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Abstract

This paper considers an additive model y = f(z) + ¢ when some obser-
vations on z are missing at random but corresponding observations on y
are available. Especially for this model missing at random is an interesting
case because of the fact that the complete case analysis is not expected
to be suitable. A simulation study is reported and methods are compared
based on superiority measures as the sample mean squared error, sample
variance and estimated sample bias. In detail, complete case analysis,
zero order regression plus random noise, single imputation and nearest
neighbor imputation are discussed.

KEY WORDS: missing at random, additive models, nonparametric, nearest
neighbor imputation, simulation.

1 Introduction

This report is the proceeding of Nittner (2002) which adresses the problem and
consequences of missing data completely at random (MCAR) for an additive
model. A simulation experiment is conducted and four imputation procedures
are compared with the standard complete case analysis under the criterion of
sample mean squared error. Based on the results, some modifications concern-
ing the settings of the simulation experiment were done besides the fact that the
missingness here is supposed to depend on the response y. It is an interesting
model because it is expected to show the asymptotic deficits of the complete
case analysis.

The plan of the paper is as follows. Sections 1.1, 1.2 and 1.3 introduce the
data model, the model for the missing mechanism with well known definitions
and terms and the approach through which the model is estimated. The imputa-
tion methods for the missing values are described within Section 2. In Section 3
the details on the simulation experiment are given along with the discussion on
the results obtained.



1.1 The Model for the Data
Let an additive model connecting y; and x; be

vi = f(@i) + € (x5,95),i =1,...,n. (1.1)

We assume E(e | X) = E(e) and V(e | X) = V(e) = 0%I,,. In order to prevent
the free constant, we assume E(f(z)) = 0.

As already mentioned in the beginning, the independent covariate X is as-
sumed to be affected by missing values according to MAR. What exactly is
meant by missing at random will be described in the next section after a short
introduction to the missing data pattern.

1.2 The Model for the Missing Mechanism

Here, the response vector y is assumed to be completely observed whereas the
covariate X is only affected by missing values. Based on this assumption the
data matrix can be partitioned as

(y,X) = (( z:z >< ié‘fz >> : (1.2)

The index ‘obs’ indicates rows without missing data for X and y, the index ‘mis’
contains rows where y is observed and X is completely missing.

1.2.1 Missing Data Pattern

The well known missing data pattern is the first step to characterize the situation
of an incomplete data set by visualizing observed and missing parts of the data
and the variables respectively. It simply represents the data set variable-by—
variable. Each bar represents a variable whose length indicates if there are
missing cases for this variable or not. Situation (1.2) leads to Figure 1.1 called
univariate missing data pattern (Little and Rubin (1987)). Univariate missing
data are a special case of the monotone pattern as shown in Figure 1.2 where
the variables can be ordered in such a way that a variable is observed for at
least the cases of the previous one. These pattern may first give an impression

X Y X, Xo ... X, Y
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Figure 1.1: Univariate missing Figure 1.2: Monotone missing
data pattern. data pattern.

to what extent the data are missing. If X is assumed to be missing for large



values of y, the values can be ordered and a missing data pattern may describe
this behavior too. But obviously, this technique may be swamped with a higher
level of dependencies. A way to overcome this defect consists of defining the so
called missing data mechanisms.

1.2.2 Missing Data Mechanism

The main question within this context is whether the missing data mechanism
can be ignored or not. One possibility is to make an assumption that the mech-
anism is ignorable in the sense that the other possibility consists of including
the missing data mechanism (which still is to be defined) in the statistical model
by including the distribution of an indicator variable indicating whether a com-
ponent is observed or missing. Little and Rubin (1987), for example, define the
data matrix Z = (Zobs, Zmis) representing the data that would occur without
missing values. Further, define a random variable R indicating the missingness
within the data matrix Z according to

r,-j:{ Lz observed o p iy ot (1.3)

0 if z; missing

The question whether the missing mechanism can be ignored for the estima-
tion of € is the same as the question whether statistical inferences are based on
f(Zobs, R | 6,®) with ® being an unknown parameter of the missing mechanism
and 6 being the parameter of the density of (Zobs, Zmis)—or just on the den-
sity f(Zobs, ) which ignores the missing mechanism. Considering the density
F(R | Zobs, Zmis, ) allows to classify the missingness into

1. MCAR (missing completely at random) if

f(R] Z,®)=f(R|®) VZ, (1.4)

2. MAR (missing at random) if

F(R|Z,®) = f(R]| Zobs;®) VZmis, and (1.5)

3. MNAR (missing not at random)

f(R | Zaq)) = f(R | Zobs; Zmiss <I)) . (16)

Following Little and Rubin (1987), the missing data mechanism is said to be
ignorable in the context of likelihood inference when the distribution of the miss-
ing mechanism is independent of the missing values [(1.5)] themselves. This be-
comes more clear by computing the density of the actual observed data obtained
by integrating Z,;s out of the density

f(Zons, R | 8,8) = / FZobss Zonis | OV F (R | Zovss Zonier ®)dZumis (17)



which by using (1.5) leads to

f(Zobs: R, 07 <I)) = f(R | Zobs: q)) / f(Zobs: Zmis: e)dZmis
= f(R | Zobsa(ﬁ)f(ZObS | 0) . (18)

If the parameters 6 and ® concerning the density of the data Z and the missing
mechanism, respectively, are distinct then the likelihood—based inferences for 6
based on f(Zons, R | 8, ®) and for 6 based on f(Zops | #) are the same. Following
Schafer (1997), 6 and ® are distinct if each parameter contains no information
about the other.

The next section describes the methods of inference which are applied to the
different complete data sets. Readers being familiar with the method of itera-
tively reweighted least squares may just take a look at the way of estimating the
smoothing parameters; this section is equivalent to the corresponding section in
Nittner (2002).

1.3 The Inference

The well known trade—off between wiggliness of the estimated curve and close-
ness to the data motivates the minimization of the target function

n

>l - Fal + /\/f”(t)zdt. (1.9)

i=1

The value of A controls the trade—off. We assume that f’ and f” are continuous,
f" is twice integrable. For A — oo the estimated curve is a straight line whereas
for A — 0 the estimated curve is an interpolating spline.

Following Wood (2000) the problem of estimating the parameters g1 of
the nonlinear function f with E(f(Y;)) = f(8) by Fisher—Scoring is equivalent
to solving the weighted penalized least squares problem iteratively. We obtain

min A || W2 (®) - x8) |2+ 6:68'5:8 (1.10)

with the iteratively least squares (IRLS) where the least squares problem at
each iteration is replaced by a penalized one. The S; is a non—negative definite
matrix of coefficients defining the ith penalty associated with the smoothing
parameter 6;, W is a diagonal matrix of weights and A is the overall smoothing
parameter. With practical point of view, in the case of an estimable parameter
0; it is more interesting to consider generalized cross validation (GCV), one
method to select smoothing parameters that has proven effective and has good
theoretical properties, Wood (2000), p. 413. The problem here is to minimize
the GCV—Scores

_IWEy — A 80)y) |1* /n
[1— (AN, 6,))/n]?

with respect to 6;/\. Combining the two procedures solves problem (1.9) and
could be written in two steps.

v

(1.11)



1. Estimate p and the variances V; for each y;
with the help of 8*); compute

(i)  the diagonal weight matrix W with
Wi = (9" (i)*Vi) ™"
(ii)  the vector
ZZXﬂ‘i'F(y—M) )
of pseudo—data with the diagonal matrix
Lii = (g (i)~

2. Compute 6; by minimizing
w3 - xp)>
(tr(I—A))2
where (3 is the solution obtained by minimizing
1

| W2 (2= XB) || +3°6;8'S; 8

with respect to 8 and A denotes the hat matrix
A=XX'WX+>.6;88;8) 'X'W

Table 1.1: Iteratively Reweighted Least Squares with GCV.

For a more detailed description of additive models and estimation concepts,see
Hastie and Tibshirani (1990), Fahrmeir and Tutz (2001) and Wood (2000). The
settings of the simulation experiment concerning parameters for estimating the
model are described in Section 3.1.

2 The Imputation Methods

First we describe the two nonparametric methods. According to the results of
the first simulation experiment assuming MCAR in Nittner (2002) the nearest
neighbor imputations showed better results than the alternative imputation
procedures, namely the zero order regression plus random noise and the single
imputation .

2.1 Nearest Neighbor Imputation
After an introduction to the usual nearest neighbor imputation, hereafter called

as classical version or NN1 and a modified version (NN2), investigated in the
earlier work are presented.

2.1.1 Nearest Neighbor Imputation—Version I (NN1)

Despite its long history within theoretical and practical work, the nearest neigh-
bor imputation according to Chen and Shao (2001) is still not fully investigated.



Referring to the data structure (1.2) with m missing values for the row indices
i=n—m+1,...,n visualized as

Ty Loy Tnomtds -5 Tn and
obs;;ved mis‘s'ing
2.1)
Y Ynoms Ynomt 15 Un 2.2)
obs;ved
a missing value z;,7 =n —m+1,...,n, is imputed by choosing that value z;,

1 <4 < n —m, which is the nearest neighbor of j. The nearest neighborhood is
measured in y—values such that i satisfies

lvi—y | = _min Ty—uil- (2.3)
In case the solution is not unique the mean of the corresponding x—values is

imputed. One may also employ other solutions, especially for categorical co-
variates for this same problem.

The nearest neighbor imputation is a hot deck imputation procedure which
yields values unlikely to be nonsensical. Chen and Shao (2000)) show that un-
der some conditions, the nearest neighbor imputation method provides asymp-
totically unbiased and consistent estimators or functions of population means
(or totals), population distributions, and populations quantiles, Chen and Shao
(2000)), p. 1. Since it is a nonparametric method, so it is expected to be
somewhat more robust against model violations. Chen and Shao (2001)) give a
detailed overview on several possibilities for adjusting the procedure in order to
get asymptotically unbiased and consistent variance estimates.

2.1.2 Nearest Neighbor Imputation—Version IT (NN2)
y

-t

‘interval’

Yj

(u J.mmin)

<~—range—-
Figure 2.1: Fixed neighborhood based on k = 3.

As the nearest neighbor may also lead to substitutes which are far away from
the ‘true’ value, a modified version of the NN1 is implemented which is based
on some plausibility. Let z; again denote a missing value and y; be the cor-
responding response value. Consider a neighborhood of y; based on a fixed



number of neighbors k. The main idea is to control the range of this fixed
neighborhood in comparison to a percentage of the length of the data interval
(‘interval’). Figure 2.1 illustrates a data situation with three nearest neighbors,
an artificial range between the three nearest neighbors and the reference value
‘interval’ with a 5%—data rate.

The neighborhood is defined according to (2.3) whose solution for £ = 3 is
a (3 x 1)—vector containing the ordered values [, for s = 1,2, 3 satisfying (2.3).
The range for k = 3 defined by x[3) — x[y) is the first essential value for the
procedure of the NN2; ‘interval’ is defined as a fixed percentage, which is 5%
in our case, of Tmax — Tmin and should be a reference value for the range of
the neighborhood. A more detailed introduction to the NN2, especially to its
algorithm is given in Nittner (2002).

The complete case analysis could also be seen as an imputation procedure—
which, for example, is the case when the missing values themselves are estimated
like unknown parameters and is equivalent to Bartlett’s analysis of covariance,
see Bartlett (1937) or its presentation in Rao and Toutenburg (1999), pp. 247-
248.

2.2 Complete Case Analysis

The complete case analysis (CCA), also known as listwise deletion, simply dis-
cards all cases containing at least one missing value. Based on the partitioning
according to (1.2) the analysis reduces to the estimation of

Yobs = f(Xobs) + €obs - (24)

An apparent problem is wastage of information which reaches its maximum
when the number of deleted cases equals the number of missing values. Esti-
mates may also be biased if there is stratified data. According to Schafer (1997)
the CCA is thought to be suitable up to a percentage of 5% of missing values.

The estimates of the CCA are unbiased if the missingness does not depend
ony, ie., if f(R|y,X)= f(R|X) holds. Then, we have

fol R = L) IEIE) gy 1), 29)

Equation (2.5) means that the conditional density of the response vector y given
R and X = (Xobs, Xmis) is independent of the value of R, i.e., the conditional
expectation of f(y | z) is the same for R = 0 and R = 1. This yields unbiased
estimates for an analysis based on the complete cases if the missingness does not
depend on y. In the simulation experiment based on the model (1.1) missing
at random means that the missingness depends on the response y. Therefore,
(2.5) is not fulfilled and the CCA is expected to show worse results in the sense
of biased estimates.



2.3 Stochastic Mean Imputation

The stochastic mean imputation is an extension to the classical mean imputa-
tion, also known as zero order regression (ZOR) first described in Wilks (1932).
The ZOR also interesting for users doing analysis with popular software where
this method often is implemented. A missing value z;; is imputed by

. _ 1
Tij = Tj = Z Tij 5 (2.6)

n—m;j :
i¢D;

where ®; = {i : z;; missing} denotes the indices of the missing values and m;
denotes the number of missing values for X;. If X; is discontinuous then mode
and median are the other well suited alternatives.

The most important disadvantage of the ZOR is that it underestimates the
variance which in turn distorts the corresponding tests because of resulting in
small confidence intervals. That is why the imputed value is modified in terms
of an additive random error; this procedure is denoted by ZOR+, the zero order
regression plus random noise which is a kind of stochastic mean imputation.

A procedure reflecting more reference to the distribution of the population may
be the single imputation which is described in the next section.

2.4 Single Imputation

In comparison to the mean imputation the single imputation (see for example
Little and Rubin (1987)) should provide substitutes representing more variation
in terms of the postulated distribution than the ZOR+. As already discussed,
the single imputation (sI) could be based on the distribution of the complete
cases, i.e., impute a random number out of the distribution characterized by
its estimated parameters. This distribution sometimes is known. Otherwise
one may consider conditional distributions based on the complete cases and
on an auxiliary model. This can be used for predicting the missing values
which, however, here is not of interest because of having just the simple model
y = f(x) + € with one covariate.

Example 1 Assume a linear model y = X + ¢ where X =(1, X5, X3) where
X3 is supposed to be binary and partially incomplete. Compute an auxiliary
model, for example, a logistic regression for the complete cases with X3 being the
response vector, X;, Xy, and may be y representing the independent variables.
The resulting estimates are used to compute conditional probabilities 7; via the
logit link using the values of the observed variables X7, Xo,y for the missing
indices. The m; could be considered as parameters of row—wise binomial distri-
butions which motivate the following imputation steps for j =n—m+1,...,n

1. Draw a random number z; from a continuous
uniform distribution over the interval [0;1]



2. Impute

_ ‘1 if ZjSTFj
”’J‘{ O i oz > (2.7)

See Toutenburg and Nittner (2002) for some simulation results for model.

3 A Simulation Experiment

After a short introduction to the simulation experiment concerning technical
details and parameter settings, the results are analyzed and reported. Based on
the sample mean squared error (SMSE) and its components, the sample bias and
the sample variance as well as differences among the methods are illustrated.

3.1 A Short Introduction

The simulation experiment was conducted using R programming language (see
Venables and Smith (2001)). The time which took an experiment to run de-
pended on the missing percentage and was between 11 hours for 10% and 30
hours for 50% missingness.

We assumed X to be truncated Gaussian with mean v = 1.0 which is the
middle of the data interval [0.0; 2.0] and fixed standard deviation § = 0.5. The
errors were assumed to be distributed Gaussian according as €; ~ N (0; 0?) with
o being 0.5, 1.0 and 2.0 for each setting. With three values of o and 10%, 30%
and 50% missing percentage myp, nine models were computed, see Table 3.1.
The sample size was chosen to be N = 1000, the number of replications also

model || 1 3 4 5 6 7 8 9
0.1 oO. 3 05 01 03 05 0.1 03 0.5
05 05 0.5 10 1.0 1.0 20 20 20

Table 3.1: Settings of the simulation experiment.

were 1000. With X; and ¢; being distributed as described above, the response
vector y was computed according to

yizxi—4xf+2x?+ei.

See Figure 3.1 to get an impression what f(z) looks like in the simulation
experiment.

The usual algorithms generate data missing at random according to (see for
example Little (1992),

Tij = { 0 fir Ui>0 (3.1)

1 fir U;<0

with U; = ay; + 7; which is a random variable depending on the value of the
standardized y;, and a standard normal error 7; with a disadvantage of not
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Figure 3.1: f(x) in the simulation experiment.

having a fixed missing percentage a priori. This is the reason why a slight mod-
ification was applied within this experiment: If the fixed missing percentage m,,
had reached for ¢ < NNV, the algorithm stopped; if ¢ = N and the missing per-
centage was smaller than it should be the algorithm started again for the cases
still observed. Fixed percentages of missing values and fixed parameter values
in general enabled us to compare results of different simulation experiments in
a more steady way.

3.2 Results

In this section, the sample mean squared error (SMSE), the sample variance
and the estimated bias of the different predicted values y are compared at the
ten fixed knots, i.e., each curve is estimated based on the imputation procedure
and the filled up matrix X, respectively. The ten fixed knots of the ‘true’ model
are used to compute the predicted values §;,j = 1,...,10, in order to be able
to compare these values.

Three settings (models 6,8 and 9) especially lead for the single imputation and
the modified nearest neighbor imputation to large values of the global smoothing
parameter A. For some replications the confidence band for the estimated curve
included the zero everywhere so that f(X) could be substituted by a parametric
term, i.e., for these settings single and nearest neighbor imputation NN2 should
be left out for comparison with the alternatives.

10



3.2.1 The Sample Mean Squared Error (SMSE)

The sample mean squared error of § is given by

knots

SMSE(g,y) = Z V(g5) + B, )] (3.2)

Analyzing the sum of the ranks of all procedures for all nine experiments showed
worse results for the complete case analysis and the stochastic mean imputation
whereas good values for the classical version of the nearest neighbor imputation.
The exact values are summarized in Table 3.2. It can be seen from Table 3.2

o
0.5 1.0 2.0
my my my

model 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

TRUE | 0.099 0.095 0.094 | 0.251 0.228 0.307 | 0.902 0.862 0.747
CCA 0.106 0.250 2.004 | 0.336 1.062 7.641 | 1.298 5.667 25.604
ZOR+ || 0.195 0.733 2495 | 0.429 1362 5.837 | 1.317 5.159 17.754

sI 0.197 0.876 3.609 | 0.384 0.896 4.562 | 1.215 2.600 6.441
NN1 0.113 0.145 0.884 | 0.283 0.352 2.484 | 0.993 1.537 10.348
NN2 0.111 0.238 2.335 | 0.302 0.530 4.845 | 1.239 3.899 10.962

Table 3.2: SMSE for all nine models depending on m, and o.

that the SMSE of the imputation increases for rising values of the error variance
as well as for an increasing percentage of missing values. These trends could
be seen in Figure 3.2 for ¢ = 0.5 and ¢ = 1.0 and for ¢ = 2.0 in Figure 3.3.
White bars correspond to a missing percentage of 10%, grey bars to m, = 0.3
and dark grey bars to m;, = 0.5. With respect to the problems in the models

30, 30,

20, 20,

SMSE
SMSE

mp mp

]

.. pdd . e o, JJJJJE

TRUE CC  ZOR+  sI NN1I NN2 TRUE  CC  ZOR+  sI NNI  NN2

procedure procedure

Figure 3.2: SMSE for o = 0.5 (left) and o = 1.0 (right).

6, 8 and 9, the classical nearest neighbor imputation obviously seems to be
the best procedure concerning the SMSE—criterion. Despite its additive random
error, the stochastic mean imputation is not adequate because of the large
values of the SMSE which is apparent more for a larger missing percentage. The
complete case analysis especially shows for m, > 10% the behavior expected
because of MAR. Its SMSEs are even larger than those of the ZOR+. The
relative position of the single imputation gets better with an increasing error.
Comparing the two versions of the nearest neighbor imputations it could be said

11
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10, r{lw [} sl
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Z0R+ ST NN NN2

TRUE  CC

0

procedure

Figure 3.3: SMSE for ¢ = 2.0.

that the modified nearest neighbor imputation tends to have similar but
slightly worse values than the classical version.

To summarize, we have seen an apparent trend of the different procedures con-
cerning their behavior depending on o and m, and their SMSE-superiority
among themselves. In the following section, the two components of the sam-
ple mean squared error are analyzed with an aim to detect possible reasons in
general or trade—offs between variance and bias.

3.2.2 The Sample Variance

First of all we are interested in the behavior of the estimated variances which de-
pend on the two simulation parameters o and m,,. Like the SMSE, the estimated
variance also increases with an increase in the error variance. See Figure 3.4,
where the sample variances for the complete case analysis and the stochastic
mean imputation are shown—for ease of presentation the ordinate was changed
to logarithmic scale.

B b Mwly N w

024\ |

Estimated Variance
Estimated Variance

05

1.0

001, - - - - - + - 20

Figure 3.4: \//a}ﬁ» for m, = 0.5; continuous line for ¢ = 0.5, dashed line for
o = 1.0, semi-dashed line for o = 2.0; CCA (left) and ZOR+ (right).

The behavior of the variance depending on the missing percentage is not as
clear as the one observed for ¢. Whereas both nearest neighbor imputations
have increasing variances with a raising percentage of missing values the alter-

12



natives seem to be independent of the value of m,, concerning their estimated
variances. Figure 3.5 illustrates the situation for the single imputation and the
classical nearest neighbor imputation for o = 2.0.

Estimated Variance
Estimated Variance

Figure 3.5: \//5“3 for o = 2.0; continuous line for m, = 0.1, dashed line for
myp = 0.3, semi—dashed line for m, = 0.5; sI (left) and NN1 (right).

Now we discuss the variances of the different estimates arising from the im-
putation methods. Two groups are built up to compare the procedures. The
first group compares the stochastic mean imputation with the single imputation
whereas the second group compares the complete case analysis with the classi-
cal nearest neighbor imputation. The modified nearest neighbor imputation is
analyzed with respect to the classical version at the end of this paragraph. Each
graphic represents the situation for a fixed missing percentage with a varying
error variance.

The differences between the ZOR+ and the single imputation are small even if
trends could be observed. Figure 3.6 shows that the single imputation tends to
have smaller variances than the ZOR+ and shows a more continuous behavior
over the knots which becomes more apparent with an increasing percentage of
missing values.

ZOR¥,05 ZOR¥,05

@ P @ -
§ §
& $,05 & sI,05
8 _ 5 _
> >
B o " ZOR+,1.0 3 " ZOR+, 1.0
7 4 % ¢,10 7 9,10

85 /| ™ zOR+,20 " ZOR+,20

o] T | R20 } B Bt X

1234567 8 910 123 4567 8 910
knots knots

Figure 3.6: \//aTrB for the ZOR+ (continuous line) and the single imputation
(dashed line); m, = 0.1 (left—hand side), m, = 0.3 (right-hand side); different
o marked by squares and triangles.
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? V_ZOR6

Estimated Variance

4 v S

2 3456 7 8 910

knots

Figure 3.7: \//aTrB for the ZOR+ (continuous line) and the single imputation
(dashed line); m, = 0.5; different o marked by squares and triangles.

Figure 3.7 confirms this result, especially the more wiggly curve of the stochas-
tic mean imputation. The differences between these two methods seem to rise
with an increase in the missing percentage.

The second group which compares the complete case analysis and the near-
est neighbor imputation is illustrated in Figures 3.8 and 3.9.

NNZ, 0.5 NN1,05
@ caae @ PR
8 8
8 cc,05 8 cc,05
5 _ 8 -
> > :
B ? NNL, 1.0 B /| 7 NN1,1.0
g ! g ! j -
E » = /| a
g CC, 1.0 I CC, 1.0
" NNL,2.0 " NN1,20
- SRR bt - - ‘V—CC7 001, - .‘1\.“‘:”'7.””.//.// - ACC’Z'O
2 345 6 7 8 9 10 2 345 6 7 8 9 10
knots knots

Figure 3.8: \//33"3 for the NN1 (continuous line) and the complete case analysis
(dashed line); m, = 0.1 (left-hand side), m, = 0.3 (right-hand side); different
o marked by squares and triangles.

Similar differences in this group could also be observed. We see that the near-
est neighbor imputation for every setting tends to have larger variances than
the complete case analysis. This cohesion becomes more clear with an increase
in the missing percentage and leads to the extreme situation as in Figure 3.9
where for ¢ = 2.0, the CCA has smaller variances than the NN1 for ¢ = 0.5.
The fact that the NN1 has superiorities concerning the SMSE therefore has to
result from noticeable smaller biases of the NN1 in comparison to the CCA.

Finally we want to consider the estimated variances of the two nearest neighbor
imputations to get an idea to what extent they differ. Figure 3.10 shows that
the estimated variances of both nearest neighbor methods depend on the error
variance. An illustration of the situation for m, = 0.5 was ignored because of

14
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Estimated Variance

*cc,20
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knots

Figure 3.9: \//33"3 for the NN1 (continuous line) and the complete case analysis
(dashed line); m, = 0.5; different o marked by squares and triangles.

the presumed linear relation.

© ‘| NN1,05 ° /| NN1,05
5 NN2,0.5 = NN2, 0.5
> — > I—
g “ NN1,1.0 g <1 7 NNL 10
E £
i NN2, 1.0 7 NN2, 1.0
" NN1,20 " NN1,20
i * NN2,20 RN o * NN2,20
2345678910 23456780910
knots knots

Figure 3.10: \//aTrB for the NN1 (continuous line) and the NN2 (dashed line);
my, = 0.1 (left-hand side), m, = 0.3 (right-hand side); different o marked by
squares and triangles.

As seen earlier, the difference between the two methods get larger with an
increase in the missing percentage. The modified nearest neighbor imputation
tends to show smaller variance than the classical version, except in some cases
at the outer knots. Again, the superiority of the NN1 versus NN2 in terms of
the SMSE is presumed to result because of magnitude of bias.

So far, some noticeable differences between the methods have been observed—
however, the analysis of the bias may explain the synthesis of the SMSE.

3.2.3 The Sample Bias

In this section we first take a look at the bias depending on o and m,, and then
at the differences between the methods.
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The bias tends to increase with an increase in the error variance and miss-
ing percentage both. This context just tends to hold because of local differences
in the sense of knot location and type of procedure. The complete case analysis
shows an obvious increase of the bias. The imputation methods, especially the
ZOR+, tend to follow this behavior in the center of the interval.

Next, we want to take a look at the groupwise consideration between the meth-
ods as in the previous section. Figures 3.11 and 3.12 show the bias for fixed
missing percentages with varying error variances.
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Figure 3.11: Eggs(ﬁ, B) for the ZOR+ (continuous line) and the single impu-
tation (dashed line); m, = 0.1 (left-hand side), m, = 0.3 (right-hand side);
different ¢ marked by squares and triangles.
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Figure 3.12: gigs(ﬁ, B) for the ZOR+ (continuous line) and the single imputa-
tion (dashed line); m, = 0.5; different o marked by squares and triangles.

The stochastic mean imputation tends to be more biased than the single im-
putation except to the values at the right outer knot. As expected, the ZOR+
overestimates in the center of the interval and indicates underestimation at the
margins. The differences between the methods become larger with an increase
in the missing percentage.

The nearest neighbor imputation NN1 is less biased than the complete case

analysis with respect to the analysis of the SMSE and the sample variance. Fig-
ure 3.13 illustrates the bias for m, = 0.1 and m, = 0.3 for different values of o,
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Figure 3.14 contains the values for a missing percentage of 50%.
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Figure 3.13: Bias(8,3) for the Nnl (continuous line) and the complete case
analysis (dashed line); m, = 0.1 (left-hand side), m, = 0.3 (right-hand side);
different o marked by squares and triangles.
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Figure 3.14: Bias(3,3) for the NN1 (continuous line) and the complete case
analysis (dashed line); m, = 0.5; different o marked by squares and triangles.

For both methods, the bias increases with an increase in the missing percent-
age. The difference between the methods themselves becomes more clear with
an increase in m,, also. Unbiased estimates of the NN1 and an underestimation
of the complete case estimators are obvious.

A comparison of the two nearest neighbor imputations yielded advantages for
the classical version. The modified version shows a similar behavior as the
ZOR+ which indicates an overestimation in the center and an underestimation
on the margins of the interval.
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4 Conclusion

The additive model y = f(z) + € with missing values in the independent vari-
able z depending on the response vector y, meaning missing at random, was
considered. For nine different settings resulting from three values of m, and o,
four imputation procedures were compared with the complete case analysis.

The complete case analysis is not suitable when more than 10% observations
are missing. Its large SMSEs result from a large sample bias. The zero order
regression plus random noise as a popular but shady standard procedure
shows its well known properties. An ad hoc alternative, the single imputation
seems to be somewhat more suited because of its advantages versus the ZOR+.
However, in some simulations its term changed to be parametric whereas the
classical nearest neighbor imputation showed best properties for each set-
ting and seems to be adequate. Its modified version is more or less strongly
biased and yields good values for the SMSE because of small variances.

Some more work has to be done within this context, for example, including
further nonparametric or parametric terms and interactions. This would enable
a kind of first order regression which also could be modeled nonparametrically.
One could also think of alternatives based on higher—order distance measures
or including cluster analysis.
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