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el of complex assembly in which NCT and APH-1 first stabi-
lize PS before PEN-2 assembles as the last component. Fur-
thermore, we could map domains in PS and PEN-2 that 
govern assembly and trafficking of the complex. Finally, Rer1 
was identified as a PEN-2-binding protein that serves a role 
as an auxiliary factor for  � -secretase complex assembly. 

 Copyright © 2006 S. Karger AG, Basel 

 Introduction 

 Alzheimer’s disease (AD) is the most common neuro-
degenerative disorder in industrial countries. Neuro-
pathological hallmarks of AD are the deposition of the 
40–42 amino acid amyloid- �  peptide (A � 40, A � 42) as 
senile plaques and of hyperphosphorylated tau as neuro-
fibrillary tangles. In their accompanying articles, Man-
delkow and Mandelkow review in detail the cellular 
mechanisms causing neurofibrillary tangle formation 
and its impact on AD. A � 42 is highly neurotoxic and be-
lieved to be the culprit of the disease, which initiates a 
cascade of pathological events that ultimately lead to de-
mentia  [1] . A �  is generated by proteolytic processing of 
the  � -amyloid precursor protein (APP), a type I trans-
membrane protein  [2] . APP is first processed by  � -secre-
tase, which leaves a 99 amino acid C-terminal fragment 
(C99) in the membrane. A �  is subsequently liberated into 
the extracellular space by  � -secretase cleavage of C99 
within the membrane. This cleavage also releases the 
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 Abstract 
  � -Secretase catalyzes the final cleavage of the  � -amyloid 
precursor protein to generate amyloid- �  peptide, the prin-
cipal component of amyloid plaques in the brains of patients 
suffering from Alzheimer’s disease. Here, we review the iden-
tification of  � -secretase as a protease complex and its as-
sembly and trafficking to its site(s) of cellular function. In re-
constitution experiments,  � -secretase was found to be 
composed of four integral membrane proteins, presenilin 
(PS), nicastrin (NCT), PEN-2 and APH-1 that are essential and 
sufficient for  � -secretase activity. PS, which serves as a cata-
lytic subunit of  � -secretase, was identified as a prototypic 
member of novel aspartyl proteases of the GxGD type. In hu-
man cells,  � -secretase could be further defined as a hetero-
geneous activity consisting of distinct complexes that are 
composed of PS1 or PS2 and APH-1a or APH-1b homologues 
together with NCT and PEN-2. Using green fluorescent pro-
tein as a reporter we localized PS and  � -secretase activity at 
the plasma membrane and endosomes. Investigation of  � -
secretase complex assembly in knockdown and knockout 
cells of the individual subunits allowed us to develop a mod-
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APP intracellular domain (AICD) into the cytosol. A 
competing nonamyloidogenic processing pathway of 
APP involves cleavage by  � -secretase within the A �  do-
main, generating an 83 amino acid membrane bound C-
terminal fragment (C83). Subsequent cleavage of C83 by 
 � -secretase causes the liberation of the nonamyloidogen-
ic peptide p3.  � -Secretase cleavage thus precludes the for-
mation of A � . Fahrenholz and Postina [this issue, pp. 
255–261] and Lichtenthaler [this issue, pp. 262–269] de-
scribe this pathway in detail. A central question of AD 
research of nearly two decades has been the elucidation 
of the identity of the secretases which generate A � . In 
particular  � -secretase, which is the focus of this review, 
has been an enigmatic enzyme for a long time  [3] .

  Identification of  � -Secretase 

 Ten years ago, a handful of mutations causing early-
onset familial AD (FAD) were discovered and mapped to 
two novel genes located on chromosomes 1 and 14  [4–7] . 
The responsible genes, termed presenilin 1 (PS1) and pre-
senilin 2 (PS2) were predicted to encode two homologous 
 � 50-kDa polytopic membrane proteins, that according 
to recent models consist of 9 transmembrane domains 
(TMDs)  [8–10] . Both are endoproteolytically cleaved be-
tween TMDs 6 and 7 into an N-terminal and C-terminal 
fragment (NTF, CTF)  [11] . Although PSs lacked obvious 
functional homology to other proteins when they were 
first described, the identification of  Caenorhabditis ele-
gans  SEL-12 as PS homologue  [12]  strongly implicated 
PSs in the Notch signaling pathway required for cell dif-
ferentiation [see also the review article by Smialowska 
and Baumeister in this issue, pp. 227–232]. Like FAD-
associated mutations found earlier in the C-terminal end 
of the APP TMD, the FAD-associated mutations in PS1 
and PS2 increased the levels of A � 42  [13] . The number of 
mutations found increased rapidly to more than 150 in 
2005, including 144 PS1 mutations. PS1 is therefore the 
major gene responsible for early-onset FAD. The finding 
that FAD-associated mutants shifted the cleavage speci-
ficity of  � -secretase towards A � 42 formation suggested 
that PSs might be modulators of  � -secretase causing a 
gain of function. On the other hand, knockout of the 
mouse PS1 gene caused a severe reduction of total A �  
generation  [14] . Furthermore, cells derived from PS1 
knockout mice showed an accumulation of the C-termi-
nal fragments of APP, while leaving  � - and  � -secretase 
cleavage unchanged. Taken together, these data indicated 
that PS is intimately associated with  � -secretase activity 

and hinted to the possibility that PSs were either  � -secre-
tase itself or alternatively an essential co-factor of it.

  Considerable evidence for the first hypothesis that PS 
is identical with  � -secretase was obtained when mutagen-
esis of either of two aspartate residues of PS1 with an un-
usual location in TMD6 and 7 caused the same  � -secre-
tase loss of function phenotype as found for the PS1 gene 
deletion  [15] . Moreover, when these aspartates were mu-
tated, PS accumulated as uncleaved full-length holopro-
tein, suggesting the possibility that PS autoactivates itself. 
These findings were consistent with the earlier observa-
tion that  � -secretase is an aspartyl protease  [16] . Further 
support for the hypothesis that PS is identical with  � -
secretase was obtained when we observed loss of  � -secre-
tase function coupled with a deficiency of PS endoprote-
olysis upon mutation of the corresponding aspartate res-
idues in PS2 and zebrafish PS1, thus demonstrating that 
the critical PS aspartates were functionally conserved 
during evolution  [17, 18] . Another piece of evidence was 
the finding that crosslinkable  � -secretase inhibitors de-
signed to mimic the transition-state of an aspartyl prote-
ase mechanism were found to covalently bind the PS NTF 
and CTF  [19, 20] . While these observations were consis-
tent with PS being a candidate aspartyl protease identical 
with  � -secretase, the lack of any homology to other as-
partyl proteases and the lack of the canonical D(T/S)
G(T/S) active motif of aspartyl proteases remained in ap-
parent contrast to the hypothesis. This puzzling issue was 
resolved when we identified G384 in PS1 as an essential 
residue of PS function  [21] . This residue is part of a high-
ly conserved small GxGD motif that includes the critical 
aspartate in TMD7 of PS. Moreover, we identified this 
motif in the bacterial type 4 prepilin peptidase (TFPP) 
family, polytopic proteases that function as leader pepti-
dases. Similar to PSs, the TFPPs contained two critical 
aspartate residues, directly adjacent to the TMD bound-
aries, required for their proteolytic function  [22] . The lat-
est piece of evidence for a proteolytic function of PS was 
the subsequent identification of signal peptide peptidase 
(SPP) and its homologues, the SPP-like (SPPL) proteases 
 [23] . Like TFPPs and PSs, SPP and SPPLs contain the 
GxGD active site motif  [24] . In addition, all three families 
contain a short conserved PxL motif at the C-terminus. 
Despite these conserved regions, no further homologies 
are found. Interestingly, PS and SPP differ in their orien-
tation of the active sites towards the substrate. While PS 
cleaves substrates like APP in type I orientation, SPP  [23]  
and SPPLs [Fluhrer et al., submitted] use type II mem-
brane proteins as substrates. Taken together, PS was iden-
tified as a founding member of novel polytopic aspartyl 
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proteases of the GxGD type  [25] . For a detailed descrip-
tion of SPP and SPPLs, we refer the reader to the accom-
panying review by Haffner and Haass.

  While these findings strongly suggested that PS might 
indeed be identical with the long-sought  � -secretase and 
provided compelling evidence that PS has to be regarded 
as a novel aspartyl protease, other findings indicated that 
it might not fulfill the  � -secretase function alone. In fact, 
data by others and us suggested that PS resides in a high 
molecular weight (HMW) complex  [26–28] , and indeed 
it was subsequently shown that  � -secretase activity was 
present in an HMW complex as PS-dependent activity 
 [29] . Moreover, overexpression of PS neither led to an in-
crease in the NTF and CTF  [30]  nor to increased  � -secre-
tase activity. This finding suggested that PS expression is 
regulated by the presence of other (limiting) factors, 
which together with PS assemble into an HMW complex 
 [30]  allowing PS endoproteolysis. Consistent with this 
observation, we found that excess PS holoprotein that 
fails to become processed into its stable fragments is rap-
idly degraded by the proteasome  [31] .

  Using an immunoaffinity isolation procedure, the type 
I membrane glycoprotein nicastrin (NCT) was the first 
PS-binding partner identified  [32] . In addition, screening 
for Notch pathway components in  C. elegans  identified 
two novel candidate PS partner proteins besides NCT, the 
polytopic membrane proteins PEN-2 and APH-1  [33, 34] . 
Coimmunoprecipitation studies revealed that PEN-2 and 
APH-1 are indeed in association with PS and NCT  [35, 
36] . Strikingly, when we coexpressed these four proteins 
in baker’s yeast, which does not contain homologues of 
these proteins and has no endogenous  � -secretase activi-
ty,  � -secretase activity towards an APP-based substrate 
was fully reconstituted  [37] .  � -Secretase activity required 
the coexpression of all four components and was not ob-
served when either one of the four components was lack-
ing. Moreover, reconstitution of  � -secretase activity was 
associated with PS endoproteolysis and was found to be 
dependent on biologically active PS. These experiments 
demonstrated that  � -secretase is a complex of four core 
components that are necessary and sufficient for the ac-
tivity of the  � -secretase enzyme. Similar results were ob-
tained when the four components were overexpressed in 
mammalian cells  [38–40] .  � -Secretase activity was sig-
nificantly enhanced when all four proteins were coex-
pressed, suggesting a reconstitution of the enzyme. These 
findings also demonstrated that NCT, APH-1 and PEN-2 
were the elusive limiting factors for PS expression.

  Like for PSs, two homologues of APH-1 were identi-
fied in mammalian cells, APH-1a and APH-1b, with 

APH-1a occurring in two splice variants differing in their 
C-termini  [33, 36] . In a coimmunoprecipitation analysis, 
we found that PS1 and PS2 and the APH-1 homologues/
splice variants are contained in separate  � -secretase com-
plexes in human cells  [35, 41] . Thus, the term  � -secretase 
reflects a heterogeneous activity in human cells that con-
sists of several distinct complexes depending on the re-
spective tissue expression of the core components. Simi-
lar findings were obtained in rodents  [42] .

  Localization of  � -Secretase and Its Cellular Site(s) of 
Activity 

 Shortly after the initial identification of PS1, its intra-
cellular localization was determined to be mostly in the 
endoplasmic reticulum (ER)  [43] . In contrast, presumed 
sites of  � -secretase activity ranged from the ER to the 
Golgi, TGN, secretory vesicles, plasma membrane (PM) 
and endosomes/lysosomes  [for a discussion, see  44 ]. Sub-
sequent analysis in neurons and other cell types led to the 
proposal of the ‘spatial paradox’, a term coined by Ann-
aert and De Strooper  [45] , that referred to the apparent 
discrepancy in the localization of PS in the ER and the 
sites of  � -secretase activity proposed to be in later com-
partments of the secretory pathway.

  To clarify the localization of PS, we used green fluo-
rescent protein (GFP) as a reporter for live cell staining. 
GFP-tagged PS1 (PS1-GFP) was shown to be fully func-
tional in all aspects tested. PS1-GFP replaced endogenous 
PS1/2, was incorporated into an HMW complex and res-
cued  � -secretase activity in PS1/2–/– cells. Using total 
internal reflection microscopy and cell surface biotinyl-
ation we could show that small but significant amounts 
of PS1-GFP were localized at the PM  [46] . Moreover, PS1 
bound to NCT could be detected at the PM, showing that 
it is indeed complex-associated PS, which is at the PM 
 [46] . In living cells expressing PS1-CFP and NCT-YFP, 
both subunits colocalize at the PM and in endosomes/ly-
sosomes, supporting the idea that fully assembled com-
plexes leave the ER and reach later compartments of the 
secretory pathway ( fig. 1 ). Others subsequently con-
firmed these results by the demonstration that all four 
 � -secretase complex components are localized in an ac-
tive form at the PM  [47]  and in lysosomes  [48] .

  To determine the localization of  � -secretase activity 
with a novel approach, we again made use of GFP. A  � -
secretase substrate, the APP C-terminal stub (C99), was 
tagged C-terminally with GFP (C99-GFP)  [49] . When sta-
bly expressed in cells, this substrate is efficiently cleaved 
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by  � -secretase, resulting in a diffuse cytoplasmic GFP 
staining. When  � -secretase is blocked using specific in-
hibitors, C99-GFP is no longer cleaved and remains mem-
brane associated, highlighting the compartment where it 
resides. To determine the sites of  � -secretase activity, bio-
synthetic transport was inhibited at defined steps along 
the secretory pathway. The rationale behind that study was 
that if  � -secretase cleavage occurs in the compartment 
where transport was blocked, C99-GFP would be cleaved 
and the same diffuse GFP fluorescence as in control con-
ditions would be observed. If however  � -secretase is not 
active in the compartment where transport is blocked, 
C99-GFP would remain membrane bound and highlight 
the respective organelle. Transport of C99-GFP was inhib-
ited at the level of the ER, the Golgi and the TGN. In all 
cases, membrane-bound C99-GFP accumulated in the re-
spective organelle, indicating that there is no substantial 
 � -secretase activity in the ER, the Golgi and the TGN. 
When exocytosis of post-Golgi vesicles was inhibited, 
bright fluorescent vesicles accumulated below the PM of 
C99-GFP-expressing cells, demonstrating that C99-GFP 
is not cleaved before it reaches the PM. In contrast, when 
endocytosis was blocked in C99-GFP-expressing cells, 
GFP staining was weak and diffuse, showing that  � -secre-
tase cleaves C99-GFP at the PM. Whether  � -secretase is in 
addition active in endosomes could not be tested using this 
system. Taken together, our data show that  � -secretase ac-
tivity is localized to the PM and/or endosomes  [49] .

  Assembly of the  � -Secretase Complex 

 How do the components assemble to build a  � -secre-
tase complex? Insight into this question was largely ob-
tained from experiments using knockouts and knock-
downs of the individual subunits in cultured cells. We 
found that knockdown of NCT and APH-1 by RNAi was 
accompanied by a strong reduction of the PS fragment 
levels  [41, 50] . Furthermore, when PEN-2 expression was 
knocked down, the PS holoprotein accumulated in an un-
processed form  [51] . In contrast, the knockout of PS was 
accompanied with decreased PEN-2 levels, while levels of 
NCT and APH-1 remained largely unchanged  [35, 52] . 
Interestingly, NCT accumulated in its immature form, 
suggesting that the complex cannot exit the ER in the ab-
sence of PS  [50] . Furthermore, we could show that the 
NCT ectodomain undergoes a conformational change 
during the assembly process  [52] . Taken together, these 
results and the data from other investigators  [36, 38–40, 
53, 54]  suggested a model for stepwise assembly of  � -
secretase complex(es)  [41] . First, NCT and APH-1 form 
an initial stable scaffold for the PS holoprotein, which be-
comes stabilized by the interaction with the NCT/APH-1 
assembly intermediate. Next, association of PEN-2 to this 
trimeric assembly intermediate triggers the endoproteo-
lytic cleavage of the PS holoprotein ( fig. 2 ). Finally, on the 
molecular level we and others could identify TMD4 of 
APH-1  [55, 56] , the C-terminus of PEN-2  [51, 57–59] , the 
TMD of NCT  [60, 61]  and the PS1 C-terminus  [62, 63]  as 
essential domains for functional  � -secretase complex as-
sembly. The NCT TMD and the PS1 C-terminus interact 
directly with each other  [62] . Recent data also suggest di-
rect interactions of the PEN-2 TMD1 with the PS1 TMD4 
 [64, 65] .

  Are there specific signals or domains within the  � -
secretase subunits, which govern the assembly of the  � -
secretase complex? Analogous to ion channels and cell 
surface receptors, which are frequently composed of sev-
eral subunits, we and others found that  � -secretase is as-
sembled in the ER  [59, 66] . In the case of ion channels and 
cell surface receptors, it is known that control mecha-
nisms ensure that only fully assembled complexes leave 
the ER, while unassembled subunits are retained/re-
trieved by specific retention/retrieval signals. We hy-
pothesized that similar mechanisms steer the correct as-
sembly and export of  � -secretase out of the ER. Indeed, 
using reporter proteins to study cell surface transport,
we could identify ER retention/retrieval signals in two
 � -secretase subunits, PS1 and PEN-2. The ER retention/
retrieval signal in PS1 is located in the C-terminus and 

  Fig. 1.  Live cell microscopy of HEK293 cells stably expressing PS1-
CFP and NCT-YFP. In addition, these cells express siRNA against 
endogenous NCT. PS1-CFP and NCT-YFP are fully functional 
and assemble into  � -secretase complexes.  A  Two-color micros-
copy of living cells shows a high degree of colocalization of PS1-
CFP and NCT-YFP at the PM (arrowheads) and in vesicular struc-
tures. Note that some vesicles appear green or red only in the 
merged image due to vesicular movement during image acquisi-
tion.  B  Three-color live cell microscopy demonstrates that the ve-
sicular structures seen in  A  are endosomes/lysosomes, as demon-
strated by labeling with lysotracker (arrows). 
  Fig. 2.  Assembly of  � -secretase. (1) Unassembled subunits of the 
 � -secretase complex are retained in the ER by specific ER reten-
tion signals (red bars). (2) APH-1 and NCT form a first assembly 
intermediate, which then stabilizes PS holoprotein (3). (4) Finally 
PEN-2 joins the complex, endoproteolysis of PS and conforma-
tional change of NCT take place and the fully assembled complex 
is exported from the ER through the Golgi via post-Golgi vesicles 
(PGV, green vesicles) to the PM. Protein-protein interacting do-
mains are depicted in light blue. At the PM and/or in endosomes/
lysosomes (EL, red vesicles) the complex cleaves C99 (green) to 
release A �  and AICD. 
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includes the PALP-motif  [62] . The ER-retention signal of 
PS1 is probably embedded in the membrane, as a number 
of groups recently showed that the hydrophobic part of 
the PS1 C-terminus spans the membrane. This suggests 
a topology with nine TMDs for PS  [8–10] . In the case of 
PEN-2, the retention/retrieval signal is located in TMD1 
and involves a critical asparagine [Kaether et al., submit-
ted]. The molecular machinery recognizing these signals 
in mammals is unknown. In yeast, a protein called Rer1p 
was shown to retrieve unassembled subunits of several 
complexes to the ER. Retrieval was based on retrieval sig-
nals located in transmembrane segments and involved 
polar or charged amino acids surrounded by hydropho-
bic amino acids  [67] . The human orthologue, Rer1, is a 
23-kDa protein with four TMDs that can complement a 
yeast  RER1  gene deletion strain  [68] . We could show with 
reporter protein assays and deglycosylation experiments 
that human Rer1 is involved in the retention/retrieval of 
PEN-2. In addition, we showed that the mammalian Rer1 
binds directly to unassembled PEN-2. Binding depends 
on a critical asparagine in the first TMD of PEN-2. Fur-
thermore, overexpression of Rer1 stabilizes PEN-2 and 
enhances maturation of immature NCT, indicating an 
enhanced rate of complex formation. These data support 
the idea that PEN-2 is rate limiting for  � -secretase com-
plex formation and identify Rer1 as a possible auxiliary 
factor for  � -secretase complex assembly [Kaether et al., 
submitted].

  Cellular Function of  � -Secretase 

 PSs have been implicated in the Notch signaling path-
way, which is required for cell differentiation during 
 development and adulthood, due to the discovery of the 
 C. elegans  PS homologue SEL-12 as a key component of 
this signaling pathway  [12] . Consistent with this finding, 
knockout of PS and the other  � -secretase subunits in 
mice causes phenotypes with Notch-like embryonic de-
velopment deficiency  [69] . In addition, we found in col-
laboration with Baumeister’s group that FAD-associated 
PS mutations largely fail to rescue the Notch deficiency 
phenotype of  sel-12  mutant worms, whereas PS active site 
mutations do not rescue at all  [17, 21, 70–72] . Notch is a 
cell surface receptor with type I membrane topology, 
which is processed in a very similar manner like APP 
 [69] . Following cleavage of the Notch ectodomain at the 
cell surface, we found that  � -secretase cleaves the resul-
tant C-terminal Notch membrane fragment to release 
N � , an A � -like peptide, into the extracellular space and 

the Notch intracellular domain (NICD) into the cytosol 
 [73] . The NICD translocates to the nucleus, where it func-
tions as a transcriptional regulator of target genes re-
quired for cell differentiation. Thus, enabling Notch sig-
naling is a major function of  � -secretase. However, be-
sides the two substrates APP and Notch, a rapidly 
increasing number of other substrates of  � -secretase have 
been discovered recently. Among these substrates are 
CD44 and LRP, both of which were identified in labora-
tories from the priority program  [74, 75] . These substrates 
have little in common except that they are all type I trans-
membrane proteins that need to undergo ectodomain 
shedding that removes the bulk of their extracellular do-
mains to become substrates for the enzyme  [76] . While 
some of the ICDs liberated might have a function in nu-
clear signal transduction similar to the NICD, a more 
general function of  � -secretase may be the removal of 
membrane stubs of type I membrane proteins after ec-
todomain shedding. Interestingly, recent data suggest 
that NCT serves as a  � -secretase substrate sensor proba-
bly by measuring the length of the ectodomains of type I 
transmembrane proteins  [77] .

  Conclusions 

 Together with the work in a number of other labora-
tories worldwide, the  � -secretase research within the pri-
ority program 1085 of the DFG has considerably expand-
ed our knowledge about a long-sought, enigmatic enzyme 
that was known to be responsible for the final step in the 
biogenesis of A � . We could clarify the identity of  � -secre-
tase by demonstrating that  � -secretase is a complex con-
sisting of four subunits that are required for its activity. 
We further developed an understanding of how the  � -
secretase complex assembles and how the complex traf-
fics through the secretory pathway to its functional site(s). 
Finally, the identification of PS, the catalytic subunit of 
 � -secretase, as a prototype of novel aspartyl protease 
families and the elucidation of signals that govern  � -
secretase complex assembly also contributed to the open-
ing of new research fields in cell biology.
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