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Abstract

We investigate the geographical and socioeconomic determinants of childhood
undernutrition in Malawi, Tanzania and Zambia, three neighboring countries
in Southern Africa using the 1992 Demographic and Health Surveys. We
estimate models of undernutrition jointly for the three countries to explore
regional patterns of undernutrition that transcend boundaries, while allowing
for country-specific interactions.

We use semiparametric models to flexibly model the effects of selected so-
cioeconomic covariates and spatial effects. Our spatial analysis is based on a
flexible geo-additive model using the district as the geographic unit of anal-
ysis, which allows to separate smooth structured spatial effects from random
effect. Inference is fully Bayesian and uses recent Markov chain Monte Carlo
techniques.

While the socioeconomic determinants generally confirm what is known in the
literature, we find distinct residual spatial patterns that are not explained by
the socioeconomic determinants. In particular, there appears to be a belt run-
ning from Southern Tanzania to Northeastern Zambia which exhibits much
worse undernutrition, even after controlling for socioeconomic effects. These
effects do transcend borders between the countries, but to a varying degree.

These findings have important implications for targeting policy as well as
the search for left-out variables that might account for these residual spatial
patterns.

Keywords : Sub-Saharan African Countries; Geo-additive models; undernu-
trition; spatial statistics; semiparametric Bayesian analysis.
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1 Introduction

Childhood undernutrition is among the most serious health issues facing
developing countries. It is an intrinsic indicator of well-being, but is also
associated with morbidity, mortality, impaired childhood development, and
reduced labor productivity (Sen, 1999; UNICEF, 1998; Pritchett and Sum-
mers, 1994; Pelletier, 1998, Svedberg 1999 ). Reducing malnutrition rates
by half is one of the central development goals adopted by the international
community at the Millennium Summit (UN, 2000).

There is a sizeable theoretical and empirical literature on the determinants
of childhood undernutrition in developing countries (see Smith and Haddad,
1999, 2001, and UNICEF, 1998 for a survey). Most studies use parametric
approaches to modelling the socioeconomic determinants of undernutrition.

In this paper, we present two innovations on this literature. First, we use flex-
ible regression methods to model the effects of covariates that clearly have
nonlinear effects on stunting. Secondly, we use flexible methods to modelling
spatial determinants of undernutrition and allocate these spatial effects to
structured and unstructured (random) components. This is done jointly in
one estimation procedure that thereby simultaneously identifies socioeco-
nomic determinants, and the spatial effects that are not explained by these
socioeconomic determinants. In this way, we are able to identify regional
patterns of undernutrition that are either related to left-out socioeconomic
variables that have a clear spatial pattern or point to spatial (possibly epi-
demiological) processes that account for these spatial patterns. Identifying
spatial patterns of undernutrition beyond the known socioeconomic determi-
nants should also assist in poverty mapping and associated regional targeting
of resources (Elbers et.al., 2000).

We apply these methods to an analysis of chronic undernutrition (stunting)
in Malawi, Tanzania, and Zambia using the 1992 Demographic and Health
Surveys (DHS). Malawi, Tanzania and Zambia are neighboring low- income
countries in Southern Africa, all belonging to the poorest countries in the
world, with very poor education, health, and human development indicators.
They have been affected by years of economic stagnation and decline as shown
by negative per capita growth rates throughout the 1980s and early 1990s,
and have also experienced deteriorations in health and education indicators
(World Bank, 2000, see Table 1.1). More recently, they have been severely
affected by the HIV-AIDS pandemic. Stunting is a serious problem in all three
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countries, affecting some 48.7% of children in Malawi, 46.7% in Tanzania, and
39.6% in Zambia.

Table 1.1 Socioeconomic Data for Malawi, Tanzania, and Zambia for 1992 .1

Malawi Tanzania Zambia
GNI p.c. 1992 470 450 750
Growth 80-92 -2.0 -2.5 -3.2
Life Expectancy 44 49 49
Sec Enrol (% gross) 9.2 5.3 26
HDI 1992 0.33 0.364 0.425
HIV Prevalence 94 13.6 6.4 17.1

Source: World Bank (2001, 1998)

By using the three DHS for the same year of adjacent countries, we are ad-
ditionally able to examine to what extent there are differences in the socioe-
conomic determinants of undernutrition in the three countries. By applying
the spatial analysis to the joint analysis of the three countries, we are addi-
tionally able to tell whether the spatial determinants cross the boundaries
between the three countries or are quite distinct which would also give us
a sense on the relative importance of policies versus geographic factors in
causing undernutrition.

Undernutrition among children is usually measured by determining the an-
thropometric status of the child with most research focusing on children
below six years of age. Researchers distinguish between three types of under-
nutrition: wasting or insufficient weight for height indicating acute undernu-
trition; stunting or insufficient height for age indicating chronic undernutri-
tion; and underweight or insufficient weight for age which could be a result
of both stunting and wasting. Wasting, stunting, and underweight for a child
i are typically determined using a Z-score which is defined as:

Zi =
AIi −MAI

σ

where AI refers to the individual anthropometric indicator (e.g. height at a
certain age), MAI refers to the median of a reference population, and σ refers
to the standard deviation of the reference population. The reference standard
typically used for the calculation is the NCHS-CDC Growth Standard that
has been recommended for international use by WHO (WHO, 1983; 1995).

1In the case of Tanzania, growth refers only to 1988-1992
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The percentage of children whom Z-scores are below minus -2 standard de-
viations (SD) from the median of the reference category are considered as
undernourished (stunted, wasted, and underweight, depending on the indi-
cator chosen), while those with Z-Scores below -3 are considered severely
undernourished. In this paper we focus on stunting, but use the Z-Score (in
a standardized form) as a continuous variable to use the maximum amount
of information available in the data set.

When modelling the determinants of undernutrition, one can distinguish be-
tween immediate, intermediate, and underlying determinants (see UNICEF,
1998). While undernutrition is always immediately related to either insuffi-
cient nutrient intake or the inability of the body to absorb nutrients (primar-
ily due to illness), these are themselves caused food security, care practises,
and the health environment at the household level, which themselves are
influenced by the socioeconomic and demographic situation of households
and communities (UNICEF; 1998; Smith and Haddad, 1999, Klasen, 1999).
In order to capture this complex chain of causation, researchers have ei-
ther focused on a particular level of causality (e.g. Smith and Haddad, 1999;
Moradi, 1999, Pelletier, 1999), have estimated structural equations that ad-
dress the interactions (e.g. Guilkey and Riphahn, 1998), have used graphical
chain models to assess the causal pathways (Caputo, et al. 2002), or have
used multi-level modelling techniques (e.g. Nyovani et al. 1999). With the
data available, it is not always clear to separate intermediate from under-
lying determinants. For example, mother’s education might be influencing
care practises, an intermediate determinant, and the resources available to
the household, an underlying determinant.

Given these difficulties, we estimate reduced form equations that mainly
model factors that are mostly underlying determinants of undernutrition, al-
though some might also be considered intermediate determinants. The most
important covariates included are measures of household resources (includ-
ing access to electricity and radio), access to water and sanitation, mother’s
education and employment status, mother’s BMI as an indicator of the nu-
tritional situation of the household, household size, the child’s age and sex,
and the location (urban, rural) of the household.

In previous studies on child undernutrition in Sub-saharan Africa, the influ-
ence of some of these factors has been assumed to be linear on undernutrition
and we reproduce such an estimation below. However, in practice, some of
these factors are likely to have non-linear effects on undernutrition.
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In particular, the nutritional situation of the mother, measured using the
Body Mass Index (BMI, defined as the weight in kg divided by the square
of height in meters) might presumed to follow an inverse U-shape (see also
Smith et al. 2001). Mothers who exhibit a very low BMI, indicating their poor
nourishment, are likely to have poorly nourished children. At the same time,
parents with a very high BMI might also have poorly nourished children as
the obesity associated with their high BMI indicates poor quality of nutri-
tion and might therefore indicate poor quality of nutrition for their children.
Moreover, the development of undernutrition typically follows a pattern that
is closely related to the age of the child. While some children are already
born undernourished due to growth retardation in utero, the anthropometric
status of children worsens considerably only after 4-6 months, when children
are weaned and solid foods are introduced (WHO, 1995; Stephenson, 1999).
Initially, the worsening anthropometric status shows up as acute undernutri-
tion. But then stunting develops and worsens until about age 2-3. At that
time, the body has, through reduced growth, adjusted to reduced nutritional
intake and now needs fewer nutrients to maintain this smaller stature (WHO,
1995; Moradi and Klasen, 2000).

Similarly, spatial analyses of undernutrition often are confined to using region-
specific dummy variables to capture the spatial dimension. After reproducing
such a simple framework, we will then explore regional patterns of childhood
undernutrition and, possibly nonlinear, effects of other factors within a si-
multaneous, coherent regression framework using a semi-parametric mixed
model. Because the predictor contains usual linear terms, nonlinear effects of
metrical covariates and geographic effects in additive form, such models are
also called geo-additive models. Kammann and Wand (2001) propose this
type of models within an empirical Bayes approach. Here, we apply a fully
Bayesian approach as suggested in Fahrmeir and Lang (2001) which is based
on Markov Random Field priors and uses MCMC techniques for inference
and model checking.

Figure 1.1 Mean Z-score of stunting.
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Figure 1.1 shows the small-scale, district-specific regional distribution of the
(standardized) Z-scores for stunting and Figure 1.2 shows the percentage of
stunting by regions (clearly reproduced in Table 1.2).

Table 1.2 Percentage of stunting by region (DHS 1992).
Regions Percent

Malawi
North 21.74
Central 44.93
South 33.33

Tanzania
Coastal 25.38
Northern Highlands 10.00
Lake 20.00
Central 10.77
Southern Highlands 25.38
South 8.46

Zambia
Central 10.38
Copperbelt 15.09
Eastern 10.38
Luapula 22.64
Lusaka 5.66
Northern 16.98
North-Western 6.60
Southern 7.55
Western 4.72
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Figure 1.2 Map of the percentage of stunting by region (DHS 1992).

4.72 44.93

Obviously, there are distinct regional differences. In addition to local small-
area variability, there might also be an underlying smooth spatial component
which crosses borders. Figure 1.2 suggests that there are significant variations
in term of stunting prevalence in the three countries and within regions in
each country.

For an adequate analysis we need a flexible regression model, which can
separate a smooth global spatial pattern from small-scale regional variability
and simultaneously controls for demographic and socio-economic factors. In
Section 4 we will compare maps obtained from such a geo-additive model
with the map in Figure 1.1.

2 Semi-parametric Bayesian regression mod-

els

2.1 Observation models

Consider regression situations, where observations (yi, xi, wi), i = 1, . . . , n,
on a metrical response y, a vector x = (x1, . . . , xp) of metrical covariates
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and a vector w = (w1, . . . , wr) of categorical covariates are given. We assume
that yi given the covariates and unknown parameters are independent and
Gaussian with mean ηi and a common variance σ2 across subjects, i.e. yi ∼
N(ηi, σ

2). In our application on childhood undernutrition the response is
stunting measured as a standardized Z-score. Traditionally, the effect of the
covariates on the response is modelled by a linear predictor

ηi = x′iβ + w′
iγ. (1)

In such an analysis, spatial structure can be included using regional dummy
variables (see below). Using smaller spatial units such as districts would in
this case entail more than 200 dummy variables which would significantly
reduce the degrees of freedom and could in any case not assess spatial inter-
dependence. In this paper particular emphasis is on the nonlinear effects of
the two metrical covariates ”age of the child” AGC and the ”mother’s body
mass index” BMI and, in particular, on the spatial covariate ”child’s district
of residence”. Thus, we replace the strictly linear predictor (1) by the more
flexible semiparametric predictor

ηi = f1(xi1) + · · ·+ fp(xip) + fspat(si) + w′
iγ. (2)

Here, f1, . . . , fp are non-linear smooth effects of the metrical covariates and
fspat is the effect of the spatial covariate si ∈ 1, . . . , S labelling the districts in
the three countries. Regression models with predictors as in (2) are sometimes
referred to as geo-additive models. In a further step we may split up the
spatial effect fspat into a spatially correlated (structured) and uncorrelated
(unstructured) effect

fspat(si) = fstr(si) + funstr(si) (3)

A rationale is that a spatial effect is usually a surrogate of many unobserved
influences, some of them may obey a strong spatial structure and others may
be present only locally. By estimating a structured and an unstructured effect
we attempt to separate these effects. As a side effect we are able to assess to
some extent the amount of spatial dependence in the data by observing which
of the two effects is larger. If the unstructured effect exceeds the structured
effect, the spatial dependence is smaller and vice versa. Such models are
common in spatial epidemiology, see e.g. Besag et al. (1991).
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A further extension of the predictor (2) leads to varying coefficient mixed
model (VCMM)

ηi = f1(xi1)zi1 + · · ·+ fp(xip)zip + fstr(si) + funst(si) + w′
iγ. (4)

In varying coefficients models, it is assumed that the effect of a particular
covariate zi is not fixed but varies smoothly over the domain of a second
covariate xi. Thus, variable xi is called the effect modifier of zi and is usually
assumed to be metrical.

2.2 Prior assumptions

In a Bayesian approach unknown functions fj and parameters γ as well as
the variance parameter σ2 are considered as random variables and have to be
supplemented with appropriate prior assumptions. In the absence of any prior
knowledge we assume independent diffuse priors γj ∝ const, j = 1, . . . , r for
the parameters of fixed effects. Another common choice are highly dispersed
Gaussian priors.

Several alternatives are available for the priors of the unknown (smooth)
functions fj, j = 1, . . . , p. For the moment we may distinguish roughly two
main approaches for Bayesian semiparametric modelling. These are basis
functions approaches with adaptive knot selection and approaches based on
smoothness priors. In the following we will focus on the latter one. Several
alternatives have been proposed for specifying a smoothness prior for the ef-
fect f of a metrical covariate x. Among others, these are random walk priors
(Fahrmeir and Lang, 2001), Bayesian smoothing splines (Hastie and Tibshi-
rani, 2000) and Bayesian P-splines. In this paper we focus on random walk
priors. We also compared our results with Bayesian smoothing splines and
P-splines but the estimated functions were more or less undistinguishable.

For the random walk prior, let us first consider the case of a metrical covariate
x with equally spaced observations xi, i = 1, . . . ,m, m ≤ n. Suppose that
x(1) < . . . < x(t) < . . . < x(m) is the ordered sequence of distinct covariate
values. Define f(t) := f(x(t)) and let f = (f(1), . . . , f(t), . . . , f(m))′ denote
the vector of function evaluations. Then a first or second order random walk
prior for f is defined by

f(t) = f(t− 1) + u(t) or f(t) = 2f(t− 1)− f(t− 2) + u(t) (5)
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with Gaussian errors u(t) ∼ N(0; τ 2) and diffuse priors f(1) ∝ const, or
f(1) and f(2) ∝ const, for initial values, respectively. A first order ran-
dom walk penalizes abrupt jumps f(t) − f(t − 1) between successive states
and a second order random walk penalizes deviations from the linear trend
2f(t − 1) − f(t − 2). Random walk priors may be equivalently defined in a
more symmetric form by specifying the conditional distributions of function
evaluations f(t) given its left and right neighbors, e.g. f(t− 1) and f(t + 1)
in the case of a first order random walk. Thus, random walk priors may be
interpreted in terms of locally polynomial fits. A first order random walk
corresponds to a locally linear and a second order random walk to a locally
quadratic fit to the nearest neighbors. Of course, higher order autoregressions
are possible but practical experience shows that the differences in results are
negligible. For the case of nonequally spaced observations random walk priors
must be modified to account for nonequal distances δt = x(t)−x(t−1) between
observations. Random walks of first order are now specified by

f(t) = f(t− 1) + u(t), u(t) ∼ N(0; δtτ
2), (6)

i. e., by adjusting error variances from τ 2 to δtτ
2. Random walks of second

order are defined by

f(t) =

(
1 +

δt

δt−1

)
f(t− 1)− δt

δt−1

f(t− 2) + u(t), (7)

u(t) ∼ N(0; wtτ
2), where wt is an appropriate weight. Several possibilities are

conceivable for the weights, see Fahrmeir and Lang (2001) for a discussion.
However, in this analysis, we use a second random walk prior for metrical
covariates.

The trade off between flexibility and smoothness of f is controlled by the
variance parameter τ 2. In our approach we want to estimate the variance pa-
rameter and the smooth function simultaneously. This is achieved by intro-
ducing an additional hyperprior for τ 2 in a further stage of the hierarchy. We
choose a highly dispersed but proper inverse gamma prior p(τ 2) ∼ IG(a; b)
with a = 1 and b = 0.005. In analogy, we also define for the overall variance
σ2 a highly dispersed inverse gamma prior.

Let us now turn our attention to the spatial effects fstr and funstr. For the
spatially correlated effect fstr(s), s = 1, . . . , S, we choose Markov random
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field priors common in spatial statistics (Besag, et al. 1991). These priors
reflect spatial neighborhood relationships. For geographical data one usually
assumes that two sites or regions s and r are neighbors if they share a common
boundary. Then a spatial extension of random walk models leads to the
conditional, spatially autoregressive specification

fstr(s) | fstr(r), r 6= s, τ 2 ∼ N


 ∑

r∈∂s

fstr(r)/Ns, τ
2/Ns


 (8)

where Ns is the number of adjacent regions, and

r ∈ ∂s denotes that the region r is a neighbor of region s. Thus the con-
ditional mean of fstr(s) is an unweighed average of function evaluations for
neighboring regions. Again the variance τ 2

str controls the degree of smooth-
ness.

For a spatially uncorrelatated (unstructured) effect funstr common assump-
tions are that the parameters funstr(s), are i.i.d. Gaussian

funstr(s) | τ 2
unstr ∼ N(0, τ 2

unstr) (9)

Also here, variance or smoothness parameters τ 2
j , j = 1, . . . , p, str, unstr, are

also considered as unknown and estimated simultaneously with correspond-
ing unknown functions fj. Therefore, hyperpriors are assigned to them in a
second stage of the hierarchy by highly dispersed inverse gamma distributions
p(τ 2

j ) ∼ IG(aj, bj) with known hyperparameters aj and bj.

2.3 Posterior inference

Bayesian inference is based on the posterior and is carried out using recent
MCMC simulation techniques. For the predictor (4), let α denote the vec-
tor of all unknown parameters in the model. Then, under usual conditional
independence assumptions, the posterior is given by

p(α|y) ∝
n∏

i=1

Li(yi, ηi)
p∏

j=1

{p(fj|τ 2
j )p(τ 2

j )}p(fstr|τ 2
str)p(funstr|τ 2

unstr)
r∏

j=1

p(γj)p(σ2),
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where fj, j = 1, . . . , p, are vectors of function evaluation corresponding to the
functions fj. The full conditionals for the parameter vectors f1, . . . , fp as well
as the full conditionals for fstr, funstr and fixed effects parameters γ are mul-
tivariate Gaussian. For the variance components τ 2

j , j = 1, . . . , p, str, unstr
and σ2 the full conditionals are inverse gamma distributions. Thus, Gibbs
sampler can be used for MCMC simulation, with successive draw from the
full conditionals for

f1, . . . , fp, fstr, funstr, τ
2
j , j = 1, . . . , p and σ2. Sampling efficiency from the

Gaussian full conditionals of non-linear functions is guaranteed by Cholesky
decompositions for band matrices.

2.4 Bayesian measures of model complexity and fit

From the Bayesian perspective, model comparison is done by trading off the
measure of fit, typically a deviance statistics, and a measure of complexity,
the number of free parameters in the models. Since increasing complexity
is accompanied by better fit, proposals are formally based on minimizing a
measure of expected loss on a future replicate data set (For more details, see,
Spiegelhalter et. al., 2001; Efron 1996). In hierarchical surveys dataset pa-
rameters may outnumbers observations. We adopt the measure of complexity
and fit suggested by Spiegelhalter et. al., (2001). They used an information-
theoretic argument to suggest the Deviance Information Criterion (DIC) as
a measure of fit and model complexity. It penalizes the posterior mean de-
viance D̄, which is a measure of fit, by a complexity measure pD for the
effective number of parameters in a model, as the difference between the
posterior mean of the deviance and the deviance at the posterior estimates
of the parameters of interest. pD is shown to be approximately the trace
of the product of Fisher’s information and the posterior covariance matrix,
which can be obtained easily from a Markov chain Monte Carlo (MCMC)
analysis. They also argued that, for normal models, pD corresponds to the
trace of the ’hat’ matrix projection observations onto fitted values.

Let f(y) be some fully specified standardizing term that is a function of the
data alone, then

pD = D̄ −D(θ̄) (10)

where D(θ) = −2logp(y|θ) + 2logf(y), the Bayesian deviance.

12



The Deviance Information Criterion (DIC), defined as a ’plug-in’ estimate
of fit, plus twice the effective number of parameters, is defined as

DIC = D(θ̄) + 2pD = D̄ + pD. (11)

For more details see, Spiegelhalter et. al., (2001). Thus, the posterior mean
of the deviance is penalized by the effective number of model parameters
pD. The models in chapter 3 can be validated by analyzing the DIC, which
decreases for models with covariates of high explanatory value.

2.5 Coding of Categorical covariates

Categorical covariates such as the child’s gender, the educational achieve-
ment of the respondent, the household size, the income of the family and
socioeconomic covariates are effect coded.

The effect coding for this matter is preferred because of ease of interpreta-
tion and its advantage over the dummy coding in computing the reference
category. An effect coding variable is defined by,

x(j) =





1 if category j is observed j = 1...q.
−1 if category k is observed
0 else

In this coding the reference category k is given by the vector (-1,...,-1). The
effect of categorical covariates (demographic and socio-economic variables)
are considered as fixed and constant and are estimated jointly with metrical
and spatial covariates.

3 Data and results

3.1 Data, Descriptive Statistics, and Models

The data used are from the 1992 Demographic and Health Surveys for the
three countries. The DHS collect information on a nationally representative
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sample of women in child-bearing age (15-49). The questionnaire collects
socioeconomic indicators for the respondent and her partner as well as the
household she resides in, and then gathers a large amount of information on
fertility patterns, health and care practises, health knowledge, and assesses
the anthropometric status of all children of these women who were born
within the past five years. Unfortunately, the surveys do not generate an
income variable and we therefore rely on household assets as a proxy for the
income situation of the households which has been found to be quite reliable
by Filmer (1999).

The 1992 DHS data sets of Malawi, Tanzania and Zambia are pooled together
to form one data set with the same socio-economic, demographic and health
characteristics of the household. This is possible because the DHS surveys
are carried out in standardized form, with the same list of socio-economic
and demographic characteristics. The sample now comprises a total of 844
clusters in 156 districts in the three countries. We take the clusters located
in a particular district as representative of that district.

Figure 3.1 Histogram (left) and kernel density estimates (right) of ”stunting”.
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The geographical distribution of the standardized Z-scores for the response
variable stunting, averaged within districts, was already displayed in Figure
1.1. Figure 3.1 shows a histogram and kernel density estimates of the distribu-
tion of the Z-scores, together with a normal density, with mean and variance
estimated from the sample. This gives clear evidence that a Gaussian model
is a reasonable choice for inference.

Empirical distributions of categorical covariates, together with codings used
in the analysis, are given in Table 3.2. Other categorical covariates, such as
the employment situation of the mother, household size and type of toilet
facility, turned out to be non-significant in the preliminary data analysis and
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were thus omitted . While all three countries do relatively poorly on the
reported socioeconomic indicators, there are significant differences between
the countries as well. In particular, households in Zambia appear to be better
off in terms of access to electricity, radio, and female educational attainment,
which was already apparent from Table 1.1 which showed that income and
education levels were higher in Zambia. This country is also more heavily
urbanized than the other two. Malawi and Tanzania are more similar, with
Malawi doing somewhat worse on access to electricity. Malawi also has worse
educational attainment at the lower levels but slightly higher among the
highest levels than Tanzania.

The empirical distributions of the metrical covariates mother’s body mass
index (BMI) and child’s age are shown in Figures 3.2. Note that only children
not older than five years are included in the sample.

Table 3.2 Factors analyzed in childhood undernutrition studies

Factor Malawi (%) Tanzania(%) Zambia (%) coding
Residence
Urban 25.5% 15.7% 42.7% 1 :urban
Rural 74.5% 84.3% 57.3% -1 :rural, ref. cat.
Has radio
No 54.8% 64.2% 57.2% -1: ref. cat.
Yes 45.0% 34.1% 42.4% 1: yes
Has electricity
No 94.8% 92.8% 80.5% -1: ref. cat.
Yes 5.0% 5.6% 19.2% 1: yes
Educational attainment
No educ. 41.6% 37.2% 17.9% -1 : ref. cat.(incl. inc. prim.)
Incomp. prim. 42.8% 18.9% 30.3%
Compl. prim. 10.1% 40.6% 32.8% cat. 1 (incl. inc. sec.)
Incomp. sec. 3.5% 3.0% 15.3%
Compl. sec. 1.7% 0.1% 2.1 % cat. 2 (incl. higher educ.)
Higher 0.2% 0.2% 1.5%
Sex of child
Male 50.7% 50.1% 50.1% 1: male
Female 49.3% 49.9 49.9% -1: ref. cat.
Mean BMI 21.96 21.75 21.96 metrical
District spatial covariate

We analyzed several models, differing in complexity. The simple linear model

ηi = α + w′
iγ. (12)

assumes that the fixed effects of covariates are the same for all three countries,
and includes dummies for regions.
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Based on previous analysis carried out separately for each country (Kan-
dala et al., 2001), we choose a geo-additive model with interactions between
country-effects and educational attainment as well as the availability of elec-
tricity in a next step. Taking Tanzania as the reference country, we define
0/1-dummies ZA and MA for Zambia and Malawi, and arrive at the model

η = α + f1(agci) + f2(bmii) + fstr(si) + funstr(si)
+β1edu1i + β2edu2i + β5edu1dmai + β6edu2dmai+
β7edu1dzai + β8edu2dzai + β9elcdmai + β10elcdzai + w′

iγ, (3.2)

This geo-additive model assumes that the nonlinear effects f1, . . . and the
fixed effects γ are the same for all three countries. This was confirmed by prior
separate analyses of the non-linear effects in each of the countries which were
found to be remarkably similar. Moreover, in a further step, we also analyzed
a varying coefficient model (see equation 2.4), to see if the patterns of the
nonlinear effects for mother’s body mass index and child’s age differ between
countries. It turned out, however, that there is no significant difference, so
that the effects of BMI and child’s age on stunting can be assumed to follow
the same general pattern in all three countries.

Figure 3.2 Histograms of ”mother’s body mass index” (left) and child’s age
(right).
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3.2 Results

The estimates of fixed effects of the covariates in w of the linear model (see
equation 3.1) are given in Table A1, and the linear effects of BMI and child’s
age are also shown in Figure A1. The regional-fixed effects are also shown in
the maps of Figures A2.
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The linear model assumes a positive relationship between mother’s BMI and
stunting and a negative relationship between the child’s age and stunting.
As we show below, this glosses over important non-linearities in the effects.

The other fixed effects are mostly as expected. Children from educated moth-
ers in urban areas with access to electricity and a radio are better nourished.
Female children are also slightly less stunted which has also been found in
other studies (Svedberg, 1996; Klasen, 1996; Hill and Upchurch 1995). The
regional fixed effects are mostly quite significant suggesting that the socioe-
conomic variables are unable to account for a considerable portion of this
regional variation.

Table A2 contains the fixed effects for the model 3.2, and the non-linear
effects of BMI and child’s age are shown in Figure A1. In the left-hand map of
Figure A3 we show the mean Z-scores by district based on the socioeconomic
covariates; in the right-hand map we then subtract the predicted Z-score from
the left-hand figure from the raw Z-score from figure 1.1 to get the raw spatial
residual, i.e. the component of the Z-score not explained by the socioeconomic
variables. This is then allocated to structured and unstructured effects. The
posterior mean estimates of the structured smooth spatial component fstr

and the unstructured random component funst are shown in the maps of
Figures A4 and A5.

In addition, posteriori probability maps indicate significance of the spatial
effects (white/black = significantly positive/negative effect on the Z-score,
grey = nonsignificant).

Note that the spatial effects are centered about zero, i.e. the average Z-
score over all districts is zero, while the overall level is estimated through the
intercept term α. Table A3 also shows averages of the spatial effects computed
separately for the three countries, indicating differences in the overall level
between countries. Note that these country effects are thus recovered from
the spatial analysis based on the estimated average district-effect in each
country and are not separately estimated.

Before commenting on the substantive results, it is important to point out
that the fit criteria improve considerably in this model vis-a-vis the previous
one. Also the DIC, which penalizes for the additional parameters is much
improved suggesting a considerably better fit of this flexible model.

The fixed effects in Table A2 are virtually identical to the linear model.
The only country interaction that turned out to be significant and thus were
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retained in the model were the interactions with mother’s education and
electricity. Here we find that the positive effect of high mother’s education is
much smaller in Zambia and Malawi than in Tanzania. Similarly, the positive
effect of having access to electricity is also significantly smaller in Malawi and
Zambia. It thus appears that these two socioeconomic indicators have a much
larger effect in Tanzania than elsewhere.

The recovered country effects from the district analysis are also reported here
and suggest that nutrition in Tanzania is, after controlling for socioeconomic
effects, significantly better than in the other two countries, although the effect
is small.

The left panel of Figure A1 shows the flexible modelling of the effect of
the BMI of the mother. Shown are the posterior means together with 80 %
pointwise credible intervals. We find the influence to be in the form of an
inverse U shape. While the inverse U looks nearly symmetric, the descending
portion exhibits a much larger range in the credible region. This appears
quite reasonable as obesity of the mother (possibly due to a poor quality
diet) is likely to pose less of a risk for the nutritional status of the child
as very low BMIs which suggest acute undernutrition of the mother. The
Z-score is highest (and thus stunting lowest) at a BMI of around 30-35.

Clearly, this inverse U has not been picked up in the linear fit and also a
simple polynomial would not pick up the differences between the ascending
and descending portion. The right panel of Figure A1 shows the effect of the
child’s age on its nutritional status. As suggested by the nutritional literature,
we are able to discern the continuous worsening of the nutritional status
up until about 20 months of age. This deterioration set in right after birth
and continues, more or less linearly, until 20 months. Such an immediate
deterioration in nutritional status is not quite as expected as the literature
typically suggests that the worsening is associated with weaning at around
4-6 months. One reason for this unexpected finding could be that, according
to the surveys, most parents give their children liquids other than breastmilk
shortly after birth which might contribute to infections.

After 20 months, stunting stabilizes at a low level. Through reduced growth
and the waning impact of infections, children are apparently able to reach a
low-level equilibrium that allows their nutritional status to stabilize.

We also see a blip around 24 months of age. This is picking up the effect of a
change in the data set that makes up the reference standard. Until 24 months,
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the currently used international reference standard is based on white children
in the US of high socioeconomic status, while after 24 months, it is based
on a representative sample of all US children (WHO, 1995). Since the latter
sample exhibits worse nutritional status, comparing the Tanzanian children
to that sample leads to a sudden improvement of their nutritional status at
24 months. This drawback of the reference standard is one reason for WHO’s
current efforts to construct a new reference standard (WHO, 1999).

Figure A3 (left) shows that the socioeconomic effects are able to explain a
fair amount of the spatial variation of undernutrition in the three countries.
This can also be seen that the range of standardized Z-scores in the right-
hand figure (which shows the spatial residual) is only about half as large as
the total variation was in Figure 1.1.

But the spatial residuals in the right-hand side of figure A3 show that much
of the variation in stunting remains to be explained. Moreover, one can see
already that the spatial residuals transcend the borders. While there is some
clear demarcation between the better districts in Western Tanzania and the
worse districts just across the border in Zambia, there appears to be a con-
tinuum of negative spatial residuals that runs from Northeastern Zambia,
Northern and Central Malawi, and into Southern Tanzania.

These spatial effects are then allocated by the model into structured and un-
structured effects which are shown in Figures A4 and A5. Several important
findings emerge. First, many of these structured spatial effects are significant.
Thus we clearly have a pattern of worse nutrition in Eastern and Northeast-
ern Zambia, Central Malawi, and Southern Tanzania. Conversely, Z-scores
are significantly better in Northern Tanzania. Second, while these structured
effects suggests worse undernutrition in a belt ranging from Northern Zambia
to Southern Tanzania, it is interesting to note that the districts in Northern
Malawi, and South-Western Tanzania are not significant components in that
belt. Thus while some spatial residuals do spill significantly across borders,
e.g. between Northern Zambia and Central Malawi , some borders do seem
to matter in the sense that spatial residuals remain noticeably distinct in the
analysis on the two sides of borders.

Third, the structured effects are clearly more important than the unstruc-
tured random effects. Only very few of the unstructured effects are significant
and the range of unstructured effects is much smaller than the structured
ones. Thus most of the spatial residual effect was allocated to the structured
ones, i.e. the effects where neighborhood matters. This seems reasonable given
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the strong spatial pattern that one can determine in the total spatial residual
(Figure A3 right). 2

The few unstructured effects that do exist are interesting. First, in Tanzania,
we find that stunting in the capital Dar es Salaam is significantly better after
accounting for socioeconomics and structured spatial effects. This situation
of better undernutrition in large cities is not replicated in Zambia. In fact,
Lusaka has no better stunting, even though surrounding districts have signif-
icantly better undernutrition rates; some cities in the copperbelt are actually
doing significantly worse (see the small districts at Zambia’s Northern border
in the central part of the country). This may be related to the effect of the
decline in copper production and the impact of general economic decline and
structural adjustment policies that have affected urban areas more than rural
areas (World Bank, 2000). Moreover, there is one district in Northern Malawi
and two in Northern Tanzania that have significantly positive unstructured
effects.

These subtle effects are clearly not captured by the provincial fixed effects in
Figure A2 where both the spatial pattern as well as the fine differentiations
within provinces are not adequately captured.

The clear structured pattern begs for an explanation. None of the socioe-
conomic variables we tried in addition to the ones mentioned are able to
reduce these pronounced spatial effects. One common factor to most of the
areas that are negatively affected are that these areas are at comparatively
low elevations while the areas of positive spatial effects tend to be at higher
elevations. This distinction is most noticeable and clear in the South-North
divide in Tanzania, but also noticeable elsewhere. The difference could well
be due to differences in disease prevalence such as Malaria, Schistosomasis,
and other diseases that thrive at lower elevations and are particularly prob-
lematic along the Rift Valley. In an exploratory analysis, we compared the
spatial pattern of prevalence of fever, diarrhea, cough or any of the three
illnesses combined with the structured spatial pattern and found that the
spatial distribution of fever (presumably related to Malaria) has a fairly
close resemblance to the structured spatial effects while the others do not

2The allocation into structured and unstructured effects appears quite robust as it did
not change greatly when the three countries were considered separately (Kandala, 2002),
and it also is reasonable in the sense that district with positive spatial residuals that are
surrounded by districts with negative spatial residuals will influence each other and average
out the effects with the residual of that process being picked up by the unstructured effect.
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appear to play a significant role. Future work should explore this linkage fur-
ther 3 Moreover, the poor nutritional status in Northeastern Zambia could
additionally be related to the poor access to health facilities and the general
remoteness of these areas which are poorly served with transportation links
(World Bank, 2000). These issues deserve closer attention and this procedure
is merely able to highlight the important spatial patterns of undernutrition
without being able to fully explain them.

Quite clearly, the methods used here are able to identify more subtle so-
cioeconomic and spatial influences on undernutrition than reliance on linear
models with regional dummy variables would have allowed. As such, they are
useful for diagnostic purposes to identify the need to find additional variables
that can account for this spatial structure. Moreover, even if the causes of
the spatial structure are not fully explained, one can use this spatial informa-
tion for poverty mapping and associated targeting purposes, which is gaining
increasing importance in policy circles that attempt to focus the allocation
of public resources to the most deprived sections of the population.

4 Conclusion

In this paper we pooled the data from the 1992 Demographic and Health
surveys of Malawi, Tanzania, and Zambia to model the socioeconomic and
spatial determinants of undernutrition. We found strong support for our ap-
proach of flexibly modelling some covariates that clearly have non-linear influ-
ences and for including a spatial analysis. The spatial analysis shows distinct
spatial patterns that point to the influence of omitted variables with a strong
spatial structure or possibly epidemiological processes that account for this
spatial structure.

The maps generated could be used for targeting development efforts at a
glance, or for exploring relationships between welfare indicators and others
variables. For example, a mortality or undernutrition map could be over-
laid with maps of other types of data, say on poverty, agro-climatic or other
environmental characteristics. The visual nature of the maps may highlight

3The measure of disease prevalence used here, recall of whether anyone in the household
had been ill with fever, cough, or diarrhea in the past 2 weeks is less perfect as it is quite
subjective, based on a short-term recall, and has considerable noise. Future work needs to
address the question of disease environment more closely
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unexpected relationships that would be overlooked in a standard regression
analysis.
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Table A1 Linear Model (Model 3.1)

Deviance: 12266.3 DIC :12289.1

Variable mean 10% quant. 90%quant.
Constant 0.08 -0.001 0.17
Mother’s BMI 0.02 0.02 0.03
Child’s age -0.02 -0.02 -0.02
Urban 0.08 0.07 0.10
Rural -0.08 -0.10 -0.07
Male -0.05 -0.06 -0.04
Female 0.05 0.04 0.06
No edu. and incompl. prim. edu. Tan. -0.13 -0.16 -0.11
Compl.primary edu. and incompl. sec. edu Tan. -0.05 -0.08 -0.02
Secondary edu. and higher Tan. 0.19 0.13 0.24
Has electricity Tan. 0.08 0.06 0.10
No electricity Tan. -0.08 -0.10 -0.06
Has radio Tan. 0.05 0.04 0.06
No radio Tan. -0.05 -0.06 -0.04
Coastal 0.02 -0.01 0.05
Northern Highlands 0.22 0.17 0.27
Lake 0.15 0.12 0.18
Central 0.03 -0.02 0.07
Southern Highlands -0.05 -0.09 -0.01
South -0.24 -0.28 -0.19
North Mal. 0.03 -0.01 0.07
Central Mal. -0.07 -0.11 -0.03
South Mal. -0.01 -0.024 0.05
Central 0.08 0.03 0.14
Copperbelt 0.01 -0.04 0.05
Eastern -0.08 -0.14 -0.03
Luapula -0.22 -0.28 -0.17
Lusaka 0.04 -0.01 0.09
Northern -0.17 -0.22 -0.11
North-Western -0.06 -0.13 0.01
Southern 0.17 0.13 0.22
Western 0.14 0.08 0.21

Figure A1 Effects of mother’s body mass index (left) and child’s age (right) on
stunting for Model 3.1 and 3.2.
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Table A2 Fixed effects for Model 3.2
Deviance: 10826.2 DIC : 10938

Variable mean 10% quant. 90%quant.
constant 0.29 0.23 0.34
Urban 0.08 0.07 0.10
Rural -0.08 -0.1 -0.07
Male -0.05 -0.06 -0.04
Female 0.05 0.04 0.06
No edu. and incompl. prim. edu. Tan. -0.21 -0.29 -0.12
Compl.primary edu. and incompl. sec. edu Tan. -0.16 -0.24 -0.07
Secondary edu. and higher Tan. 0.37 0.20 0.53
Add. effect of no edu. and incompl. prim. edu. Mal. 0.08 -0.02 0.19
Add. effect of Compl.primary edu. and incompl. sec. edu. Mal. 0.16 0.06 0.26
Add. effect of Secondary edu. and higher Mal. -0.24 -0.45 -0.06
Add. effect of no edu. and incompl. prim. edu. Zam. 0.07 -0.02 0.16
Add. effect of Compl.primary edu. and incompl. sec. edu. Zam. 0.10 0.01 0.19
Add. effect of Secondary edu. and higher Zam. -0.17 -0.35 -0.001
Has electricity Tan. 0.14 0.10 0.18
No electricity Tan. -0.14 -0.18 -0.10
Has Radio Tan. 0.05 0.04 0.06
No Radio Tan. -0.05 -0.06 -0.04
Add. effect of electricity Mal. -0.02 -0.07 0.04
Add. effect of no electricity Mal. 0.02 -0.04 0.07
Add. effect of electricity Zam. -0.07 -0.12 -0.03
Add. effect of no electricity Zam. 0.07 0.03 0.12

Figure A2 provincial fixed-effects Model 3.1

0-0.24 0.22
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Figure A3 Mean of stunting predicted by the covariates for Model 3.2 (left) and
Raw spatial residual of stunting for Model 3.2 (right).

0-0.488405 0.3963915 0-0.4438546 0.4476736

Figure A4 Structured posterior mean (left) and posterior probabilities (right) of
stunting for Model 3.2

0-0.34243 0.426324
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Figure A5 Unstructured posterior mean (left) and posterior probabilities (right) of
stunting for Model 3.2

0-0.13924 0.163021

Table A3 Dummies for country main effects Model 3.2

Dummy variable Model II
Dummy for Tanzania 0.1
Dummy for Malawi -0.1
Dummy for Zambia -0.1
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