in data, which will reflect also in the
behaviour of the maxima.

. %<7<1

The stationary density, which can be calculated by (3.2)-(3.3), is for some norming constant

A>0 0 5 p
_ -2 ¢ —(27-1 2-2
h(]?)—A—O_?J? 7exp<——2 (27_1$ (7 )+m$ 7)) y $>0.




The assumptions of Theorem 3.4(b) are satisfied and hence
F(z) ~ dzh(z) ~ Bs*CVH(z), z— oo,

for some B > 0. Then F' € MDA(A) with norming constants

2y—1

o? [(02(1 —7) 2-2y
ar — ﬁ <Tlnt>

o2(1—
L . (2 — 2v)? Int W\ 402 )

In this case the solution of the SDE (3.1) with Xy = z is explicitly given by
X, = e (d+5)tHoWs (3: + c/ e(d+2)5”WSds> , t>0.
0

We obtain from (3.2)-(3.3) that the stationary density is inverse gamma:

2d
o2\ o2t 2d e 2
(2 at —2d/o? -2 et -1
h(x) <2c> <F<02+1>> T exp( 0230 >, z>0.

Notice that h € R(—2d/o? —2) and hence by Karamata’s theorem (Theorem 1.5.11 of BGT [11])
the tail H of the stationary distribution is also regularly varying. This implies that certain
moments are infinite:

1) 2
2 r=+1-0 2d
(B TE0
lim EXS = ¢ \0*) T (%+1) o
t—o0 2d
o
In particular,
2c* < g2
— < if — ,
lim varX; = d(2d — 0?) o?
t—o0 . 2d
e if —1< — < 1.
o

For the tail of F we obtain by Theorem 3.4(b)

F(x) ~ Bz 2/ =1 400,

for some B > 0. Hence F € B(—1 — 2d/0?), equivalently, F' € MDA (®94/,2), with norming
constants
ap ~ C t!/(+2d/7?) , 1t —o00,

for some C > 0.
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Figure 3.15. Simulated sample path of the generalised Coz-Ingersoll-Ross model with u(x) =
c—dx, c € Rd >0 and o(z) = z7 for v = 1. (The chosen parameters are ¢ = d = o = 1).
The solid line shows the corresponding norming constants b,. We can calculate F(x) ~ CH(x)
as x — oo for some C' > 0.

200 400 600 800 1000

e v>1

Notice first that A is of the same form as in the case % < 7 < 1, in particular H € R(—2y + 1)
with 1 — 2y < —1)). We apply Theorem 3.5(a) and obtain for some A > 0

F(z) ~ (Az)™', z— o0.

Hence F' € MDA(®;) with norming constants a; ~ t/A. Notice that the order of increase of a;
is always linear. The constant A, which depends on the parameters, decides about the slope.

= - /
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Figure 3.16. Simulated sample path of the generalised Cox-Ingersoll-Ross model for v = 1.5
(with parameters ¢ = d = o = 1) and the corresponding norming constants ay.
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Figure 4.1. A realisation of the sequences (Yp)nen (top) and (X, )nen (bottom) with F standard
exponential as discussed in Example 4.2.

4 The AR(1) model with ARCH(1) errors

In this section we study the extremal behaviour of discrete time volatility models of the form
X, =pXn1)+o(Xp-1)en, neN,

where p is the conditional mean, o the conditional volatility and (g,,),en are iid symmetric rvs
with variance 1.

As a prototype model, which can be analytically analysed we focus on the AR(1) process with

ARCH(1) errors, i.e.
Xp=aXy_1+4/B+AX2_en, n€EN, (4.1)

where a € R, £, A > 0, (ep)nen are iid symmetric rvs with variance 1 and X is independent of
(en)nen. This section is based on Borkovec and Kliippelberg [18] and Borkovec [15]; see also [16].

Before we analyse model (4.1) we explain the influence of volatility clusters on a high level within
the context of extreme value theory. We also show its consequences for risk management when
estimating a high or low quantile.

We start with an introductory example, which we have found useful before.

Example 4.2. [EKM [33], Sections 4.4, 5.5 and 8.1]
Let Y, Y, Ys, ... be iid Y £ /F and define X,, = max(Yy,, Yy.1) for n € N. Then

P(X, <z)=(P(Y,<z))?=F(z), z€cR.
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Choose uy, such that nP(X; > uy,) — 7 as n — oo, then nP(Y; > u,) — 7/2 and

P(maX(Xb s 7Xn) < un) = P(ma‘X(Yla s 7Y’I’L+1) < u’n)

= P(max(Yi,...,Y,) <up)F(uy) — ¢ 7?2, n— .
Definition 4.3. [Extremal index]
Let (X,)nen be strictly stationary and define as before

M, =Xy, Mn:max(Xl,...,Xn), n>1.

Assume that for every T > 0 there exists a sequence (Up)nen such that

lim nP(X) >u,) = 7

n—00

lim P(M, <wu,) = e 07

n— 00
Then 6 € [0,1] is called the extremal index of (Xy)nen.
The extremal index in Example 4.2 is § = 1/2. This indicates already the most intuitive

interpretation of the extremal index: 1/6 can be interpreted as the mean clustersize.
In the context of risk management we give an intuitive example.
Example 4.4. We want to calculate the VaR=VaR(10 days, p = 0.05) of a portfolio; i.e. for

daily losses X;, 1 = 1,...,10, we want to estimate P(max(Xy,...,X30) < VaR) = 0.95. Assume
that we know

VaR(1 day, p = 0.01)=10 Mio and VaR(1day, p = 0.005)=11 Mio.
For the loss rv X this means that P(X < 10) = 0.99 and P(X < 11) = 0.995. Denote by
Z = max(X1y,...,Xq9). If the X; are iid, then
P(Z <11)=P(X <11)!° = 0.95,
whereas for dependent X; with extremal index 6 = (0.5 we obtain

P(Z <10) = P(X < 10)'%2 % 0.95.

This means that for iid data the 10-day VaR(10 days, p = 0.05) is higher than for dependent
data.

Using the block maxima method it is easy to compare VaR estimation for independent and
dependent stationary financial time series. The data are divided into, say, N blocks, such that
the corresponding block maxima can be considered as independent. Moreover, if the sample
variables are in MDA (Q) for some extreme value distribution @), then the block maxima, we call
them Zy,...,Zy, can be viewed as an iid sample of rvs with df ). Consequently, we assume
that Zy,...,Zy are iid GEV distributed; i.e. introducing a location parameter ;4 € R and a
scale parameter 1 > 0,

AR (0) — 1\~ 1/
P(Z < VaR(p)) ~ exp (- (1 + g%) ) . (4.2)
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Defining for given p € (0,1) the VaR(p) by 1 — p = P(Z < —VaR(p)), we obtain by inversion

Y )
VaR(p) =i+ ((~m@-p)€-1).

By Definition 4.3 dependence introduces an additional factor 6 in the exponent of (4.2) giving

TR )
Var(p) =+ % (5 -p) € - 1)

In the context of risk management we expect £ > 0 and for £ = 0 we take the limit

VaR(p) = o — Y In(~ 5 1 - p)).

A different method is a dependent version of the POT-method; i.e. the quantile estimate (2.6).
Starting again with (2.4), the estimation of the tail in (2.5) changes, when F(u) is estimated.
The empirical estimator N, /n for iid data is replaced by N2/ (nBy), where NP is the number of
block maxima exceeding u and 8, is the estimated extremal index; see EKM [33], Section 8.1
and references therein. For the quantile estimate (2.6) this means that

o~ ¢
. I5} nb,
:Jcp:u+? (Tg(l_p)> -1], pe(0,1).

4.1 Stationarity and tail behaviour

In this section we present an extreme value analysis of the AR(1) process with ARCH(1) errors as
given by (4.1). As a prerequisite we first need to know whether we are dealing with a stationary
model and what the tail of the stationary distribution looks like.

For A = 0 the process is an AR(1) process whose stationary distribution is determined by the
innovations (e,)nen and stationarity is guaranteed for |a| < 1. In the ARCH(1) case (the
case when a = () the process is geometric ergodic provided that f > 0 and 0 < A < 2¢€7,
where 7 is Euler’s constant. The tail of the stationary distribution is known to be Pareto-like
(see e.g. Goldie [41] or EKM [33], Section 8.4). This result was obtained by considering the
square ARCH(1) process leading to a stochastic recurrence equation which fits in the setting
of Kesten [563, 54] and Vervaat [88]; see also Diaconis and Freedman [26] for an interesting
overview and Brandt, Franken and Lisek [19]. Goldie and Maller [42] give necessary and sufficient
conditions for stationarity of stochastic processes, which are solutions of stochastic recurrence
equations.

For the general case we follow the standard procedure as for instance in the case a = 0 to
find the parameter region of stationarity of the process. For the tail behaviour, however, we
apply a technique, which differs completely from Kesten’s renewal type arguments, by invoking
the Drasin-Shea Tauberian theorem. This approach has the drawback that it ensures regular
variation of the stationary tail, but gives no information on the slowly varying function. However,
the method does apply to processes which do not fit into the framework of Kesten [53]. Moreover,
the Tauberian approach does not depend on additional assumptions which are often very hard
to check (as e.g. the existence of certain moments of the stationary distribution). Combining
the Tauberian method with results in Goldie [41], we finally specify the slowly varying function
as a constant.
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We shall need the following assumptions on the noise variables. Denote by ¢ a generic rv with
the same df G as €. Throughout this section the following general conditions are in force:

e ¢ is symmetric with variance 1,

e ¢ is absolutely continuous with respect to Lebesgue measure with density g, (4.3)
which is positive on the whole of R and decreasing on Ry .

We summarize in Theorem 4.7 some properties of the process (X,)nen. In particular, geo-
metric ergodicity guarantees the existence and uniqueness of a stationary distribution. For an
introduction to Markov chain terminology we refer to Tweedie [86] or Meyn and Tweedie [67].

The next proposition follows easily from well-known properties of moment generating functions
(one can follow the proof of the case & = 0; see e.g. Lemma 8.4.6 of EKM [33]).

Proposition 4.5. Let ¢ be a rv with probability density g satisfying the general conditions (4.3).
Define hq y : [0,00) — [0,00] for « € R and A > 0 by

ha(u) := Ella+VXel'], u>0. (4.4)
(a) The function hq)\(-) is strictly convex in [0,T), where
T :=inf{u > 0| E[|[VXe|"] = oo}
(b) If furthermore the parameters a and A are chosen such that
a(0) = Ellna+vXel] <0, (4.5)

then there exists a unique solution k = k(a, X) > 0 to the equation ho x(u) = 1. Moreover, under
hla,)\(o) <0 ’

> 2, if & + M\E[g?] < 1,
kla, ) =2, if & + M\E[g?] =1,
<2, if & + M\E[g?] > 1.

Remark 4.6. (a) By Jensen’s inequality o? + A E[e?] < 1 implies hi, 2 (0) <0.
(b) Proposition 4.5 holds in particular for a standard normal rv €. In this case T' = co.

(c) In general, it is not possible to determine explicitly which parameters « and A satisfy (4.5).
If « =0 (i.e. in the ARCH(1)-case) and ¢ 4 N(0,1) (4.5) is satisfied if and only if A € (0,2¢€7),
where «y is Euler’s constant (see e.g. EKM [33], Section 8.4).

For a # 0, Tables 4.14-4.16 show numerical domains of « and A; see Kiefersbeck [55] for more
examples.

(d) Note that s is a function of a and A. Since ¢ is symmetric x does not depend on the sign

of a. For e £ N(0,1) we can show that for fixed A the function « is decreasing in |a|. See also
Table 4.14. O

Theorem 4.7. Consider the process (X, )nen in (4.1) with (e,)nen satisfying the general con-
ditions (4.3) and with parameters o and X satisfying (4.5). Then the following assertions hold:
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(a) Let v be the normalized Lebesque-measure on the interval [—-M,M] C R; i.e. v(-) := A(-N
[—M, M)/ XN([—M,M]). Then (Xp)nen is an aperiodic positive v-recurrent Harris chain with
regeneration set [—M, M| for M large enough.

(b) (Xp)nen is geometric ergodic. In particular, (Xp)nen has a unique stationary distribution
and satisfies the strong mizing condition with geometric rate of convergence. The stationary
distribution is continuous and symmetric.

Remark 4.8. When we study the stationary distribution of (X, ),en we may w.l.o.g. assume

n
that @ > 0. For a justification, consider the process (X )nen = ((—1)" X, )nen which solves the

stochastic difference equation

X, =—aX, 1 +1/B+AX2_e,, neN,

where (£, )nen are the same rvs as in (4.1) and Xo = Xo. If @ < 0, because of the symmetry of
the stationary distribution, we may hence study the new process (X, )nen. O

In order to determine the tail of the stationary distribution ¥’ we need some additional technical
assumptions on g and G = 1 — G, the density and the distribution tail of e:

D; The lower and upper Matuszewska indices of H are equal and satisfy in particular

Inlimsup,_,,, H(vz)/H ()

—o0 <Ly = Ilim
V—00 Inv
— im Inliminf, .o H(vz)/H (z) <o0.
V—00 Inv

D, If ¥ = —oc then for all § > 0 there exist constants ¢ € (0,1) and ¢ > 0 such that for all
z >z and ¢t > z

T+ at T+ at
() 2 -0 (W> | (40

If v > —oco then for all § > 0 there exist constants zyp > 0 and T > 0 such that for all z > x;
and ¢ > T the inequality (4.6) holds anyway.

The definition of the lower and upper Matuszewska indices can be found e.g. in BGT [11],
p- 68; for the above representation we used Theorem 2.1.5 and Corollary 2.1.6. The case v =
—oo corresponds to a tail which is exponentially decreasing. For v € (—o0, 0] condition D; is
equivalent to the existence of constants 0 < ¢ < C < oo such that for all A > 1, uniformly in
v e [1,4],

(1 +o() < 42

) <Cl+o)), z—o0. (4.7

In particular, a distribution with a regularly varying tail satisfies D;; the value y is then the
tail index. Due to the equality of the Matuszewska indices and the monotonicity of g we obtain
easily some asymptotic properties of G and of g, respectively.
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Proposition 4.9. Suppose the general conditions (4.3) and Dy — Ds hold. Then the following
holds:

(a) lim, 00 ™G (x) = 0 and E[|g|™] < co for all m < —7.

(
(b) limy_,o ™G () = 00 and E[|e|™] = oo for all m > —v.

(c) limy_ o0 2™ g(x) = 0 for all m < —7.

(d) If v > —o0, there ezxist constants 0 < ¢ < C' < oo such that

¢ < liminf x_g(w) < lim sup :E_g(x) <C.

Moreover, there exist constants 0 < d < D < oo such that for all A > 1, uniformly in v € [1,A],

d(1+o(1)) ! < <DA+o)) !, z—o00. (4.8)

Furthermore, in this case (4.8) is equivalent to (4.7) or D;.

The general conditions (4.3) are fairly simple and can be checked easily, whereas D; and in
particular D2 seem to be quite technical and intractable. Nevertheless, numerous densities
satisfy these assumptions.

Example 4.10. The following two families of densities satisfy the general conditions (4.3) and
D, — Ds.

(a) gp0(z) o exp(—0~1z|?), z € R, for p,6 > 0.

Note that this family includes the Laplace (double exponential for p = 1) and the normal density
with mean 0 (p = 2).

(B) Gapo(®) oc (1+2/0)~P+D/2(1+a sin(27 In(1+22/0))), x € R, for parameters p > 2, 0 > 0
and a € [0, (p+1)/(p + 1 +4m)).

This family includes e.g. the Student-t distribution with parameter p (set a = 0 and 6 = p).

The following modification of the Drasin-Shea Theorem (BGT [11], Theorem 5.2.3, p. 273) is
the key to our result.

Theorem 4.11. Let k: [0,00) — [0,00) be an integrable function and let (a,b) be the mazimal
open interval (where a < 0) such that

k(z) = / t_zk(t)% < oo, forze€(a,b).
(0,00)

If a > —o0, assume limg g E(a +6) = 00, if b < 0o, assume limg|g 7{:\(() — ) = oo. Let H be a df
on R, with tail H. If

then
c= 7{:\(,0) for some p € (a,b) and H(z) ~ z°l(z), =z — oo,

where | € R(0).

28



The following is the main theorem of this section.

Theorem 4.12. Suppose (Xn)nen is given by equation (4.1) with (en)nen satisfying the general
conditions (4.3) and Dy — Dy and with parameters o and X satisfying (4.5). Let F(x) = P(X >
x), x >0, be the right tail of the stationary distribution. Then

F(x) ~cz™™, z— o0, (4.9)
where
K K
LB Ha|X| +VBF AX%‘ - ‘(a + \/X6)|X|‘ }
25 E [|a+\/X6|”1n|a+\/X6|}

CcC =

and K s given as the unique positive solution to

Ella+VXe|f]=1. (4.10)
Remark 4.13. (a) Let E[|a+V\e|®] = ho (k) be as in Lemma 4.5. Recall that for 4 N(0,1)
and fixed A, the exponent x is decreasing in |@|. This means that the distribution of X gets

heavier tails. In particular, the AR(1) process with ARCH(1) errors has for o # 0 heavier tails
than the ARCH(1) process (see also Table 4.14).

(b) Theorem 4.12 together with Proposition 4.5 implies that the second moment of the station-
ary distribution exists if and only if o + X\ E[¢?] < 1. O

Idea of Proof. Recall that P(e > z) = G(z) with density g.

Flz) = /_Z P(at+m6>x> dF (1)
- Clol) o)
- b (50 (F5w)) ot
- [

where
k(x)zx(g(xj;)+g<x¢‘;>>, >0,
then
) 1 © T\ —, . dt
Jim s /0 k<?> P(t) = =1. (4.11)

k(z) = /Ooo t—%(t)% /Ooot—z
E



A

lo| |02 J04 0608 1.0 14 18] 2226 ] 30 ] 34 ] 35
0.0 [ 12.89 [ 6.09 [ 3.82 [ 2.68 [ 2.00 | 1.21 [ 0.77 [ 0.49 | 0.29 | 0.14 | 0.03 | 0.01
0.2 | 11.00 | 5.50 | 3.54 | 252 | 1.89 | 1.16 | 0.74 | 0.47 | 0.28 | 0.13 | 0.02 | -
0.4 || 814 [4.30 [ 2.88 [ 211 [ 1.61 | 1.00 | 0.64 [ 0.40 [ 0.23 [ 0.10 | - | -
0.6 | 545 [3.03 212 1.60 [ 1.24 [0.79 | 0.50 | 0.30 [ 0.15 | 0.04 | - | -
0.8 | 3.02 | 1.85 [ 1.37 | 1.07 [ 0.85 [ 0.55 | 0.33 [ 018 [0.06 | - | - | -
1.0 || 0.96 [0.83 [ 0.70 [ 057 | 047 [0.29 [0.15 [0.04 | - | - [ - | -
1.1] 012 [0.39 [ 040 [0.35 [0.29 017 [0.07 | - | - | - [ - | -
12 - Joo0r]012[014[012]005] - | - | - | - | - | -

Table 4.14. Range of stationarity of the AR(1)+ARCH(1) model with parameters « and .
The matriz components contain the estimated tail index K for standard normal noise. There is
no estimate given if the estimated k is less than 10~2 or (4.5) is not satisfied.

Since (4.11) holds, the conditions of the the Drasin-Shea Tauberian theorem are satisfied. Hence
there exists some p € (—00,1) such that k(z) =1 and

F(x) ~zl(z), x— o00.
But k(z) = E[|a + vVXe|™?] = 1 for p = —x and hence
F(z) ~z7%(5), z— . (4.12)

We apply now Corollary 2.4 of Goldie [41] to the process (Yj)nen) given by the stochastic

recurrence equation
aYn_ 14+ /B+ AV,

which satisfies (Y},) 4 (|Xn]). By (4.12) EY"~! < 0 and hence the moment condition

E ‘(|04Y + B+ A 2e))E — (Ja+ Vre|Y)*

requested in Goldie [41] is satisfied. By symmetry of X we conclude finally

E Ha|X| + \/me|ﬁ—|(a+ﬁe)|X|m
2k E [|a+\/X8|’f ln|a+\/Xs|]

Y, = , neN, and Yy=1|Xy| as.,

< 00

L) =c=

4.2 Extreme value analysis

Theorems 4.7 and 4.12 are crucial for investigating the extremal behaviour of (X,,)nen. The
strong mixing property implies automatically that the sequence (X, ),cn satisfies the conditions
D(uy) and A(uy,). These conditions are frequently used mixing conditions in extreme value
theory, which, as we do not need them explicitly, we will not define; instead we refer to Hsing,
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X

lo| [[02 7040608 1.0 14 18] 22 26 238
0.0 [[4.00 [ 2.76 [ 2.00 [ 1.50 [ 1.14 [ 0.69 | 0.41 [ 0.21 [ 0.07 [ 0.02
0.2 || 3.93|2.68 [ 1.92 | 1.44 | 1.10 [ 0.66 | 0.39 | 0.20 | 0.06 | 0.01
0.4 |[3.70 [ 241 [ 1.70 | 1.27 [ 0.97 [ 0.58 | 0.32 [ 0.15 | 0.03 | -
0.6 314 [1.93 136 | 1.01 [0.77 [ 044 [ 023 [0.08 | - | -
0.8 [[210 [ 1.290 [0.92 [ 0.68 | 051 [028 [011 | - | - | -
1.0 [[0.78 060 [0.45 [0.34 [024 [0.09 | - | - [ - | -
11 [[oa9 o027 022]016 010 - [ - | - [ - | -
12 | - | - Joo2foor| - | - [ -1 -1-1"-

Table 4.15. Range of stationarity of the AR(1)+ARCH(1) model with parameters « and .
The matriz components contain the estimated tail index k for student-t noise with 5 degrees of
freedom. The range of stationarity has shrunk compared to the normal noise. Moreover, the
corresponding tails are heavier than for normal noise (cf. Table 4.14).

A

lo| [02 704060810 14 18] 22] 24
0.0 [ 243 [1.80 [ 1.35 [ 1.02 [ 0.78 [ 0.45 | 0.23 | 0.08 | 0.01
0.2 || 241 | 1.76 | 1.31 [ 0.99 [ 0.75 [ 0.43 | 0.21 | 0.06 | 0.01
0.4 || 231 | 1.62 | 1.18 [ 0.88 | 0.66 | 0.36 | 0.16 | 0.02 | -
0.6 | 2.06 [ 1.35 [ 0.96 | 0.70 | 0.51 [0.26 [ 0.09 | - | -
0.8 || 1.50 [0.930.64 [0.45 [032 012 ] - | - [ -
1.0 059 041028 018 010 - | - | - | -
11 Jo13 o5 o010 004 - | - | - [ - |-

Table 4.16. Range of stationarity of the AR(1)+ARCH(1) model with parameters « and .
The matriz components contain the estimated and tail indez for student-t noise with 8 degrees
of freedom. The range of stationarity has further decreased and the tails have become very heavy
indeed; a third moment does not exist (cf. Tables 4.14 and 4.15).

Hiisler and Leadbetter [48] or Perfekt [70] for precise definitions. Loosly speaking, D(uy) and
A(uy) give the “degree of independence” of extremes situated far apart from each other. This
property together with (4.9) implies that the maximum of the process (X,,),en belongs to the
domain of attraction of a Fréchet distribution ®,, where « is given as solution to (4.10).

In the following denote by P* the probability law for (X,,),en when X starts with distribution
p and 7 is the stationary distribution.

Theorem 4.17. [Borkovec [15]]
Let (Xp)nen be the AR(1) process with ARCH(1) errors (4.1) with noise satisfying the usual

conditions and D1 — Dsy. Let X 4 W, then

lim P*(n~Y* max X; <z)=exp(—cfz "), >0,
n—00 1<5<n

where K solves the equation (4.10), ¢ is the constant in the tail of the stationary distribution
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(4.9) and

00 n
0=k / P (sup H(a + V) < y_1> y "y .
1

neN;_
For z € R and n € N let N, be the point process of exceedances of the threshold u, = n'/*z by
X1,...,X,. Then

d
N, — N, n—o0,

K

where N is a compound Poisson process with intensity cOx™" and cluster probabilities

_ Ok =0k

keN
0 Y E bl

Tk

with

o0 n
Hk;ZH/ P(Card{’l’LENlH(a+\/X€i)>y_1}:k_1>y—n—1dy‘
1

i=1

In particular, 61 = 6.

We want to explain the idea of the proof:

Recall first from Theorem 4.7 that (X, ),cn is Harris recurrent with regeneration set [—e“/ 2 ea/ 2]
for a large enough. Thus there exists a renewal point process (7),),>0 (e.g. the successive
entrance times in [—e%/2,e%?]), which describes the regenerative structure of (X,)nen. This
process (1,),>0 is aperiodic and has finite mean recurrence times.

Hence we can apply a coupling argument giving for any probability measure u, the stationary
distribution 7 and any sequence (uy)nen

‘P“(max ngun> —P”(max ngunﬂ =0, mn—oo.
1<k<n 1<k<n

Consequently, we suppose in the follwing that (X,,),en is stationary.

On a high level, the process (X, )nen can be linked to some random walk as follows. Define
n
So=0, S,= Zln(a—i—ﬁei), n € N.
i=1

Although it is not as natural as for pure volatility models we consider besides (X,)nen also
(X2)nen. Define the auxiliary process (Z,)nen = (In(X2))nen, which satisfies the stochastic
difference equation

Zp =Zn+ ln((a + v/ Be n-1 + Asn)2> , neN, Zy=In(X2) as..

Note that, since strong mixing is a property of the underlying o-algebra of the process, (X?2),en
and (Z,)nen are also strong mixing. Since ¢ is symmetric the process (Z,)nen is independent
of the sign of the parameter . Hence we may wlog in the following assume that a > 0.

We show that (Z,)nen can be bounded by two random walks (Sﬁ;a)neN and (S5,*)pen from below
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)

and above, respectively. For the construction of the two random walks (S5%)nen and (SY)nen
we define with the same notation as before

A, = @ ,
{\/ﬂe @+ A \/Be o = S\/ﬁea+/\+\/ﬁea/2}
pla,e) = ln<(a+ Be %+ ) )
. 20/ Be=/2
ala,e) = m(1- P e A6)21{5@}),
- ,38267‘1
r(a,e) = ln<1 T i i )\6)21{5<0}) .

Note that g(a) and r(a) both converge to 0 a.s. as @ — oco. Define the lower and upper random
walks

Sht:=> Uf and Sp:=> V{, neN, (4.13)
j=1 j
where for each j=1,...,n
Uf = —oo-1a, + (pla,&;) +7(a,65)) Lagnie; <oy (e + VAe)?) 1., 50 (4.14)
ija = p(aa 5]') + q(a'v gj) . (415)

The following lemma summarizes some properties of the random walks defined in (4.13)-(4.15).

Lemma 4.18. Let a be large enough, Zy > a and N, :=inf{j > 1|Z; < a}. Then

(6)  Zo+ 8" < Z < Zo+ Sp® for all k < Ny a.s.
(B)  (SE"Vnen and (S5%)nen are random walks with negative drift.

(¢)  Define Sy =0 and Sy = Z In((e + VAg;)?) for k € N. Then

P 5.
S,lc’a = Sp and SZ’“ X8, atoo.

a.s.

l,a d u,a
(d)  supp>; Sy" — supg>; Sg  and  supg>y S 5 supg>q Sk as a1 oo.

Lemma 4.18 characterizes the behaviour of the process (Z,)nen above a high treshold a and
hence also the behaviour of (X2),en. This is the key to what follows: the process (Sy)pen will
completely determine the extremal behaviour of (X2),en-

We first need the following lemma.

Lemma 4.19. Let y be the mizing function of (Xp)nen and (pn)nen an increasing sequence
such that

Pn and TL’)’(\/p_n)

— =0
n Pn

-0 asn—o0. (4.16)

Then for u, = nQ/'“x, z >0,

lim lim sup P( max X2 > up | X3 > uy) =0, (4.17)
P30 p—oo P<J<pn
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and for u, = n/%z, z >0,

lim limsup P( max X; > u,|Xo > u,) =0. (4.18)

PO psoo P<j<pn

Proof. The proof of (4.17) is very technical and we refer to Borkovec [15] for details. It is,
however, easy to see that (4.17) implies (4.18):

P(max << nX2 >U2 X2 >U2
P( max )(]2 > U?L|Xg > ui) — ( P=J=p J n’ 0 n)

P(maXp<j<p X] > un7 XO > un) 1
>J>Pn — —P a X > X > )
P(Xo > un) + P(Xo < —ty) P max X; > un| Xo > un)

O

Remark 4.20. (a) Since (X,)nen is geometric ergodic, the mixing function v decreases expo-
nentially fast, hence it is not difficult to find a sequence (py)nen to satisfy (4.16).

(b) As mentioned already, the strong mixing condition is a property of the underlying o—field
of a process. Hence v is also the mixing function of (X2),cn and (Z,,)nen and we may work for
all these processes with the same sequence (py,)nen.

(c) In the case of a strong mixing process, conditions (4.16) are sufficient to guarantee that
(Pn)nen is a A(uy,)-separating sequence. It describes somehow the interval length needed to ac-
complish asymptotic independence of extremal events over a high level u,, in separate intervals.
For a definition see Perfekt [70]. Note that (pp)nen is in the case of a strong mixing process
independent of (uy)nen. O

The following Theorem is an extension of Theorem 3.2 of Perfekt [70], p. 543 adapted to our
situation.

Theorem 4.21. Suppose (X, )nen is a strongly mizing stationary Markov chain whose station-
ary df F is symmetric with tail F € R(—k) on Ry. Suppose furthermore that

lim P(X; <zu|Xo=u)=H(z), z€eR,

U— 00

for some df H. Let (Ap)nen be an iid sequence with df H and define Y, = A,Y, 1 for n € N

with Yy independent of (Ap)nen and Yy 4 o given by p(dz) == k= z=/5"Vdz, for x > 1. For
every T > 0 let (un(7))nen be a sequence satisfying

nlLrgO nF(uy (1)) = 7.

Then (X,)nen has extremal index 6 given by
0 = P'(card{n e N : Y}, > 1} =0).
Moreover, for n € N the time normalized point process of exceedances

Ny (B) := igi/n(')I{Xk >un(r)} 5 N(B), BeB01],

=1
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where N is a compound Poisson process with intensity 61 and jump probabilities (7 )ren given
by

_ Ok =0k k

0 eN,

Tk

where

Op = PF(card{n e N : Y, >1} = k—-1), keN.

Proof of Theorem 4.17. The proof is an application of Theorem 4.21. As stated already we
may assume w.l.o.g. that (X, )pen is stationary. Let z € R be arbitrary. Note that by (4.9)

lim P(X; <uz|Xg=u)=Pla+Vie<z), z€cR.

U— 00

(Xn)nen satisfies all assumptions of Theorem 4.21 and we have the extremal index

0 = /Oop<card{n€N: (ﬁ(a—i—\/Xai))Yo>1}:0|Y0:y> Ky~ ldy
1

=1

= /1/100 P (sup (ﬁ(a + \/Xaz) < y_1> y "y .

nzl o

The cluster probabilities can be determined in the same way and hence the statement follows.
O

Remark 4.22. (i) Notice that for the squared process the extremal index and the cluster
probabilities can be described by the random walk (S),),en, namely

o
0% = g/o P(card{n € N|S, > -z} =k —1)e 5%dz, ke N.
The description of the extremal behaviour of (X2),en by the random walk (S,),en is to be ex-
pected since by Lemma 4.18 the process (Z,)nen = (In(X2))nen behaves above a high threshold
asymptotically like (S, )nen. Unfortunately, this link fails for (X,,)nen.

(ii) Analogous to de Haan et al. [46] we may construct “estimators” for the extremal indices
62 and 0,(62) of (X2),en, respectively, by

N
o = %Zl{ sup S](-Z) < —E,g)}

i=1 1<j<m

and
1 N m
2 7 i
§§C>:N§:1{§ 1S > B} =k -1}, forkeN,
=1 j=1

where N denotes the number of independent simulated sample paths of (Sy)nen, E,(f) are i.i.d.
exponential rvs with rate «, and m is chosen large enough. These estimators can be studied as

in the case o = 0 and & < N(0,1) in de Haan et al. [46]. In particular,

~,

92 — 92 .
\/N(O(?)(l — 9(2)))1/2 — N(0,1), N,m — .
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(iii) The approach chosen in (ii) is not possible for (X, ),cn, because H{Zl(a +vA¢g;) may be
negative. In a similar spirit we choose as “estimators” for 6 and 6y for (X, )nen

N j
1 .
6=—> 1{ su a+Vie) <1/PW
N;:l {Kjgmllll( ) < 1/PY}

and
R 1 N m J )
b=+ U UJ(a+Vre) > 1/PP} =k~ 1}, forkeN,

i=1  j=1 [=1

where N denotes the number of simulated paths of ([Tj~; (¢ + VA e;))nen, P are iid Pareto rvs
with shape parameter «, i.e. with distribution function G(z) =1 — 2%, > 1, and m is large
enough. These are suggestive estimators since [[;";(a + VAe) = 0 as. as n — oo because of
assumption (4.4).

(iv) Note that the extremal index 0 of (X,)nen is not symmetric in « (see Table 4.23). This
is not surprising since the clustering is for a > 0 stronger by the autoregressive part than for
a < 0. O

a A o2 0.4 0.6 0.8 1.0 1.2 1.5 20 25 3.0 35
—-1.2 - 0.001 0.001 0.003 0.004 0.001 0.000 - - - -
-1 0.15 0.19 019 016 013 009 0.05 0.01 -
-0.8 || 0.56 047 041 034 026 0.21 0.13 0.05 0.01 - -
—-0.6 ||0.86 071 061 050 041 033 0.22 0.10 0.03 0.00 -
-04 (1096 08 071 060 050 040 030 0.14 0.06 0.01 -
-0.2 || 098 089 077 065 056 047 033 0.18 0.07 0.02 0.00
0 098 0.89 0.78 065 055 045 033 0.18 0.08 0.02 0.00
0.2 094 082 0.72 061 052 043 032 0.18 0.07 0.02 0.00
0.4 085 0.72 0.63 053 045 037 028 0.13 0.06 0.01 -
0.6 0.68 0.55 048 041 035 029 021 0.10 0.03 0.00 -
0.8 039 034 032 027 022 019 012 0.06 0.01 - -
1.0 0.09 014 013 013 011 008 0.04 0.01 - - -
1.2 - 0.000 0.001 0.003 0.004 0.001 0.000 - - - -

Table 4.23. “Estimated” extremal index 6 of (Xp)nen in the case € 4 N(0,1). We chose

N = m = 2000. Note that the extremal index decreases as || increases and that we have no
symmetry in o.

Remark 4.24. (i) Model (4.1) has a natural extension to higher order: the autoregres-
sive model of order ¢ with ARCH(q)-errors has been investigated in Kliippelberg and Perga-
menchtchikov [58, 59]. It is also shown there that for Gaussian error variables this model is in
distribution equivalent to a random coefficient model.

(ii) Such models also lead to interesting statistical theory, some can be found in economet-
ric textbooks; see e.g. Campbell, Lo and MacKinley [21], Gouriéroux [44], Shephard [83], or
Taylor [85]. In Kluppelberg et al. [57] tests for models including (4.1) are suggested. A pseudo-
likelihood ratio test for the hypotheses that the model reduces to random walk or iid data is
investigated and the distributional limit of the test statistic is derived. 0

36



2 ' g '
s .
.o . '
0 . ot . .l 3 .
N 03 gin i 4‘{ Lo ,{ h
e o% ‘o, gvla | 0 e b KEERY ] N
3 3 SR ef,;é',g """""‘:5%' s 3L A0 b AN 3
° : CER TR SRR RIS W F i R
(ARG R | .
QRN . H W, . ORI s
. Ve N [ A L L) 2
[} . . b Ve . P B
. . 1 " ., .
; o . .
: : - : ! & . C : :
[ . f
. ] N M
" B : . -l § e : :'
v . whe \ D)
i ° MWMV’MA M'aﬂa
0 200 400 600 800 1000 0 200 400 600 800 1000
n
— . o .
o
N
] .
- .
o .
n
Lal
n
]
o S . . .
0 . ' *
' Q . [N
: : ° . . | .
9 ' ' © Vol e
' . R P T O B T T L
. . o m.u i aailia it it ke ol
0 200 400 600 800 1000 0 20 400 600 800 1000
< . .
n .
o .
N
° .
= . N . .
o . R
N 0 ': ..' " " . " . o . e ..', " ': . ..'
. . . . ) ..' .._ ':: . ‘ ":;"' " -. .
. ‘-;..-': o' -u, 3 w (",..:. M 2
¥ . o &L.\m'u- f wu['ma).wi. X w
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 4.25. Simulated sample path of (X,)nen with parameters («, 5,\) = (0.8,1,0.2) (top,
left), of (X2)nen with the same parameters (top, right), of (X, )nen with parameters (o, 8, ) =
(—0.8,1,0.2) (middle, left), of (X2)nen with the same parameters (middle, right), of (Xn)nen
with parameters (o, ,\) = (0 1,0.2) (bottom, left) and of (X2)nen with the same parameters
(bottom,right) in the case € = N(0,1). All simulations are based on the same simulated noise
sequence (e )neN-
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A 0 m To T3 Ty Ty T
0.2 0974 0.973 0.027 0.000 0.000 0.000 0.000
0.6 0.781 0.799 0.147 0.036 0.012 0.005 0.001

1 0.549 0.607 0.188 0.107 0.036 0.034 0.017
-0.4 0.2 0.962 0.962 0.037 0.001 0.000 0.000 0.000
0.4 0.2 0.853 0.867 0.103 0.026 0.002 0.002 0.000
-0.4 0.6 0.715 0.747 0.168 0.048 0.026 0.006 0.002
0.4 0.6 0.624 0.676 0.182 0.066 0.040 0.019 0.012
-0.4 1 0.497 0.540 0.210 0.115 0.075 0.040 0.004
0.4 1 0445 0.533 0.185 0.080 0.109 0.032 0.017
-0.8 0.2 0.572 0.626 0.185 0.111 0.026 0.033 0.001
0.8 0.2 0.386 0.470 0.172 0.148 0.062 0.068 0.006
-0.8 0.6 0.414 0.520 0.159 0.134 0.072 0.043 0.016
0.8 0.6 0.314 0.443 0.156 0.110 0.087 0.073 0.041
-0.8 1 0.273 0.429 0.137 0.126 0.106 0.016 0.012
0.8 1 0.224 0346 0.132 0.114 0.129 0.045 0.004

o o o R

Table 4.26. “Estimated” extremal index 0 and cluster probabilities (my)1<k<e of (Xn)nen de-

pendent on « and X in the case € 4 N(0,1). We chose N =m = 2000. Note that the extremal
index for a > 0 is much larger than for a < 0.

5 Optimal portfolios with bounded VaR

In this section we investigate the influence of large fluctuations and the Value-at-Risk as a risk
measure, which is sensitive to such price behaviour to portfolio optimisation. It is based on
Emmer, Kliippelberg and Korn [35] and Emmer and Kliippelberg [34]

Starting with the traditional Black-Scholes model, where stock prices follow a geometric Brow-
nian motion we first study the difference between the classical risk measure, i.e. the variance,
and the VaR.

Since the variance of Brownian motion increases linearly, the use of the variance as a risk measure
of an investment leads to a decreasing proportion of risky assets in a portfolio, when the planning
horizon increases. This is not true for the Capital-at-Risk which - as a function of the planning
horizon — increases first, but decreases, when the planning horizon becomes larger. We show for
the CaR that, as seems to be common wisdom in asset management, long term stock investment
leads to an almost sure gain over locally riskless bond investments. In the long run stock indices
are growing faster than riskless rates, despite the repeated occurrence of stock market declines.
The VaR therefore supports the portfolio manager’s advice that the more distant the planning
horizon, the greater should be one’s wealth in risky assets. Interestingly, the VaR as risk measure
supports the empirical observation above and hence resolves the contradiction between theory
and empirical facts.

Then we study the optimal portfolio problem for more realistic price processes, i.e. Lévy pro-
cesses which model also large fluctuations. Here, as is to be expected, the VaR reacts to exactly
those and consequently, the CaR. We investigate, in particular, the normal inverse Gaussian and
variance gamma Lévy processes.
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5.1 The Black-Scholes model

In this section, we consider a standard Black-Scholes type market consisting of one riskless bond
and several risky stocks. Their respective prices (Py(t))¢>0 and (P;(t))s>0 for i = 1,...,d evolve
according to the equations

d d
1
Po(t) =" and  Pi(t) =piexp ((bi = 5 D op)t+ Y oyWi(), t20.

Here W(t) = (Wi(t),...,Wy(t))' is a standard d-dimensional Brownian motion, € R is the
riskless interest rate, b = (b1, ..., bq)" the vector of stock-appreciation rates and o = (045)1<i j<da
is the matrix of stock-volatilities. For simplicity, we assume that o is invertible and that b; > r
for 4 = 1,...,d. Since the assets are traded on the same market, they show some correlation
structure which we model by a linear combination of the same Brownian motions Wy,..., Wy
for each traded asset. Throughout this paper we denote by R¢ the d-dimensional Euclidean
space. Its elements are column vectors and for z € R? we denote by 2’ the transposed vector;
analogously, for a matrix 8 we denote by [’ its transposed matrix. We further denote by
|z| = (Z?Zl 2?)/? the Euclidean norm of = € R?.

We need the SDE corresponding to the price processes above.

dPO(t) = PO(t)Tdta PO(O) = 17 1
Let 7(t) = (my(t),...,mq(t))" € R? be an admissible portfolio process, i.e. m;(t) is the fraction of
the wealth X™(¢), which is invested in asset i (see Korn [60], Section 2.1 for relevant definitions).
Denoting by (X™(t))i>0 the wealth process, it follows the dynamic

dX7(t) = X™(t) {((1 = 7(t)')r + n(t)'b)dt + 7(t)'cdW (t)} , X"(0) =z,

where z € R denotes the initial capital of the investor and 1 = (1,...,1)" denotes the vector
(of appropriate dimension) having unit components. The fraction of the investment in the
bond is mp(t) = 1 — w(¢)’l. Throughout the paper, we restrict ourselves to constant portfolios
7(t) = m = (mw1,...,mg) for all ¢ € [0,7]. This means that the fractions in the different stocks
and the bond remain constant on [0,7]. The advantage of this is two-fold: first we obtain, at
least in a Gaussian setting, explicit results; and, furthermore, the economic interpretation of
the mathematical results is comparably easy. It is also important to point out that following a
constant portfolio process does not mean that there is no trading. As the stock prices evolve
randomly one has to trade at every time instant to keep the fractions of wealth invested in the
different securities constant. Thus, following a constant portfolio process still means one must
follow a dynamic trading strategy.

Standard Itd integration and the fact that FesW(1) = 652/2, s € R, yield the following explicit
formulae for the wealth process for all ¢ € [0, T.

X"(t) = zexp((#'(b—rl)+r—|ro|?/2)t + oW (1)), (5.2)
EX™(t)] = zexp((x'(b—rl)+r)t), (5.3)
var(X™(t)) = z’exp (2(x'(b—rl) +7)t) (exp(|'c|*t) — 1). (5.4)
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Definition 5.1. [Capital-at-Risk]
Let x be the initial capital and T o given planning horizon. Let z, be the a-quantile of the
standard normal distribution. For some portfolio m € R and the corresponding terminal wealth
X™(T), the VaR of X™(T) is given by
VaR(z,n,T) = inf{z e R: P(X"(T) < z) > a}
= zexp ((7r’(b ) 47— |To/2)T + za|ﬂ'0|ﬁ> .
Then we define
CaR(z,m,T) = zexp(rT)— VaR(z,n,T)
= zexp(rT) (5.5)
X (1 —exp((7'(b—rl) — |7'0|?/2)T + za|7r'a|\/T))

the Capital-at-Risk of the portfolio © (with initial capital x and planning horizon T). O

To avoid (non-relevant) subcases in some of the following results we always assume a < 0.5
which leads to z, < 0.

Remark 5.2. (i) Our definition of the Capital-at-Risk limits the possibility of excess losses over
the riskless investment.

(ii) We typically want to have a positive CaR (although it can be negative in our definition
as the examples below will show) as the upper bound for the “likely losses” (in the sense that
(1 —a) x 100% of occurring “losses” are smaller than CaR(x,w,T')) compared to the pure bond
investment. Further, we concentrate on the actual amount of losses appearing at the planning
horizon 7. This is in line with the mean-variance selection procedure enabling us to directly
compare the results of the two approaches; see below. O

In the following it will be convenient to introduce the function f(7) for the exponent in (5.5),
that is
f(n) == zo|0'o|VT — |7'o*T/2 + 7' (b — r1)T, =€ R, (5.6)

By the obvious fact that f(n) — —oo as |n'o] — oo we have the natural upper bound
sup,crd CaR(z,m,T) = zexp(rT); i.e., the use of extremely risky strategies (in the sense of
a high norm |7’o|) can lead to a CaR which is close to the total capital. The computation of
the minimal CaR is done in the following proposition.

Proposition 5.3. Let 0 = |0 (b — r1)].

(a) If b =1 for alli = 1,...,d, then f(r) attains its maximum for m* = 0 leading to a minimum
Capital-at-Risk of CaR(z,7*,T) = 0.

(b) If b; # 1 for some i € {1,...,d} and Ov/T < |z,|, then again the minimal CaR equals zero
and is only attained for the pure bond strategy n* = 0.

(c) If b; # r for some i € {1,...,d} and Ov/T > |z,|, then the minimal CaR is attained for

. (00) "t (b—rl)

*=(0- %) oo >0

with

CaR(z, 7", T) = & exp(rT) (1 _ exp <%(\/T@ - |za|)2>> <0. (5.8)

40



Proof. (a) follows directly from the explicit form of f(7) under the assumption of b; = r for all
1 =1,...,d and the fact that o is invertible.
(b),(c) Consider the problem of maximizing f(7) over all 7 which satisfy
|t'o| =€ (5.9)
for a fixed positive €. Over the (boundary of the) ellipsoid defined by (5.9) f(7) equals
f(m) = 2eeVT — 2T/2 + 7' (b — r1)T .

Thus, the problem is reduced to maximizing a linear function (in 7) over the boundary of an
ellipsoid. Such a problem has the explicit solution
(00) "1 (b= 11)

* = .1
P ] (5.10)

with
F(r) = —€2T/2 + ¢ (9T— |za|ﬁ). (5.11)

g
As every m € RY satisfies relation (5.9) with a suitable value of e (due to the fact that o is
regular), we obtain the minimum CaR strategy 7* by maximizing f(n}) over all non-negative
€. Due to the form of f(n}) the optimal ¢ is positive if and only if the multiplier of ¢ in
representation (5.11) is positive. Thus, in the situation of Proposition 5.3(b) the assertion
holds. In the situation of Proposition 5.3(c) the optimal ¢ is given as

Inserting this into equations (5.10) and (5.11) yields the assertions (5.7) and (5.8) (with the help
of equations (5.5) and (5.6)). O

Remark 5.4. (i) Part (a) of Proposition 5.3 states that in a risk-neutral market the CaR of
every strategy containing stock investment is bigger than the CaR of the pure bond strategy.

(ii) Part (c) states the (at first sight surprising) fact that the existence of at least one stock
with a mean rate of return different from the riskless rate implies the existence of a stock and
bond strategy with a negative CaR as soon as the planning horizon T' is large. Thus, even if
the CaR would be the only criterion to judge an investment strategy the pure bond investment
would not be optimal if the planning horizon is far away. On one hand this fact is in line
with empirical results on stock and bond markets. On the other hand this shows a remarkable
difference between the behaviour of the CaR and the variance as risk measures. Independent of
the planning horizon and the market coefficients, pure bond investment would always be optimal
with respect to the variance of the corresponding wealth process. O

We now turn to a Markowitz mean-variance type optimization problem where we replace the
variance constraint by a constraint on the CaR of the terminal wealth. More precisely, we solve
the following problem:

max E[X™(T)] subject to CaR(z,n,T)<C, (5.12)
mER

where C is a given constant of which we assume that it satisfies C' < z exp(rT).

Due to the explicit representations (5.4), (5.5) and a variant of the decomposition method as
applied in the proof of Proposition 5.3 we can solve problem (5.12) explicitly.

41



Proposition 5.5. Let = |01 (b—rl)| and assume that b; # v for at least one i € {1,...,d}.
Assume furthermore that C' satisfies

<z exp(rT) if OVT < |24, (5.13)

2 exp(rT) <1 ~ exp (%(ﬁe - |za|)2>> <C<pexpT)  if VT > |zal.  (5.14)

Then problem (5.12) has solution

af =gt (UJI)_I(b — Tl)
o= (b—r1)]

with

e = (0 + 2a/VT) + /(0 + 20 /VT)? — 2¢/T,

where ¢ = In (1 — % exp(—rT)). The corresponding mazximal expected terminal wealth under the
CaR constraint equals

EX™ (T)] =xzexp ((r+&*|o (0 —rD))T) . (5.15)

Proof. The requirements (5.13) and (5.14) on C ensure that the CaR constraint in problem
(5.12) cannot be ignored: in both cases C' lies between the minimum and the maximum value
that CaR can attain (see also Proposition 5.3). Every admissible © for problem (5.12) with
|7'o| = € satisfies the relation

1
(b—7r1)7T > c+ 562T — 20eVT (5.16)

which is in this case equivalent to the CaR constraint in (5.12). But again, on the set given by

|7'o| = € the linear function (b — r1)'wT is maximized by

(o0")~H(b —rl)
o=t (b —rl)]

e = € (5.17)
Hence, if there is an admissible 7 for problem (5.12) with |7’o| = ¢ then m. must also be
admissible. Further, due to the explicit form (5.3) of the expected terminal wealth, 7. also
maximizes the expected terminal wealth over the ellipsoid. Consequently, to obtain 7 for problem
(5.12) it suffices to consider all vectors of the form 7. for all positive ¢ such that requirement
(5.16) is satisfied. Inserting (5.17) into the left-hand side of inequality (5.16) results in

(b—rl)n.T =¢elo~ ' (b—rl)|T, (5.18)

which is an increasing linear function in € equalling zero in € = 0. Therefore, we obtain the
solution of problem (5.12) by determining the biggest positive € such that (5.16) is still valid.
But the right-hand side of (5.18) stays above the right-hand side of (5.16) until their largest
positive point of intersection which is given by

e = 0+ 2a/VT) + /(0 + 20 /VT)? — 2¢/T,

The remaining assertion (5.15) can be verified by inserting 7* into equation (5.3). O
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Figure 5.7. CaR(1000,1,T) of the pure stock portfolio (one risky asset only) for different
appreciation rates as o function of the planning horizon T; 0 < T < 20. The volatility is
o =0.2. The riskless rate is v = 0.05.

Remark 5.6. Note that the optimal expected value only depends on the stocks via the norm
|o=1(b—rl)|. There is no explicit dependence on the number of different stocks. We therefore
interpret Proposition 5.3 as a kind of mutual fund theorem as there is no difference between
investment in our multi-stock market and a market consisting of the bond and just one stock
with appropriate market coefficients b and o. O

Example 5.8. Figure 5.7 shows the dependence of CaR on the planning horizon 7' illustrated
by CaR(1000,1,T). Note that the CaR first increases and then decreases with time, a behaviour
which was already indicated by Proposition 5.3. It differs substantially from the behaviour of the
variance of the pure stock strategy, which increases with 7. Figure 5.9 illustrates the behaviour
of the optimal expected terminal wealth with varying planning horizon corresponding to the
pure bond strategy and the pure stock strategy as functions of the planning horizon T. The
expected terminal wealth of the optimal portfolio even exceeds the pure stock investment. The
reason for this becomes clear if we look at the corresponding portfolios. The optimal portfolio
always contains a short position in the bond as long as this is tolerated by the CaR constraint.
This is shown in Figure 5.10 where we have plotted the optimal portfolio together with the pure
stock portfolio as function of the planning horizon. For b = 0.15 the optimal portfolio always
contains a short position in the bond. For b = 0.1 and 7" > 5 the optimal portfolio (with the
same CaR constraint as in Figures 5.9) again contains a long position in both bond and stock
(with decreasing tendency of 7 as time increases!). This is an immediate consequence of the
increasing CaR, of the stock price. For the smaller appreciation rate of the stock it is simply not
attractive enough to take the risk of a large stock investment. Figure 5.10 shows the mean-CaR
efficient frontier for the above parameters with b = 0.1 and fixed planning horizon T' = 5. As
expected it has a similar form as a typical mean-variance efficient frontier.

We compare now the behaviour of the optimal portfolios for the mean-CaR with solutions of a
corresponding mean-variance problem. To this end we consider the following simpler optimiza-
tion problem:

max E[X™(T)] subject to  var(X"(T)) < C'. (5.19)
mEeR

Proposition 5.11. If b; # r for at least one i € {1,...,d}, then the optimal solution of the

43



—_— optimal
O | e
S | stock
© | bond
o
o |
o
=
o
S |
o
N
o

o ) 10 15 20

Figure 5.9. Ezpected terminal wealth of different investment strategies depending on the plan-
ning horizon T, 0 < T < 20. The parameters are d = 1, r = 0.05, b = 0.1, 0 = 0.2, and
a = 0.05. As the upper bound C of the CaR we used CaR(1000,1,5), the CaR of the pure stock
strategy with planning horizon T = 5. On the right border we have plotted the density function
of the wealth for the optimal portfolio.

mean-variance problem (5.19) is given by

(00) "1 (b~ 11)
o (b—rD)]

T=¢€

where € is the unique positive solution of the non-linear equation

1 C 1
rT 4 o7 (b —rl)|eT — 3 In <x_2> +3 In (exp(e?T) —1) =0 .

The corresponding mazimal expected terminal wealth under the variance constraint equals

EX™(T)] =zexp ((r+&lo (b —r)|)T) . O

Proof. By using the explicit form (5.4) of the variance of the terminal wealth, we can rewrite
the variance constraint in problem (5.19) as

(b—r1)nT < %m <x_c;> _ %m (exp(T) — 1)) = rT = h(e),  |nlo|=¢  (5.20)

for £ > 0. More precisely, if 7 € R? satisfies the constraints in (5.20) for one £ > 0 then it also
satisfies the variance constraint in (5.19) and vice versa. Noting that h(e) is strictly decreasing
in € > 0 with

limh(e) =oc0 and  lim h(e) = —o0

el0 £—00
we see that the left-hand side of (5.20) must be smaller than the right-hand side for small values
of e > 0 if we plug in 7. as given by equation (5.17). Recall that this was the portfolio with

the highest expected terminal wealth of all portfolios 7 satisfying |n'o| = €. It even maximizes
(b —r1)'7T over the set given by |7'o| < e. If we have equality

(b—rl) 7T = h(8) (5.21)
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Figure 5.10. For different appreciation rates the leftt-hand figure shows the optimal portfolio
and the pure stock portfolio. The right-hand figure shows the mean-CaR efficient frontier with
the mean on the horizontal azis and the CaR on the vertical axis. The parameters are the same
as in Figure 5.9.

for the first time with increasing ¢ > 0, then this determines the optimal & > 0. To see this,
note that we have

E[X™(T)] < E[X™(T)] forall  with |r'o| <E,

and for all admissible 7 with ¢ = |7’o| > € we obtain
(b—r1)'7T < h(e) < h(E) = (b—rl)'nT .

By solving the non-linear equation (5.21) for £ we have thus completely determined the solution
of problem (5.19) O

Example 5.12. Figure 5.13 compares the behaviour of £ and £* as functions of the planning
horizon T'. We have used the same data as in Example 5.8. To make the solutions of problems
(5.12) and (5.19) comparable we have chosen C differently for the variance and the CaR risk
measures in such a way that £ and €* concide for T' = 5. Notice that C for the variance problem
is roughly the square of C for the CaR problem taking into account that the variance measures
an L2-distance, whereas CaR measures an L!-distance. The (of course expected) bottom line of
Figure 5.13 is that with increasing time the variance constraint demands a smaller fraction of
risky securities in the portfolio. This is also true for the CaR constraint for small time horizons.
For larger planning horizon T (T > 20) ¢* increases again due to the fact that the CaR decreases.
In contrast to that, £ decreases to 0, since the variance increases. O

5.2 The exponential Lévy model

As in Section 5.1 we consider a standard Black-Scholes type market consisting of a riskless
bond and several risky stocks, however, we assume now that their prices follow exponential Lévy
processes. This is a large class of models, including besides the geometric Brownian motion also
much more realistic price models. The respective prices (Py(t))¢>0 and (P;(t))¢>0 fori =1,....d
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Figure 5.13. ¢ and €* as functions of the planning horizon; 0 < T < 20. The parameters are
the same as in Figure 5.9.

evolve according to the equations

d
Po(t) =¢"  and B(t) = p; exXp (bit + Z Uiij (t)) , t>0. (5.22)
j=1

Here r € R is the riskless interest rate, b € RY and o = (0y5)1<;i j<a i an invertible matrix.

(L(t))t>0 = (L1(t),..., L4q(t))s>0 is a d-dimensional Lévy process with independent components.
Hence we assume that each (L;(t));>0 for 4 = 1,...,d has stationary independent increments
with cadlag sample paths. We define this model analogously to the Black-Scholes model in
Section 5.1, but replace the Brownian motion by a general Lévy process L.

Before we specify this model further we summarize some results on Lévy processes. For relevant
background we refer to Bertoin [10], Protter [73] and, in particular, Sato [81]. A very interesting
collection of research articles is Barndorff-Nielsen, Mikosch and Resnick [7].

Each infinitely divisible df F on R? generates a Lévy process L by choosing F as df of the
d-dimensional vector L(1). This can be seen immediately, since the characteristic function is for
each ¢ > 0 given by

Eexp(is'L(t)) = exp(t¥(s)), seR4,
where ¥ has Lévy-Khintchine representation

s'B'Bs
2

+/ (e — 1 —is'zI(|z] < 1))v(dz), seR:. (5.23)
Rd

Here a € RY, B'f3 is a non-negative definite symmetric d x d-matrix, and v is a measure on R?
satisfying v({0}) = 0 and [, (|z]* A 1)v(dz) < oo, called the Lévy measure of the process L.
The term corresponding to zI(|z| < 1) represents a centering, without which the integral (5.23)
may not converge. The characteristic triplet (a, 8’3, v) characterizes the Lévy process L.

According to Sato [81], Chapter 4 (see Theorem 19.2), the following holds. For each w in the
probability space, define AL(t,w) = (ALi(t,w),...,ALg(t,w)) with AL;(t,w) = L;(t,w) —
Lj(t—,w) for j =1,...,d. For each Borel set B C [0,00) x R (R%* =R\ {0}) set

M(B,w) = card{t >0 : (¢t,AL(t,w)) € B}.
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Lévy’s theory says that M is a Poisson random measure with intensity
m(dt,dx) = dtv(dz),

where v is the Lévy measure of the process L. Notice that m is o-finite and M(B,-) = oo a.s.
when m(B) = oo.

With this notation, the Lévy-Khintchine representation (5.23) corresponds to the representation

L(t) = at+ W (t) + Z AL(s)I(|AL(s)| > 1) + /t/ x(M(dz,ds) — v(dz)ds), t > (5.24)
0<s<t 0 Jlz|<1

This means that L(t) has a Brownian component SW (t) and a pure jump part with Lévy measure
v, having the interpretation that a jump of size z occurs at rate v(dz). To ensure finiteness of
the integral (5.23), the small jumps are compensated by their expectation. This representation
reduces in the finite variation case to

L(t)=yt+pW(t)+ > AL(s), t>0, (5.25)
0<s<t

where v = a — f\w\<1 zv(dx); i.e. L(t) is the independent sum of a drift term, a Brownian
component and a pure jump part.

We return to model (5.22) with L having characteristic triplet (a,3'S3,v), where a is a d-
dimensional vector, 8 = diag(f1,...,q) is a d-dimensional diagonal matrix and v is the Lévy
measure, which corresponds to the product measure of the independent components of L on
R?. This means that e.g. for d = 2 and a rectangle A = (a,b] x (¢,d] C R? the Lévy measure
v(A) = vi((a,b]) + v2((c,d]), where v; is the Lévy measure of L; for i = 1,2. The diagonal
matrix f means that the d-dimensional Wiener process W has independent components with
different variances possible. This allows for different scaling factors in the Wiener processes and
the non-Gaussian components; moreover, if some 3; = 0 the model allows for Lévy processes
without Gaussian component as asset price models.

In order to derive the wealth process of a portfolio we need the corresponding SDE. By It6’s
formula (see e.g. Protter [73], P;, i =1,...,d, is the solution to the SDE

dP(t) = Pi(t—)(bidt+ dL;(t))
d

d
= Pi(t_) <bz + % Z(Uijﬁj)2)dt + Z Oij(dLj (t) — ALj(t)) (526)

J=1 J=1

d
+eXp<ZUijALj(t)> -1, t>0, PZ(O) =Dp;.-
7=1

Remark 5.14. (i) Note the similarity but also the difference to the geometric Brownian motion
model (5.1). Again the Wiener process introduces an It6 term in the drift component of the
SDE. However, there is a main change in the jumps of the Lévy processes. First note that,
because of the independence, jumps of the different processes L1, ..., Ly occur at different times
(see Sato [81], Exercise E12.10 on p. 67). Then every jump of one of the original processes is
replaced: a jump of size 2?21 0ijALj is replaced by a jump of size exp(zgz1 oijAL;) — 1.
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(ii) Note also that L; is such that

d
exp (Zoiij) — @), i=1,....d,
j=1
where £ denotes the stochastic exponential of a process. O

We shall use the following lemma which relates the characteristic triplet of an exponential Lévy
process and its stochastic exponential in R.

Lemma 5.15. (Goll and Kallsen [43])

If L is a real-valued Lévy process with characteristic triplet (a,B,v), then also L defined by

el = E(L) is a Lévy process with characteristic triplet (a, 3,0) given by

. 1 .
d-a = 3+ / ((e” = Dlfes —11<1y = #jaj<1y)v(dz)

= B

B
UV(A) = v{zeR:e®—1€A}) for any Borel set A C R*.

As in the Black-Scholes model before, we restrict ourselves to constant portfolios; i.e. 7(t) =,
t € [0,T], for some fixed planning horizon 7. In order to avoid negative wealth we require that
7 € [0,1]% and 7’1 < 1. Denoting by (X7 (t))i>0 the wealth process, it follows the dynamic

AX7(t) = X7 (1—) (((1 — ') + 7'b)dt + ﬂ'df(t)) L t>0, XT(0) =gz,

where z € R denotes the initial capital of the investor.

Using It6’s formula, this SDE has solution
X™(t) = wexp((r+7'(b—rD)))E('L()), t>0. (5.27)

One important consequence of this represenation is the fact that a jump AL(t) is transformed
into a jump AX7(¢) = In(1 + 7(e”*L(® — 1)) > In(1 — #'1) and hence we also require for the
portfolio that 7’1 < 1.

From (5.26) it is clear that (X™(¢));>0 cannot have a nice and simple representation as in the
case of geometric Brownian motion; see (5.2). In any case, (X" ());>0 is again an exponential
Lévy process and we calculate the characteristic triplet of its logarithm.

Lemma 5.16. Consider model (5.22) with Lévy process L and characteristic triplet (a,,v).
Define for the d x d-matriz o3 the vector [of)? with components

d

[oB); = Z(Uz'jﬁj)2, i=1,....d.

j=1
The process (In X™(t))i>0 is a Lévy process with triplet (ax,fx,vx) given by
ax = r+7(b—rl+[oB’/2+ca)—|7'oB|*/2
+/Rd (In(1 +7"(e”® = D)1 im(14n (v —1))|<1} — T 0LLjz1<1y)v(dx),
Bx = |n'ofl,
vx(4) = v({z eR? : In(l+7'(e”" — 1)) € A}) for any Borel set A C R* .
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In the finite variation case we obtain

mE('L(t)) = yxt+n'oBW(t) Z In (1 + Z mALi(s )
0<s<t

= qxt+7nofW(t) Z ln 1+Z7rz<exp ZO’Z]AL )),tZO,

0<s<t

where
vx =7'(oy +[0f)?/2) - |n'a B /2,
and v =a — fll‘|<1 zv(dz) as in (5.25).

By Lemma 5.16 In X7 (¢) has characteristic function Eexp(isln X7 (t)) = exp(tyox(s)), s € R
If it can be analytically extended around s = 0 in C, then by Theorem 25.17 in Sato [81] we
obtain for all K € N

E[(X"(t)*] = exp(t¥x(—ik)), t>0. (5.28)

In particular, Eexp(sln X™(t)) = E[(X™(t))®] < oo for one and hence all ¢ > 0 if and only if
f\a:\>1 eSTux (dr) < oo.

Proposition 5.17. Let L = (L1, ..., Lq) be a Lévy process with independent components and
assume that for all j = 1,...,d the rv L;j(1) has finite moment generating function f; such that

]/C;‘(O'i]) Eexp(oi;L; (1)) < oo fori,j=1,...,d. Denote

Fl0) := Eexp(aL(1)) = (E exp (Z olej(1)) .. Eexp (i adij(1)>) . (5.29)
j=1 j=1
Let X7 (t) be as in equation (5.27). Then
E[X™(t)] = zexp (t(r +a'(b—rl+ lnf(a)))) ,

var(X™(t)) = z?exp <2t<7’ +a'(b—rl+1In f(a)))) (exp(tn’Am) — 1)

where A is a d X d-matriz with components

d d d
A;j = Eexp (Z(aﬂ + ojl)Ll(1)> —Eexp (Z ailLl(1)> —Eexp (Z alel(1)> . 1<4,j<d.

Proof. Formula (5.28) reduces for £ = 1 and £ = 2 somewhat, giving together with the
expression of vy in terms of v of Lemma 5.16,

E[X™(t)] = mexp (t(r+7r'<b—r1+ [0B) + oa
+/Rd(e<m ~ 1= ol uav(dn))) ),
var (X™(t)) = a2exp <2t<r+7r'(b—r1+ [0B)2 + oa
+ /Rd(efm —1- aw1{|x|<1})u(dx)>)>
X (exp (t<|7r’aﬂ|2 —i—/Rd(ﬂ'(e” —l))%(dx))) - 1) .
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For i = 1,...,d denote by e; the i-th unit vector in R¢. Then the i-th component of (5.29) is
obtained by

d
Eexp(3_ oaLi(1)) = exp((oa + [08]%/2 + / (7 = 1= 0wl (1) v(d))s)
=1

which corresponds to the i-th component of In(E exp(cL(1))). The formula for the variance is
obtained analogously. O

Remark 5.18. Note that for [ =1,...,d (i = v—1)

d d d
In(Eexp(Y oy;Li(1) = > Infi(or;) = WmEEL)(D)] =Y U(—ioy).
j=1 j=1 J=1
This implies in particular EE(x'L(t)) = ([T, (E[E(Ly(£))])™), O

5.3 Portfolio optimization

We consider now the portfolio optimization problem using the Capital-at-Risk as risk measure
in the more general setting of Lévy processes. The definition of the CaR from Definition 5.1
adapted to the more general situation reads as follows.

Definition 5.19. [Capital-at-Risk] ~
Let x be the initial capital and T a given planning horizon. Let z, be the a-quantile of E(n' L(T))
for some portfolio m € R? and X™(T) the corresponding terminal wealth. Then the VaR of X™(T)
18 given by

VaR(z,7,T) = inf{z e R:P(X"(T) <z)>a}
= zzqexp((n'(b—71l) +7)T)
and we define

CaR(z,n,T) = zexp(rT)— VaR(z,n,T)
= zexp(rT)(1 — zo exp(n’' (b — r1)T))

the Capital-at-Risk of the portfolio m (with initial capital x and planning horizon T). O

We consider now the following optimization problem.

max E[X™(T)] subject to CaR(z,w,T)<C.
ref0,1]4,m1<1

In general, quantiles of Lévy processes cannot be calculated explicitly. Usually, the df of X™(T')
is not known explicitly. At first sight there are various possibilities for approximations and we
discuss their applicability for quantile estimation below.

For simplicity we restrict ourselves to d = 1, i.e. the portfolio consists of the bond and one risky
asset, which is modelled by the exponential Lévy process

P(t) =pexp(bt + L(t)) t>0,
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where L has characteristic function Ee™ () = ¢¥(9) s ¢ R. We set 7; = 7 and X7 (t) reduces
to
X7(t) = mexp((r + w(b—r))E(TL(t)), t>0, X7(t) ==,

where (lng(ﬂ'Z(t)))tzo is a Lévy process with characteristic triplet (ax, Sx,vx) given by

ax = w(a— %(1 - m)B%) + / (In(l + m(e® — 1))1(|In(1 + w(e® — 1))| < 1) — 7zl(|z| < 1))v(dz),

/BX = Wﬁa
vx(A) = v{zeR : In(l+n(e®—1)) € A}) for any Borel set A C R*.

Setting W(—si) = In Ees"() for s € R such that the moment generating function is finite, also
the existing moments reduce for ¢ > 0 to

E[X™(t)] = zexp(t(r+x(b—r+ ¥(—1i)))
var(X™(t)) = zexp(2t((r + w(b —r + ¥(—1i))) (exp(th(‘If(—%) —20(—i))) — 1)

We obtain in the case of a jump part of finite variation for ¢ > 0,

BIX"(0] = wexp((r+7(b—r+ 56+ 7+ W), (5.30)
var (X™(t)) = xzexp <2t(7’ +rb—r+y+p+ %ﬁ2)>
x (exp (7*t(6% + iz — 20)) — 1) , (5.31)

where 11 = [(e* — 1)v(dz), iz = [(e** — 1)v(dz), and v = a — f|z|<1 zv(dz) .

In the following we discuss some estimation methods for the CaR, which means that we have to
estimate a small quantile of (7' L(T')); see Definition 5.19.

Simulation methods of Lévy processes are often based on infinite series representations; see
Rosinski [79] and references therein. In principle, such methods can be applied here to simulate
independent copies of X™(7') and estimate the quantile by its empirical counterpart. Such meth-
ods are based on the Lévy measure vy, which we derived in Lemma 5.16. There are, however,
two serious drawbacks. The first is that low and high quantiles are even in straightforward
models not well estimated by their empirical counterparts; the second is that the infinite series
has to be truncated, which obviously is another source of inaccuracy.

We invoke instead an idea used for instance by Bondesson [14] and Rydberg [80] for simulation
purposes and made mathematically precise by Asmussen and Rosinski [2]. Before we apply their
result to approximate a low quantile as the VaR above we explain first the idea. The intuition
behind is that small jumps (< €) may be approximated by Brownian motion, whereas large ones
(> ¢) constitute a compound Poisson process N¢. This normal approximation works for various,
but not for all models. In particular, it fails for the exponential variance-gamma model, which
has become an important model also in practice. We formulate therefore a more general result.

For a Lévy process with representation (5.24) we write for small € > 0,

L(t) = ple)t+pW(t)+ N(t / /< M (ds,dz) — dsv(dx))
~ ple)t+ BpW(t) + N°(t) + V), t>0, (5.32)
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where V' is some (hopefully simple) Lévy process and

o?(e) = 2?v(dz), 5.33
(e) / (de) (5.33)

ule) = a—/sggc'glwu(dx), (5.34)
Ne(t) = > AL(S)l{jar(s)>e) - (5.35)

The approximation (5.32) can be made precise. It is a consequence of a functional central limit
theorem, provided that for ¢ — 0

0(6)1/t/ +(M(ds, dz) — dsu(dz)) = o(e)" (L) — L.(t) 5 W'(t), >0, (5.36)
0 Jlz|<e

where
L.(t) = ple)t + W (t) + N:(t), t>0. (5.37)
We denote by % weak convergence in D[0, co) with the supremum norm uniformly on compacta;

see Pollard [72].

Since the Brownian component and the jump component of a Lévy process are independent,
(5.36) justifies approximation in distribution (5.32).

We want to invoke this result to approximate quantiles of &(n’ E(T)) We do this in two steps:
firstly, we approximate &(n'L(T')), secondly, we use that convergence of dfs implies also conver-
gence of their generalized inverses. This gives the approximation of the quantiles.

Theorem 5.20. [Emmer and Kliippelberg [34]]
Let Y be any Lévy process with Lévy measure v. Let £ (exp(Y (+)) = Z(-) be such that EZ(-) =

exp Y () with characteristic triplets given in Lemma 5.15. Let furthermore, o(-) be defined as in
(5.33), and Yz and Z. as L. in (5.37), respectively.

Let V be a Lévy process. Equivalent are for € — 0

o)V () - Ya(t) S V(). t>0, (5.38)
(ro(e)) (& Z(t) — mE(nZ(t)) S V(), t>0. (5.39)

For the proof we need the following theorem.

Theorem 5.21. Let Z°, ¢ > 0, be Lévy processes without Brownian component and Y¢ =
In&(Z°) their logarithmic stochastic exponentials with characteristic triplets (az,Bz,vz) and
(ay,By,vy) as defined in Lemma 5.15. Let g : R — Ry with g(¢) = 0 as € — 0 and V' some
Lévy process. Then equivalent are as € — 0,

Z: (1)

la
=

t>0,




Proof of (5.38) < (5.39). Setting g(¢) := o(e) and Y© :=Y — Y, in Theorem 5.21 we obtain
that (5.38) holds if and only if

o(e) L& (exp(Y (t) — Ye(t)) S W), t>0. (5.40)

Applying Theorem 5.21 to g(e) := wo(e) and Z. := 7€ (exp(Y (¢) — Yz(t))) leads to the equiv-
alence of (5.40) and

(mo(e)) L InE(rET (exp(Y (t) — (1)) = W(t), t>0.
The identity
InE(rE (exp(Y(t) — Ye(t)))) = n&(rE (exp(Y (t)))) — In&(nE (exp YL(t)))), t>0,5.41)

which can be proven by calculating all three logarithmic exponentials by 1t6’s formula (see Em-
mer and Kliippelberg [34]), leads to the equivalence with (5.39). O

In the finite variation case (5.36), i.e. (5.38) can be rewritten to

_ d
o(e)™ | Y. ALG)I(JAL(s)| <e) — E | > AL(S)I(|AL(s)| <e)| | SV(t), t>0,
0<s<t 0<s<t

which shows immediately the connection to the classical central limit theorem.
We apply (5.39) and (5.41) to approximate In&(wL) for 7 € (0, 1] as follows.
In&(rE (exp(L(t)))) ~ WEMET(L:(t))) +mo(e)V (), t>0,
and hence we obtain
In&(rE (exp(L(t)))) ~ pt +mBW(t) + My (t) + wo(e)V(E), t>0,
where
Yo = mlple) + (1 -m)p%/2),
MZ(t) D “In(1 + w(exp(AL(s)1jjars)><}) — 1))

s<t

i.e. M: is a compound Poisson process with jump measure
vpme(A) = vp({z : In(1 + 7(e” — 1)) € A}\(—¢,¢))
for any Borel set A C R*. O

By Propog\ition 0.1 of Resnick [75] we obtain the corresponding approximation for the a-quantile
zq of E(wL(T).

Proposition 5.22. With the quantities as defined above we obtain
zo = 25 (m) =inf{z € R: P(v;T + npW(T) + M (T) + mor(e)V(T) <lnz) > a},
giving the following approzimations
VaR(z,7,T) =~ xz(7)exp((n(b—1r)+r)T),
CaR(z,m,T) ~ we'T (1= z5(m)e"®)T) .
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The following corollary characterises the normal approximation.

Corollary 5.23. [Asmussen and Rosinski [2]]

(a) V is standard Brownian motion if and only if

o(ho(e) N €) ~a(e) for each h > 0. (5.42)

(b) Condition (5.42) holds if lim. g o(e)/e = o0.
(c) If the Lévy measure has no atoms in a neighbourhood of 0, then condition (5.42) is equiv-

alent to lim, g o(e)/e = 0.

Provided the above condition is satisfied we have reduced the problem of estimating a quantile of
a complicated Lévy process to the estimation of a quantile of the sum of the compound Poisson
rv M:(T) and the normal v W(T) := /(8% + o2 (¢))/?W(T). We calculate the density of
M:(T) + W(T) using the Fast Fourier Transform method, henceforth abbreviated as FFT. By
independence, we have for the characteristic function of MZ(T") + W(T)

¢(u) = Parz ) (W) by (w) - w € R. (5.43)
Denote by hpze the Lévy density of M7, which we assume to exist, then we obtain

Grrs(ry(u) = exp(Tvp: (R)(dy (u) — 1)), u€R,

where

/ei”hM;r ()dz, wue€R. (5.44)

Furthermore, by normality,
iy (0) = exp(=Tu’n*(B* + 01 (e)), u€ER.

We approximate the integral in (5.44) by the trapezoid rule, choosing a number n (a power of 2)
of intervals and a step size Az. Set g = hass /vaz (R). We truncate the integral ¢y and obtain

0o (n/2-1)Az
/ e"Tg(x)dr = / e"g(x)dx

—00 —(n/2)Az
n/2-1)
Z kAT o (kAz) Az
k=—(n/2)

%

n—1
= Y eMEnAg((k - n/2)Az)Ax
k=0

n—1
_ A$e—iunAm/2 Z eiukAxg((k _ n/2)A:1:) )
k=0
For g, := g((k — n/2)Az), k = 0,...,n — 1, the sum is the discrete Fourier transform of
the complex numbers g, and can be calculated by the FFT algorithm for uy = 27k/(nAx),
k = 0,...,n — 1, simultaneously (see e.g. Brigham [20], Chapter 10). This results in an
approximation for ¢ in (5.43). By the inverse FF'T we obtain the density of M¢(T) + W (T).

o4



Example 5.24. [Exponential Brownian motion with jumps]

Here the Lévy process is the sum of a Brownian motion with drift (6W(t) + vt);>0, and a
compound Poisson process (L(t))>0, with Poisson intensity ¢ and p as distribution of the jump
heights (Y;)ien. For illustratrive purpose we restrict this example to one compound Poisson
process, we could as well take several different ones, see e.g. [35]. The drift v = —%ﬁZ — i is
chosen such that it compensates the jumps. The Lévy measure is v(dz) = cp(dz) and hence
i =c(g(l) — 1) and s = ¢(g(2) — 1), where ¢ is the moment generating function of Y7, which
we assume to exist at the required points. By (5.30) and (5.31) we obtain for ¢ > 0

N(t)

X™(t) = zexp (t(r—i—w(b—r) — T — %7‘(’252) +7rﬂW(t)> H(l +m(e¥ — 1)),
i=1
E[X™(t)] = zexp(t(r+n(b—r1))),
var(X™(t)) = z?exp(2t(r +n(b—r))) (exp(ﬂ2t(ﬂ2 +¢(9(2) —2g9(1) + 1)) — 1) .

Note that for ¢ = 0 the model reduces to exponential Brownian motion; i.e.

X™(t) = zexp (t(r +n(b—r)— %w2ﬁ2) + W,BW(t)) .

On the other hand, if § = 0 the model reduces to exponential compound Poisson process; i.e.

N(t)
X"(t) = wexp(t(r+mb—r)—ap)) [JAL+n(" -1)).
=1

Example 5.25. [Exponential normal inverse Gaussian (NIG) Lévy process]
This normal mixture model has been suggested by Barndorff-Nielsen [5, 4]; see also Eberlein
and collaborators [28, 29, 30] It has the representation

L(t) = pt + A\o?(t) + o(t)e, t>0,
where p, A € R, ¢ is a standardnormal rv and (02(t));>0 has inverse Gaussian increments. The

process (L(t));>0 is uniquely determined by the distribution of the increment L(1) which is NIG

(see Barndorff-Nielsen [5]). This means that L(1) 4 N(p+ \Z,Z), where N(a,b) denotes a
normal rv with mean ¢ and variance b and Z is inverse Gauss distributed; more precisely, the
density of L(1) is given by

K1 (bag(z — p))

nig(z,a, \, p,d) := ¢ exp (5\/ a? — X2+ ANz — p)) , T €R,
™ 9(z — p)
where @ > [A| >0, >0, p € R, g(z) = V? + 22 and
1 1 .
Ki(s) = 5/0 exp ( — 58((1) +z ))dm

is the modified Bessel function of the third kind. The parameter « is a steepness parameter,
i.e. for larger a we get less large and small jumps and more jumps of middle height, § is a scale
parameter, \ is a symmetry parameter and p a location parameter. For p = A = 0 (symmetry
around 0) the characteristic triplet of a NIG Lévy process is given by (0,0, r) with
0
v(dz) = Z|z|" Ky (a|z])dz, =€ R*.

™
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We can calculate i and fi5 via the moment generating function of L(1), which is for the NIG
distribution given by

Eexp(sL(1)) = exp(d(a — Va? — s?)), |s] < a,

(see e.g. Raible [74], Example 1.6) and hence because of symmetry,
ZZ = (5(04— Vaz_ )7
da—vVa?—4).

Plugging these results into (5.30) and (5.31), and choosing bpiy = bps — d(a — Va? — 1) (bps
is the quantity b from Example 5.24, such that the expectation of an asset in the NIG model is
the same as for the exponential Brownian motion, we obtain for ¢ > 0,

[a—y

~

iz =

e

X"(t) = wexp(t(r +n(bps —r—dla— Va2 - 1) [] (1 + (D) - 1)) ,
0<s<t
E[X™(t)] = zexp(t(r+n(bps —1)),

var (X™(t)) = xz?exp(2t(n(bps — 1)) +7)) (exp (5W2t(2\/ a?—1—a—Va?— 4)) — 1) .

By Corollary 5.23, for the exponential normal inverse Gaussian Lévy process the normal ap-
proximation for small jumps is allowed since o2(g) ~ (20/7)e as € — 0

For an estimate of the a-quantile we invoke Proposition 5.22 and use FFT.

Figures 5.26 show sample paths a geometric NIG-Lévy process with certain parameter values.

15000
15000

10000
10000

5000
5000

Figure 5.26. Ten sample paths of the exponential NIG Lévy process with @ = 8 and § = 0.32
(left) and with « = 2 and § = 0.08 (right), its expectation E(L(T')) and ezxpectationtstandard
deviation for x = 1000, b = 0.1, and r = 0.05.

Example 5.27. [Exponential variance gamma (VG) model]

This normal mixture model has been suggested by Madan and Seneta [64], its non-symmetric
version can be found in Madan, Carr and Chang [63]. An interesting empirical investigation has
been conducted by Carr et al. [22]. The non-symmetric model is defined as follows.

L(t) = pt + M\o?(t) + a(t)e, t>0,
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where p, A € R, ¢ is a standardnormal rv and (0?(¢));>¢ has gamma increments, more precisely,

a?(s) 4 I'(as, ) for parameters o > 0 and 6 > 0; i.e. it has density

as—1

z —z/0

The characteristic function of L(1) is given by

. exp(ispt)
Eexplisl(1) = a5+ g * €&

The Lévy process L is a pure jump process with Lévy density

2
V(dw):%exp (— §+)\2|x|+)\x> de, z€eR".

We obtain as before

X7(1) = zexpltlr+x(b—r+ p) [+ w4 — 1)
EIX™()] = a(1—0A—0/2) " exp(t(r + (b —r + p)))
var(X™(t)) = z%(1— 60X —0/2)" 2 exp(2t(r + w(b —r + p)))

2 an?t
o (1—0X—10/2) 1
1—20)\—20 '
For our figures we choose p = aIn(1 + X — 6/2) and b = bpg such that E[X7(t)] = zexp((r +
n(bps —7))t). In order to find an approximation for the VaR we calculate 0?(¢) ~ ag? as e — 0.

Since its Lévy measure has no atoms in a neighbourhood of 0, by Corollary 5.23, the normal
approximation for small jumps is not allowed.

However, there is another limit process to allow for approximation of the small jumps: for e — 0

where V' is a Lévy process with characteristic triplet (0,0, vy ) where the Lévy measure vy has
density vy (dv) = (a/v)1(_y/ a1/ a)(v)dv. This means that the following approximation is
valid

za = 2o (n)=inf{z € R : P(v:T + M + no(e)V(T) <lnz) > a},

giving again approximations as in Proposition 5.22.

Remark 5.30. When we want to perform a portfolio optimization for the different exponential
Lévy models as price processes, then certain structures can be exploited. Note e.g. that the
expected wealth process is increasing in m; hence the optimal portfolio is always the largest =
such that the risk bound is satisfied. For Lévy processes additionally 7 < 1 has to be satisfied.
Such 7 can always easily be found by a simple numerical iteration procedure.

Next note that to make results comparable we have chosen all mean portfolio processes equal.

(a) Mean-variance optimization: Since NIG and VG models have so many parameters we can
always choose them so that all variances are equal in the different examples. Then, of course,
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-1.0 -0.5 0.0 0.5 1.0

Figure 5.28. Density of L(1) for the NIG model with parameters a =2, 6 = 0.08, A = p =0,
z =1000, b =0.1 and r = 0.05. The normal density with the same variance 0.04 is plotted for
comparison. Moreover, the respective 1% quantiles (left vertical lines) and 5%-quantiles (richt
vertical lines) are plotted. All solid lines correspond to the NIG model, all dotted ones to the
normal model.
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Figure 5.29. Ten sample paths of the exponential VG Lévy process with o = 0.1, § =0, § = 0.35
and p = —0.019 (left) and with « = 0.2, 6 =0, 8 = 0.2 and p = —0.022 (right), its expectation
E[L(T)] and ezpectationtstandard deviation for x = 1000, b = 0.1, and r = 0.05.

the mean-variance optimization problem always leads to the same result.

(¢) Mean-CaR optimization: Here the shape of the distribution in the left tail enters; see Fig-
ure 5.28. The heavier the tail at the corresponding a-quantile, the higher the risk, i.e. the more
cautious the investment 7 into the risky stock.

For more details see Emmer and Kliippelberg [34] O
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