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Abstract

Dempster-Shafer theory allows to construct belief functions from
(precise) basic probability assignments. The present paper extends
this idea substantially. By considering sets of basic probability assign-
ments, an appealing constructive approach to general interval proba-
bility (general imprecise probabilities) is achieved, which allows for a
very flexible modelling of uncertain knowledge.
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1 Introduction and Sketch of the Argument

In order to model complex uncertain knowledge appropriately, generaliza-
tions of the notion of probability and its mathematical formalization have
attracted considerable attention (see, e.g., de Cooman, Fine, Moral and Sei-
denfeld (2001), Breese and Koller (2001), Bernard (2002), and the Imprecise
Probability Web Page (de Cooman and Walley (2002)). Most popular, in
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particular in artificial intelligence, is the Dempster-Shafer theory of belief
functions (Shafer (1976), cf., also, e.g., Yager, Fedrizzi and Kacprzyk (1994)).
Though belief function are only a special case of general interval probability
or imprecise probabilities (e.g., Walley (1991), Weichselberger (2001)), they
are particularly attractive, because they can elegantly be constructed from
information which is not strong enough to divide the whole probability mass
among the singletons and only the singletons: the beliefs in events need not
be assigned apriori, but can be calculated by accumulating the corresponding
basic probability numbers.

The present paper extends this appealing construction principle substantially.
Generalized basic probability assignments are introduced which lead to lower
and upper probabilities, providing a vivid constructive approach to general
interval probability.

The basic idea of this new concept arises naturally from a closer investigation
of the mathematical apparatus behind the Dempster-Shafer framework: For-
mally, Shafer’s constructive approach to interval probability on a measurable
space (Ω,P(Ω)) is equivalent to assigning a classical probability measure on
the “higher-level” measurable space (P(Ω),P (P(Ω))), and the basic proba-
bility assignment is merely the corresponding probability mass function. This
will be generalized here by allowing for a set S of mass functions, called gen-
eralized basic probability assignments. Calculating the envelope of all belief
functions generated by elements of S, general interval probability is obtained.
A variety of rather different situations can be modelled by adapting methods
for handling sets of mass functions (like Kofler and Menges (1976) or Weich-
selberger and Pöhlmann (1990)) as techniques for dealing with generalized
basic probability assignments. For instance, partial orderings on the basic
probability numbers can be considered.

The paper is organized as follows: It starts with collecting some basic no-
tions needed later, concerning general interval probability and the Dempster-
Shafer approach. In Section 3 the concept of generalized basic probability
assignments is introduced, motivated and formalized, and Theorem 3.3 proves
that it fits nicely into the frame of general interval probability. Section 4
sketches the possible range of modelling by considering some attractive spe-
cial cases.
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2 Interval Probability and Belief Functions

The usual concept of probability as formalized by Kolmogorov’s axioms re-
quires a level of precision and — by the axiom of additivity — a degree of
internal consistency of the assignments which often cannot be satisfied. To
model more complex uncertainty appropriately, different theories of interval
probability have emerged, where an interval [L(A), U(A)] is assigned to every
event to describe its probability.

With respect to the intended application, the whole consideration is restricted
here to the case of a finitely generated algebra A based on a sample space
Ω. Then, without loss of generality, Ω is finite, and A is the power set P(Ω).
Every probability measure in the usual sense, i.e., every set function p(·)
satisfying Kolmogorov’s axioms, is called a classical probability. The set of
all classical probabilities on the measurable space (Ω,A) will be denoted by
C (Ω,P(Ω)). Then, as in (1) to (3), axioms for interval-valued probabilities
P (·) = [L(·), U(·)] can be obtained by looking at the relation between the
non-additive set-function L(·) and U(·) and the set of classical probabilities
being in accordance with them.

On a finite sample space, the most important concepts of interval probability
coincide. They all are concerned with set-functions

P (·) : P(Ω) → {[L,U ] |0 ≤ L ≤ U ≤ 1}
A �→ P (A) = [L(A), U(A)]

with

M := {p(·) ∈ C(Ω,P(Ω)) |L(A) ≤ p(A) ≤ U(A), ∀A ∈ P(Ω)} �= ∅ (1)

and

min
p(·)∈M

p(A) = L(A) , ∀A ∈ P(Ω) , (2)

max
p(·)∈M

p(A) = U(A) , ∀A ∈ P(Ω) . (3)

Such P (·), and the corresponding set functions L(·) and U(·), are called
lower and upper probability (Huber & Strassen (1973)), envelopes (Walley
& Fine (1982), Denneberg (1994)), coherent probability (Walley (1991)) and
F-probability (Weichselberger (1995, 2000, 2001)). In game theory M is the
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core (Shapley (1971)). Here Weichselberger’s terminology is used, calling M
structure of the F-probability P (·).
For every F-probability, L(·) and U(·) are conjugate, i.e., L(A) = 1−U(Ac) ,∀A ∈
P(Ω) . Therefore, every F-probability is uniquely determined either by L(·)
or by U(·) alone. Here L(·) is used throughout, and F = (Ω,P(Ω), L(·)) is
called an F-probability field. Specifying an F-probability field (Ω,P(Ω), L(·)),
it is implicitly required that the conjugate set function U(·) = 1 − L(·c) de-
scribes the upper bound of the interval.

A characteristic special case of F-probability is considered in the Dempster-
Shafer approach1. The main entities are totally-monotone capacities, called
belief functions in this context.

Def. 2.1 (Belief function) Let (Ω,P(Ω)) be a measurable space. A real-
valued set-function Bel(·) : P(Ω) → [0, 1] with Bel(∅) = 0 and Bel(Ω) = 1 is
called a belief function on (Ω,P(Ω)), if for all n ∈ N and for all (A1 . . . , An)
with Ai ∈ P(Ω), i = 1 . . . , n, it satisfies:

Bel(A1 ∪ A2 ∪ . . . ∪ An) ≥
∑

∅�=I⊆{1,...,n}
(−1)|I|+1Bel

(⋂
i∈I

Ai

)
. (4)

Typically belief functions are constructed via basic probability assignments.

Def. 2.2 (Basic probability assignment) A function m : P(Ω) → R is
called a basic probability assignment on (Ω,P(Ω)), if it satisfies

m(∅) = 0 , m(A) ≥ 0 , ∀A ∈ P(Ω) ,
∑

A∈P(Ω)

m(A) = 1 . (5)

Then, for A ∈ P(Ω), the quantity m(A) is called basic probability number
of the event A.

1There is quite a couple of approaches, which differ in interpretation but use the same
mathematical techniques, namely totally monotone capacities. The argument presented
below is technically situated by generalizing the mathematical basis. It immediately carries
over to each of the concretely preferred interpretations. Therefore, in this article, it seems
to be not necessary to distinguish between the several approaches relying on totally mono-
tone capacities. For simplicity Shafer’s (1976) vocabulary and the name ‘Dempster-Shafer
theory’ is used throughout the paper.
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The basic probability number m(A) is interpreted as the weight one gives to
that part of the information which points solely to A and cannot be divided
among proper subsets of A. Then the total belief in A can be calculated
as the sum of all basic probability numbers committed to the event A or
committed to any nonempty subset of A. For convenience this procedure is
called belief accumulation in the sequel. It leads to a belief function:

Remark 2.3 (i) Let m(·) be a basic probability assignment on (Ω,P(Ω)).
The function Belm : P(Ω) → [0, 1] with

Belm(A) =
∑

∅�=B⊆A

m(B), A ∈ P(Ω), (6)

is a belief function, and (Ω,P(Ω), Belm(·)) is an F-probability field.

(ii) Belm(·) will be called the belief function generated by m(·).

While every belief function leads to an F-probability, the converse does not
hold: examples of general F-probability, i.e., F-probability not satisfying (4),
can be constructed easily. Moreover, it can be shown that general F-prob-
ability even cannot be reasonably approximated by belief functions, and so
belief functions are often judged to be too restrictive to serve as the basis of
a powerful generalization of classical probability theory.

3 Generalized Basic Probability Assignments

3.1 Belief Functions as Classical Probabilities

Even more trenchant: belief functions do not really go beyond the scope of
classical probability theory, as can be seen by stating belief accumulation for-
mally – an argument which will straightforwardly lead to the generalization
proposed.

Prop. 3.1 (Formalization of belief accumulation)2

2This proposition is essentially already due to Choquet (1953)
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1. Let pΓ(·) be a classical probability measure on the measurable space
(P(Ω),P (P(Ω))). Then the function Bel(·) : P(Ω) → [0, 1] defined by

Bel(A) := pΓ (P(A)) , ∀A ∈ P(Ω), (7)

is a belief function on (Ω,P(Ω)).

2. For every belief function Bel(·) on (Ω,P(Ω)) there exists a unique clas-
sical probability measure pΓ(·) satisfying (7). The corresponding mass
function m(A) := pΓ({A}), A ∈ P(Ω), is a basic probability assignment,
generating Bel(·).

This proposition shows how Dempster-Shafer theory constructs interval prob-
ability from indivisible pieces of information. Shafer considers the set P(Ω)
of all random events as a “higher-level” sample space, assigns a mass func-
tion on it and identifies the total belief in A with the probability of the
set-system containing all nonempty subsets of A including A. So there is a
one-to-one correspondence between belief functions and classical probability
measures on the measurable space (P(Ω),P (P(Ω))), and a belief function on
(Ω, P(Ω)) is nothing else but the restriction of a classical probability mea-
sure on (P(Ω),P (P(Ω))) to those events which can be written as the power
set of subsets of Ω. Finally that means: belief functions are, in essence,
classical probabilities, specified by their mass function, namely the basic
probability assignment. According to this, one has to keep in mind that
using belief functions finally relies on the assumption that the available in-
formation can be adequately quantified by a single probability measure on
(P(Ω),P (P(Ω))). In many situations, especially in situations of uncertain
knowledge, this might be more than one can honestly require. Therefore an
appropriate generalization is highly desirable.

3.2 The Basic Idea

In Dempster-Shafer theory modelling uncertain knowledge, on the one hand,
and its quantification by a single basic probability assignment, on the other
hand, is seen as Siamese twins, but the discussion above shows that this is
not necessary. The attractive constructive character of belief functions is
due to a change of the sample space from Ω to P(Ω), but not at all to the
assignment of a single mass function on it. Separating both aspects, the
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generalization suggests itself: Change the sample space, but permit a more
flexible modelling by sets of basic probability assignments! Note that by al-
lowing for sets of basic probability assignments the flexibility of modelling
is enriched substantially because these sets can be gained not only by enu-
meration of their elements but also by construction from weaker quantified
information (see Section 4.2f.).

Every basic probability assignment generates a belief function, and so a set
of basic probability assignments generates a set of belief functions. A natural
way to handle this set is to assign to every event its minimal belief, i.e., to
consider the envelope of all these belief functions. It will be shown that this
procedure leads to F-probability.

3.3 Formalization of the Concept

This informal motivation can be formalized rigorously:

Def. 3.2 (Generalized basic probability assignment) Let (Ω,P(Ω)) be
a finite measurable space, and denote by Q (Ω,P(Ω)) the set of all basic
probability assignments on (Ω,P(Ω)). Every nonempty, closed subset S ⊆
Q (Ω,P(Ω)) is called generalized basic probability assignment on (Ω,P(Ω)).

The next theorem embeds generalized basic probability assignments into the
theory of general interval probability, by showing that generalized belief ac-
cumulation leads to F-probability.

Theorem 3.3 (Generalized belief accumulation) For every generalized
basic probability assignment S the set-function L(·) : P(Ω) → [0, 1] with

L(A) := min
m(·)∈S

∑
∅�=B⊆A

m(B), ∀A ∈ P(Ω), (8)

is well-defined, and F(S) := (Ω,P(Ω), L(·)) is an F-probability field.

Proof: i) To see that L(·) is well-defined, identify every element m(·) of S
with the |P(Ω)|-dimensional vector containing the components (m(A))A∈P(Ω).
Then the mapping

lA : R
|P(Ω)| ⊃ S → [0, 1]

m �→
∑

∅�=B⊆A

m(B)
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describing generalized belief accumulation is continuous in m(·) ∈ S. There-
fore it reaches its extreme values on the closed and bounded, and hence
compact set S.

ii) To show that (8) leads to F-probability, one has to verify (1), (2) and (3)
with U(·) := 1 − L(·c) and with

M := {p(·) ∈ C (Ω,P(Ω)) | L(A) ≤ p(A) ≤ U(A), ∀A ∈ P(Ω)} .

Consider, for every A ∈ P(Ω), that element mA(·) of S which produces
L(A), and let MmA

be the structure of the corresponding F-probability field
(Ω,P(Ω), BelmA

(·)). By construction, BelmA
(A) = L(A), and so, by (2)

applied to BelmA
(·), there exists a classical probability pmA

(·) ∈ MmA
with

pmA
(A) = L(A) . (9)

pmA
(·) is an element of M, because, for every event D ∈ P(Ω),

L(D) = min
m(·)∈S

∑
∅�=B⊆D

m(B) ≤
∑

∅�=B⊆D

mA(B) = BelmA
(D)

≤ pmA
(D) ≤ 1 − BelmA

(Dc) ≤ 1 − min
m(·)∈S

∑
∅�=B⊆Dc

m(B) = U(D) .

Therefore, M is not empty, and (1) is shown. Furthermore, by the definition
of M, p(A) ≥ L(A), for all p(·) ∈ M, and so (9) leads to (2). Relation (3)
is obtained by passing over from A to Ac. 
The concept of generalized basic probability assignments and generalized
belief accumulation serves as a constructive approach to F-probability, con-
sequentially generalizing Dempster-Shafer theory. The correspondence be-
tween F-probability and generalized belief accumulation goes even beyond
Theorem 3.3: It can be shown that conversely every F-probability field F
can be obtained by generalized belief accumulation.3 4

3Take the vertices p1(·) . . . , pq(·) of M, which is a convex polyhedron, and apply the
procedure described in Subsection 4.1 to the set S = {m1(·), . . . , mq(·)} where, for j =
1, . . . , q, mj(A) := pj(A), if A is a singleton, and mj(A) := 0, else.

4But this correspondence is not one–to–one: Several generalized basic probability
assignments can lead to the same F-probability field F . Only a maximal description Smax

can be found, in the sense that F = F(Smax) and S ⊆ Smax for all S with F(S) = F .
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4 Some Special Cases

The very moderate restrictions on generalized basic probability assignments
– the set S only has to be closed – allow for a rather high flexibility to model
complex uncertainty. At least two different approaches to generalized basic
probability assignments can be distinguished: The first one takes S as a finite
set. The second, much richer one, is to apply theories developed for sets of
mass functions on Ω as powerful techniques to construct the generalized basic
probability assignment S and to develop efficient procedures for generalized
belief accumulation.

Note further that, if one was relying on the Dempster-Shafer theory, one
would be forced to assign a basic probability number to every element of
P(Ω). In contrast, generalized basic probability assignments allow for par-
tial specification. Therefore, for instance, a ‘vague’ description of the sample
space Ω is possible by introducing a residual category and leaving the corre-
sponding basic probability number unspecified.

4.1 Aggregation of Several Basic Probability Assign-
ments

First assume S to consist of q different basic probability assignments, the
judgements of q experts, say. While within the Dempster-Shafer approach
this information has to be mixed to produce a single basic probability as-
signment, Theorem 3.3 allows for an appealing alternative. Generalized belief
accumulation aggregates the assignments in a way that reflects potential con-
flict in the different judgements: the more the assignments differ from each
other, the wider, ceteris paribus, the intervals of the resulting F-probabilty
will be.

Note, that also an analogous aggregation of several generalized basic proba-
bility assignments (Si, i = 1, . . . , q) is possible in this framework by consid-
ering S = ∪q

i=1Si.
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4.2 Linear Partial Basic Probability Assignments

Under the name ‘linear partial information’, in a series of publications Kofler
and Menges (see in particular Kofler and Menges (1976) and Kofler (1989))
have considered sets of probabilities described by linear restrictions. Trans-
ferring this concept to the space (P(Ω),P (P(Ω))), a rather flexible modelling
is permitted.

Def. 4.1 A generalized basic probability assignment S is called linear partial
basic probability assignment if there exists a matrix Y and a vector b so that

S = {m(·) ∈ Q (Ω,P(Ω)) | Y · �m ≥ b} .

Here �m is taken as the symbol for the |P(Ω)|-dimensional vector (m(A))A∈P(Ω)

for every m(·) ∈ Q (Ω,P(Ω)).

Note that, as in the example below, linear partial basic probability assign-
ments often arise naturally from qualitative statements on the available in-
formation. Among the most promising examples are comparative basic prob-
ability assignments which arise from a partial ordering on the events of the
form m(A) ≤ m(B) for some events A and B. (“The information supporting
properly A is not weighted higher than that supporting properly B”).

Assuming linear partial basic probability assignments, the generalized belief
accumulation in (8) is a linear optimization problem, which can be solved
by standard routines. Connected to this, note that it furthermore suffices
to know the vertices of the polyhedron described by S. In some important
special cases explicit expressions for the vertices are available.5

Also of particular interest is the case where a generalized basic probability
assignment is given in form of intervals

dm(A) ≤ m(A) ≤ m(A) , A ∈ P(Ω) .

This leads to probability intervals on (P(Ω),P(P(Ω))), and the whole frame-
work developed in Weichselberger and Pöhlmann (1990) can be utilized here.

5For instance, for comparative basic probability assignments one can transfer the results
of Kofler (1989, p. 26) to the situation under consideration.
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In particular one obtains, by adapting their Theorem 2.5, p. 25, an explicit
expression for generalized belief accumulation:

L(A) = max{
∑

∅�=B⊆A

m(B), 1 −
∑

∅�=C⊆Ac

m(C)} , ∀A ∈ P(Ω) . (10)

The computational complexity is of the same order as it is in Dempster-Shafer
theory, but the number of situations which can realistically be modelled is
incomparably higher.

4.3 A Toy Example for a Linear Partial Basic Proba-
bility Assignment

A patient is supposed to suffer from one of three mutually exclusive diseases
A,B,C. Let a medical expert summarize his diagnosis in the following way.

1. None of the three diseases can be excluded with certainty.

2. My weight for the symptoms solely pointing on A is as least as high as
that on C.

3. My weight on B is between twice and three times as high as that on
disease A.

4. At least half of the total weight is given to the information excluding
C, but can not be divided among A and B.

This statement can be transferred immediately into linear restrictions:

i) m(Z) ≥ δ; Z ∈ {A,B,C} (δ �= 0) ii) m(A) ≥ m(C)

iii) 2 · m(A) ≤ m(B) ≤ 3 · m(A) iv) m(A ∪ B) ≥ 0.5 .

While Dempster-Shafer theory can not cope adequately with this informa-
tion, a linear partial basic probability assignment is deduced in a straight-
forward way. For example, with δ = 0.1 one arrives, after having determined
the vertices of the polyhedron arising from these inequalities, at⎛

⎜⎜⎝
m(A)
m(B)
m(C)
m(A ∪ B)

⎞
⎟⎟⎠ ∈ conv

⎛
⎜⎜⎝

⎛
⎜⎜⎝

0.1
0.3
0.1
0.5

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.1
0.2
0.1
0.6

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

4/30
8/30
0.1
0.5

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0.125
0.25
0.125
0.5

⎞
⎟⎟⎠

⎞
⎟⎟⎠
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and m(X) = 0, X ⊆ {A,B,C} else. Generalized belief accumulation leads
to the following F-probability:

P (A) = [0.1, 0.7] P (A ∪ B) = [0.875, 0.9]
P (B) = [0.2, 0.8] P (A ∪ C) = [0.2, 0.8]
P (C) = [0.1, 0.125] P (B ∪ C) = [0.3, 0.9] .

5 Concluding Remarks

Relying on sets of basic probability assignments, the paper proposed a gen-
eral method to deal with uncertain knowledge. While single basic probabil-
ity assignments correspond to belief functions, generalized basic probability
assignments lead to the richer class of F-probability. The theory of general
interval probability can be used for concrete calculations.

Level Dempster-Shafer Proposal
uncertain knowledge uncertain knowledge

quantified by a quantified by a
(P(Ω),P (P(Ω))) basic probability assignment: generalized basic

probability assignment:

single mass function set of mass functions
belief function F-probability

(Ω,P(Ω)) special case of general
interval probability interval probability

Fig. 1: The modelling of uncertain knowledge quantified by basic probability
assignments and generalized basic probability assignments.

By the possibility of applying theories for sets of mass functions as techniques
for generalized basic probability assignments a broad field of flexible mod-
elling was opened, but only briefly sketched. Further interesting results can
be derived by detailed investigations of more complex procedures of these
theories.

The method presented here is general. In principle, it can be used to extend
all derived concepts of Dempster-Shafer theory. Another promising aspect is
the analogous generalization of other approaches to uncertainty (like possi-
bility theory) which formally can be embedded into Dempster-Shafer theory.
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The necessary formal framework is given above, the inherent meanings and
interpretations in terms of each concept must be carefully developed case by
case.
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Sigrid Pöhlmann, Toni Wallner and Kurt Weichselberger for very helpful com-
ments and discussions.
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