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Abstract 

A crucial task in modern genetic medicine is the understanding of complex genetic diseases. The main 
complicating features are that a combination of genetic and environmental risk factors is involved, and the 
phenotype of interest may be complex. Traditional statistical techniques based on lod-scores fail when the 
disease is no longer monogenic and the underlying disease transmission model is not defined. Different 
kinds of association tests have been proved to be an appropriate and powerful statistical tool to detect a 
“candidate gene” for a complex disorder. However, statistical techniques able to investigate direct and 
indirect influences among phenotypes, genotypes and environmental risk factors, are required to analyse the 
association structure of complex diseases. In this paper we propose graphical models as a natural tool to 
analyse the multifactorial structure of complex genetic diseases. An application of this model to primary 
hypertension data set is illustrated.  

Keywords: complex disorders, conditional independence, genotype, graphical chain models, phenotype. 

 

1. Statistical problems and strategies in approaching multifactorial genetics disease 

Modelling genetic diseases is in general a hard task. It is difficult to make inference on  the 
expressions of a quantitative observed trait describing the disease (phenotype) starting 
from the genetic information (genotypes). This is particularly true when dealing with 
multifactorial genetic diseases. Indeed, genetic diseases can be roughly divided into two 
main categories: Mendelian and multifactorial genetic disorders. Mendelian disorders (e.g. 
Down syndrome, Huntington disease) are rare and mainly monogenic, meaning that the 
disease is due to a single gene mutation. The phenotype for these diseases can be clearly 
identified and the distinction between affected and unaffected population is clear-cut. 
Mutations are rare and recent so that a causal gene-disease transmission mechanism can 
be identified. This means that it is not appropriate to talk about genetic predisposition of 
individuals: either they carry the deleterious mutation and will become ill, or they do not. 
Linkage analysis based on lod-score tests is the main statistical tool to detect genetic risk 
factors in these disorders. For further details we refer to Ott (1991). 
In this paper we focus on modelling multifactorial genetic diseases. Examples of complex 
diseases are hypertension, multiple sclerosis, schizophrenia, diabetes and other common 
disorders. They are far more common than Mendelian disorders, and there is no defined 
pattern of segregation in families. In other words no clear cut-off between affected and 
unaffected is identified in the population. This leads to a  misleading definition of the 
phenotype which is a primary difficulty for making inference in these settings. These 
diseases are called multifactorial because their complex structure involves a combination 
of genetic and environmental risk factors, where the genetic predisposition is due to the 
lack of a clear gene-disease transmission mechanism. They are not transmitted but only 
promoted by a collection of factors some of which are hereditary.  
Specifically in the paper we address the following issues: 
i) defining the complex phenotype; 
ii) identifying genetic risk factors; 
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iii) modelling their role; 
iv) including interactions between candidate genes (epistatic interactions) as well as 

between genes and environmental factors. 
Linkage analysis (Clarget-Darpoux, 1998) may help to indicate a promoter region where a 
“candidate gene” (functionally related to the disorder) lies. Association studies are 
commonly used (Risch, 1990, Bickeboeller and Clarget-Darpoux, 1995) to investigate a 
possible association link between the candidate gene and the multifactorial disease. 
However, a (2×2) contingency table approach is not appropriate to identify direct and 
indirect influences of both etiological predisposing factors as well as the association 
structure among environmental and genetic determinants. 
Here we propose the use of graphical chain models to analyse multifactorial genetic 
diseases. Graphical chain models are probability models for multivariate random 
observations whose independence structure is encoded in a graph able to represent both  
associative and causal relations. These models are already widely used in social sciences 
as efficient tools to analyse observational studies (Pigeot et al. 2000). In the paper we will 
show their suitability in evaluating the complex association structure among prognostic 
factors in a complex diseases framework.  
We start our analysis by illustrating how graphical chain models methodology is consistent  
with the genetic representation. The search for the pathogenetic disease mechanism 
(Figure 1) starts from the top of complexity, at whole organism level, down to the DNA 
level. The disease phenotype is separated into several intermediate phenotypes at 
different biological organisation levels.  
The genetic mechanism in Figure 1 indicates that: 
• environmental factors and polygenes describe a large number of potential background 

influences.  
• The final phenotypes can be identified as the mixed multivariate final responses. 
• Intermediate phenotypes act as variables mediating between the final phenotypes and 

the potential background influences. 
This hierarchy leads to identify a recursive structure in the genotype-phenotype chain 
which can be expressed in statistical terms. A first crude approximation to the biological 
chain in Figure1 is shown in Figure 2. 
 
(Figure 1 here) 
(Figure 2 here) 
 
The paper is structured as it follows. In Section 2 an introduction to graphs and graphical 
chain models is given. In Section 3 background on the relevant variables of the 
hypertension study is introduced. A preliminary analysis is also provided. The graphical 
chain model for hypertension is derived and shown in Section 4. Results and conclusions 
are presented in Sections 5 and 6, respectively. 

 

2. Graphical chain models 
 
The framework introduced above illustrates a complex situation where the power of the 
graphical representation can be exploited. In multifactorial genetic diseases phenotypic, 
genetic, environmental and demographic variables are all involved.  
Graphical chain models (see Cox and Wermuth, 1996) are able to describe all these 
variables and their dependence structure with a single graph. 
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A graph is a pair G=(V, E), where V is the set of vertices, { }qV ,,1K= , and E is the set of 
edges, i.e. a subset of V×V of ordered pairs of distinct vertices, VVE ×⊆ . Consider two 
vertices v and w connected by an edge. If both (v, w) and (w, v) are in E, the edge is 
undirected (and it is represented with a line); if (v, w) is in E but (w, v) ∉ E, the edge is 
directed (and it is represented with an arrow pointing to w from v). 
A chain graph contains both directed and undirected edges. Moreover the vertex set V of a 
chain graph can be partitioned into ordered blocks (or chain components) B1, ..., Bk such 
that all edges between nodes in the same block are undirected, and all edges between 
nodes in different blocks, say Bi and Bj with i<j, are arrows pointing from a node in Bi to a 
node in Bj. Notice that all arrows between any two components must have the same 
direction, e.g. see Figure 3. 

 
(Figure 3 here) 
 
In the graphical model setting, the nodes represent random variables. In a chain graph the 
variables are arranged in ordered blocks. Variables in the same block are considered on 
an equal footing and their association structure is taken to be symmetric. When two 
variables belong to different blocks, the variable in the lower-numbered block is considered 
logically antecedent (or “causal”, roughly speaking) to the variable in the higher-numbered 
block. For example in Figure 3, δX ∈B2 is logically antecedent to βX ∈B3. Since chain 
graphs contain both directed and undirected edges they represent at the same time and by 
means of one single picture the association structure and the “causal” relations. Notice 
that in this paper the adjective “causal” is used mainly to qualify an explanatory-response 
variable relation. 
When both discrete and continuous variables are analysed – as in this paper (see Figures 
1 and 2) – the vertices of the graphs are partitioned in two groups denoted with ∆ and Γ so 
that V=∆∪Γ with ∆∩Γ = ∅. These graphs are named marked graphs. The set of discrete 
vertices is denoted with ∆ and the set of continuous nodes is denoted with Γ. Discrete 
nodes are represented by dots and continuous nodes by circles. Figure 3 is an example of 
a marked graph. 
A crucial point in the use of graphical models is the possibility to describe and to read 
independencies (marginal and/or conditional) from the graph. The relevant information is 
contained in the graph without boxes, which specifies the part of the statistical model 
providing the set of independencies. In particular, the absence of an edge between two 
nodes, v and w, in the same block Bj, or an arrow missing from a node v in Bi to a node w 
in Bj, i<j, implies that the associated variables are independent conditionally on all the 
variables in the blocks B1, …, Bj except v and w. Formally we write 

{ }wvBBwv j ,\| 1 ∪∪⊥ K  (following the notation of Dawid, 1979). For example in Figure 3, 
the arrow missing from ∈δX B2 to ∈αX B3 means that δX  and αX  are independent given 
all the other variables in B3, B2 and B1, { }δαδα XXBBBXX ,\| 321 ∪∪⊥ . This property is 
known as the pairwise Markov property for chain graphs. Other Markov properties for 
chain graphs have been defined (Frydenberg, 1990) which are equivalent when the joint 
distribution is positive. For a detailed and rigorous account on this, see Lauritzen (1996). 
According to a proposed block structure, the joint density function can be recursively 
factorised. So, given the ordered blocks B1, ..., Bk, ),,,()(

21 kBBB xxxfxf K=  factorises as  

                                              ( )∏=
=

−

k

t
BBBB tt

xxxxfxf
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where ( )
121

,,,
−tt BBBB xxxxf K  is the conditional distribution of the t-th block given the first  

(t-1) blocks. This distribution can be further simplified exploiting the conditional 
independence properties embodied in the graph. 
A chain graph model is a family of multivariate distributions satisfying any of the chain 
graph Markov properties embodied in the graph. Regarding the distributional assumptions, 
multivariate response models for mixed variables are needed. The distribution should also 
be positive to guarantee equivalence of the Markov properties. The conditional Gaussian 
(CG) distribution (see Wermuth and Lauritzen, 1990 and Lauritzen, 1996) satisfies the 
above requirements. It can be used except when there are discrete responses and 
continuous covariates. In this case we can use the CG-regression model, which describes 
the dependence of a CG distribution over response variables on explanatory variables. CG 
regression is the basic distributional element that can be used in the construction of chain 
graph models. While the Markov properties over chain graphs give a key to read 
independencies from the given chain graph, associating a CG distribution to the graph 
provides a connection between zero-valued parameters and absence of certain edges in 
the graph. 
 
2.1 Graphical chain models and the genotype-phenotype chain 

 
Chain graphs provide a suitable representation of the genotype-phenotype chain (Figure 
1). The subject-matter knowledge helps us to determine a block ordering (dependence 
chain). Starting from the biological chain, we can identify three main blocks: B1 for the 
genotypes and socio-demographic and environmental variables (background variables); B2 
for the intermediate phenotypes and other environmental variables (intermediate variables) 
and B3 for the phenotypes (response variables). In this sense we see that chain graphs 
constitute a natural tool to represent the genotype-phenotype chain.  
To investigate and explore the dependence and independence structure, a joint 
distribution function is associated to the graph and factorised recursively according to the 
block structure. For instance, by the pairwise Markov property, we can read from Figure 4 
that Gen1 is not informative for the final phenotype FP2, once the intermediate phenotype 
(IP), environmental factors (Env) and Gen2 are known. We have FP2⊥Gen1|(Env, Gen2, 
IP, FP1). 
 
(Figure 4 about here) 
 
According to the block ordering in Figure 4, the joint probability function can be factorised 
as follows 

).,2,1(),2,1|(),2,1,|2,1(
),2,1,,2,1(

EnvGenGenfEnvGenGenIPfEnvGenGenIPFPFPf
EnvGenGenIPFPFPf

⋅⋅=
=   

 

By the recursive factorisation property a structurally complex problem is split into 
computationally simpler subproblems, which can be analysed separately using appropriate 
well-established methodologies. The resulting dependence model is equivalent to the one 
obtained from the joint distribution. This procedure leads to a gain in efficiency. Thus 
graphical chain models are also a useful tool for the analysis of complex disease 
association structure.  
To provide a statistical representation of the association structure, a dependence chain 
can be postulated starting from a biological chain. Then an inferential engine can be 
related to this representation to explain and obtain information about the data generating 
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process. Using the Cox-Wermuth strategy (Cox and Wermuth, 1996) we: 1) discover 
statistically significant “causal” relations, interactions and associations, i.e. we identify the 
arrows and edges to be included in the graph; 2) propose a complex quantitative trait 
predictor from discrete and continuous measurements of intermediate phenotypes, 
environmental factors and socio-demographic variables; 3) represent a number of indirect 
paths to the response of primary interest. 
A causal interpretation of graphical chain models applied to the complex genetic diseases 
although natural, nevertheless is not automatic and can be misleading. In chain graphs, 
directed edges are interpreted as causal associations whereas undirected edges represent 
non-causal association. An ambiguous interpretation of the graph however may arise due 
to the different nature of non-causal associations. There are situations where an 
undirected edge is needed for an association between two variables thought to be causal 
but in which the causality direction is unknown. For a detailed discussion about causality in 
chain graphs we refer to Lauritzen and Richardson (2002). Furthermore, an explanatory-
response variable causal relation may be appropriate only if intervention is allowed and the 
variables can be manipulated (as for instance in clinical trials). In this paper we fit the 
graphical chain model to an observational cross-sectional study. According to Pearl (2000) 
and Edwards (2000), the effects of interventions are difficult to account for in observational 
studies due to potentially unobserved confounders. These considerations lead to interpret 
every causal conclusion of the analysis as explorative results for further analyses. 
The Cox-Wermuth strategy explores conditional relations by means of a series of 
univariate regressions instead of multivariate CG-regressions, reducing the complexity of 
the analysis. A drawback is that it does not necessarily fit a CG distribution so that one has 
to be careful in interpreting missing edges as conditional independence statements. Thus, 
the conclusions in terms of conditional independencies suggested by the Cox-Wermuth 
strategy used in the following analyses, have to be read in exploratory terms only.  
The TM algorithm (Edwards and Lauritzen, 2001) has been proposed to fit CG-regression 
models. It is, however, computationally intensive for multivariate mixed response models.   
 
 
3.  Essential hypertension as a complex disease 
 
Essential hypertension and blood pressure regulation are complex and multifactorial (for 
clinical details see Cusi and Bianchi, 1998). More than 40 years of epidemiological studies 
have identified different environmental factors associated with the development of 
essential hypertension (age, diet, exercise and stress). While much is understood about 
environmental factors, the genetic factors are still largely unknown. Genetic analysis of 
essential hypertension, as that of many other complex diseases suffers from three main 
complications: 
a) each gene may have only a small quantitative effect on the disorder. 
b) It is likely that essential hypertension is genetically heterogeneous. Different forms of 

essential hypertension share only the same final phenotype, but have different 
pathogenetic mechanism. 

c) Epistasis, or gene interactions, is very likely to be present in essential hypertension and 
is an aspect of what is called context dependency.  

In this analysis we deal with cross-sectional observations of 285 patients, equally 
distributed over sex, randomly selected from a group of 44 to 64-years old Vobarno 
population (n=8000). Phenotypic data, information on environmental factors, and DNA 



 6 

were obtained in this sample; clinical and biomedical investigations were performed on the 
relationships among phenotypes and certain candidate genes (Castellano et al. 1995). 
Within these patients some are treated (indicated by variable “Therapy” equal to 1) for 
being likely to develop hypertension  and other related pathologies (ischemic heart 
disease, hyperlipidemy). Those who undergo a treatment are classified as “at risk” for 
hypertension. The other patients  (with “Therapy” = 0) either are not thought to be at risk 
and do not need to be treated or are not compatible with the treatment. The variable 
Therapy can then be considered as an indicator for the hypertensive risk set. Thus, it can 
be used as outcome to investigate the effect of some biological indicators on the 
probability of becoming at risk for hypertension.  
Family clinical history is accounted for by means of the following indicator variables 
representing presence or absence in the family of: stroke (FamSTR); hypertension 
(FamHYP); mellitus diabetes (FamDIA); dyslipidemia (FamDYS). Even though these 
variables can provide some genetic information, they may also be associated with 
environmental factors. 
The construction of the graphical chain model is done following the Cox and Wermuth 
variable selection strategy (1996) whose first step consists in postulating a dependence 
chain.  
Before postulating this chain, the relevant variables are selected from the complete set of 
observed variables. Preliminary multivariate analyses are performed in order to determine 
phenotypes and genotypes of interest. The resulting variables will represent the vertices of 
the chain graph, as described in Section 2. Boxes including those variables, which can be 
taken as being on an equal footing, define the chain components. 
 
3.1 Preliminary screening 
 
Thirteen metric variables have been analysed to screen the most important quantitative 
traits. A hierarchical cluster analysis was performed on them to reduce heterogeneity in 
the data. The best results1 based on six traits partitioned the whole data set into two 
clusters. The selected phenotypes are: BMI, systolic blood pressure (SBP), plasma 
glucose (glycaemia level as indicator, denoted with Glyc), triglycerides (Trig), cholesterol 
(Chol), uric acid (Uric).  
A biological explanation consistent with the cluster analysis results can be suggested: a 
high BMI may be associated with an insulin resistance phenomenon that produces an 
increase in cholesterol, plasma glucose, uric acid and triglycerides. As a consequence, an 
increased activity in the sympathetic nervous system is related to higher blood pressure 
level. This phenomenon is known as insulin resistance mechanism. Its importance will 
be shown later.  
The excluded variables are quantifications of heart frequency, pulsations, ventricular mass 
and alternative measurements of body mass. They have been classified as redundant 
since they provide similar information as the included traits. Therefore they do not play the 
role of confounders for further analyses. Genetic literature (Johnson et al., 2003) supports 
the results of this preliminary cluster analysis since the selected phenotypes are proved to 
be those more related to a genetic basis. 
The univariate statistics for the clustered traits are shown in Table 1. 
 

                                             
1 the silhouette index (Kaufman and Rousseeuw, 1990) has been used as a goodness of clustering 
indicator. 
 



 7 

 
Table 1 Univariate statistics for the clustered traits 

  
Descriptive statistics 

 
Variable Minimum Maximum Mean Std. Deviation 
BMI 18.75 40.18 26.0275 3.2823 
SBP 95.00 166.00 123.9846 11.8724 
Glyc 56.00 172.00 93.4089 14.6304 
Chol 121.00 364.00 227.1227 42.8741 
Trig 60.00 600.00 117.7584 74.2543 
Uric 2.60 10.30 5.4184 1.2982 

 
 
The data set includes information on eleven different genotypes considered as possible 
candidate genes. In candidate gene studies a starting point is to detect whether one or 
more genes can be considered as “natural” candidates for a complex disease, i.e. 
functionally related to the disease. A factor analysis is performed to identify eventual 
groups of polyphormisms which are likely to act together in regulating certain functions. 
This analysis is also useful to evaluate the explicative contribution of the analysed genes 
in terms of explained variation (in population studies the contribution ranges from 30% to 
65% of the total variation, Cavalli Sforza and Bodmer, 1973). 
The results of the factor analysis, shown in Table 2, will be useful to interpret the final 
chain. Three main factors are identified explaining 30% of the total genetic variance. They 
can be interpreted within a correspondent genetic “partition”. Factor 1 and Factor 2 will be 
called “adrenergic receptor factors” (ARF) given that the factor components are mainly six 
single nucleotide polymorphisms (Snps1, Snps2, Snps3, Snps4, Snps5, Snps6) of the 
adrenergic receptors genes. Specifically, Snps3 and Snps2 play a relevant role with 
respect to ARF1; their loadings on ARF1 are 0.987 and –0.568, respectively. Since these 
Snps are two polymorphisms on the so called β-adrenergic receptor which alone does not 
commonly show a main effect on hypertension, the results of the factor analysis would 
suggest a synergistic effect of two functional variants of the gene acting in opposite 
directions. In simple words, Snps3 could act as an increasing mutation risk for final or 
intermediate hypertension phenotype and Snps2 as detrimental. This is consistent with the 
literature (Bengtsson et al., 2001) since the two mutations are related to different 
pathogenic mechanisms. In addition the important role played by Snps6 on Factor 2 
(loading on ARF2 = 0.992), a polymorphisms on α-adrenoreceptor, highlights the well-
known association of Snps6 with hypertension through dyslipidemia and cholesterol. The 
third factor (Raas factor) is mainly related to single nucleotide polymorphisms of the renin 
angiotensin aldosterone system genes (Raas). This could be of particular interest because 
Raas genes regulate the sympathetic nervous system.  
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Table 2 Results of the factor Analysis 
 
 ARF1 ARF2 RAAS 
Adducine   0.139 
Snps1 -0.185   
Snps2 -0.568   
Snps3  0.987 -0.136  
Snps4 -0.110   
Snps5  0.518  
Snps6  0.127 0.992  
Raas1 -0.107  0.991 
Raas2    
Raas3    
Raas4   0.424 
 
 
The genotype distributions within the sample are given in Table 5 (Appendix 1). The three 
levels indicate the more frequent (wild type) homozygous (level 0), the heterozygous (level 
1) and the less frequent (mutated) homozygous (level 3) respectively. For details on the 
genotype definitions see Castellano, Di Serio et al. (2002). 
  
 
4. A graphical chain model for essential hypertension 
 
We now provide a graphical model representation of the genotype-phenotype chain 
dependence structure starting from the hypertension data set illustrated above. The 
analysis is articulated in the following four main steps of the Cox-Wermuth strategy: 
• postulation of a dependence chain 
• screening for interaction and non-linearities 
• system of univariate regressions 
• variable selection strategy for one univariate regression. 
The statistical analysis is performed with the software GraphFitI2 (Blauth et al., 2000) 
designed to fit a graphical model to a multivariate data set. The software implements the 
Cox-Wermuth strategy and it performs a preliminary screening of the variables and 
different types of regression analyses depending on the measurement scale of the data. 
 
4.1 Postulated dependence chain 
 
Postulating the first rough dependence chain is a crucial step for graphical chain model 
derivation. The first chain is mainly based on both prior knowledge of the biological 
mechanisms and some preliminary statistical analyses. The researcher’s initial idea and 
subject-matter knowledge play a fundamental role. The performed analysis is confirmatory, 
i.e a block ordering is suggested by experience and background knowledge, while 
association and causal structures are inferred. Generally, the postulated chain is the sum 
of qualitative knowledge and quantitative information provided by previous exploratory 
data analyses. Moreover, in medical genetic contexts researcher’s prior information is 
fundamental for the choice of the genes to be sequenced. If the analysis were purely 
                                             
2 Web site for download: http://www.stat.uni-muenchen.de/~blauth/GraphFitI/graphFitI.html. Author: Angelika 
Blauth.  
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exploratory, i.e. without any subject-matter knowledge, postulating a dependence chain 
could be inconsistent with the aim of finding the most parsimonious independence model 
(Lauritzen and Richardson, 2002).   
In this paper two alternative chains, representing two different biological hypotheses, are 
postulated and compared. Two graphical models are then derived together with the 
respective sets of association and causal relations. The two initial chains are represented 
in Figure 5. 
Reading the chain in Figure 5(a) from left to right (consistently with the candidate gene-
phenotype chain in Figure1) three categories of variables can be identified. A first chain 
component (“pure response”) contains the selected phenotypes (SBP and BMI). A second 
chain component includes the indicator variable (Therapy) for being on chronic drug 
treatment for high blood pressure. The third group, corresponding to the biological level, is 
built using plasma glucose (glycaemia level as indicator, Glyc), triglycerides (Trig), 
cholesterol (Chol), and uric acid (Uric) measurements. The fourth chain component 
includes environmental and genetic risk factors (pure background variables). The 
genotypes are those analysed in the factor analysis and described in Appendix 1. The 
family variables have bee illustrated in Section 3.  
The second chain, Figure 5(b), differs from that in Figure 5(a) mainly in the role of BMI and 
Therapy. In the first postulated chain, a hypothesis is formulated concerning the 
identification of the final phenotype in terms of the quantitative traits BMI and SBP. In the 
second postulated chain systolic blood pressure is the only final quantitative phenotype 
and BMI is considered as a possible explanatory variable affecting the values of the other 
quantitative traits. This assumption is more consistent with the “insulin resistance” 
mechanism described in the previous section. Furthermore, the variable Therapy is now 
placed on the same footing as the quantitative intermediate traits. In this way we study 
how being at risk for hypertension (Therapy=1) is associated with other biological 
determinants rather than the impact of such indicators on Therapy itself.  
By comparing the two postulated chains we address the following crucial question: is a 
high body mass index an indicator of hypertension or a prognostic factor? An answer to 
this question can be found through the information gained from biological, genetic and 
environmental variables about the determinants of the final phenotype.  
In the following subsections the screening and estimation procedures will be illustrated in 
detail for the first postulated chain (Figure 5(a)). We will then give summarised results for 
the second chain (Figure 5(b)).  
 
(Figure 5(a) and 5(b) here) 
 
4.2 Screening for interactions and non-linearities 
 
This step of the analysis aims at searching significant interaction terms or non-linear 
influences to be included in the multiple regression analysis. Only those interactions and 
non-linear relations showing either statistical relevance or biomedical interest are selected. 
The screening tests (Cox and Wermuth 1994) are based on testing the systematic 
departure from multivariate normality.  To detect significative cross-product terms, the t-
values from trivariate linear regressions, such as that of a response variable Y on Xi and Xj 
and Xi*Xj, are examined. In absence of interactions, for large sample sizes, the studentized 
t-statistics approximately follows a standard normal distribution.  
The software GraphFitI produces normal probability plots of the expected value of the 
normal ordered statistic versus the ordered t statistics. Under the assumption of no 
interaction, the points spread along the diagonal. Therefore points far from the diagonal 
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line (departure points) denote highly significative interaction terms. “Epistatic interactions” 
between the candidate genes could be suggested performing this analysis.  
The screening for non-linearities proceeds likewise. Quadratic terms only are included 
since Taylor expansions up to the second order are a good approximation tool of non-
linear dependency in a large framework. Normal probability plots are drawn to find out 
eventual departure points denoting significative quadratic effects. 
The screening for interactions and non-linearities is performed separately for each chain 
and involves all the variables. It produces similar graphical plots and identical statistical 
results for both chains (Figures 6(a), 6(b), 7(a), 7(b)).  
 
(Figure 6(a), 6(b) here).  
 
(Figure 7(a), 7(b) here).  
 
The following interactions and non-linearities, common to both chains, are included as 
explicative variables in the system of regressions: 
1. Interaction between age and genotype Raas2 in affecting BMI. 
2. Interaction between age and FamDYS in affecting the BMI. 
3. Interaction between age and FamDYS in affecting the SBP.  
4. Interaction between FamHYP and FamDIA in affecting SBP 
5. Interaction between genotype Raas3 and FamDIA in affecting cholesterol  
6. Interaction between genotype Raas3 and tryglicerides in affecting cholesterol 
7. Interaction between genotype Snps6 and tryglicerides in affecting plasma glucose 

(Glyc) 
8. Interaction between genotype Snps6 and glycaemia in affecting tryglicerides 
9. Quadratic effect of triglycerides on both cholesterol and uric acid  
10. Quadratic effect of age  on SBP 
11. Quadratic effect of plasma glucose (Glyc) on tryglicerides 
Note that in the screening phase biological, genetic and environmental components are 
involved.  
 
4.3 System of univariate regressions 
 
This step consists in investigating the form of the conditional distributions by means of 
separate regression analyses, as implemented in GraphFitI. A system of univariate 
regressions is performed for each chain component as clarified in Section 2. The model 
type is related to the scale of the selected response variables, according to the postulated 
chain. Therefore, a system of normal and logit regressions is performed. This seems to be 
consistent with complex disease terminology where quantitative response variables 
correspond to phenotypic traits and qualitative variables are typically environmental or 
genotype prognostic factors. The graphical model we are fitting is a block-regression graph 
(Cox and Wermuth, 1996) where each edge connecting two nodes (i,j) concerns a 
conditional relation between Yi and Yj given all the remaining variables ignoring future 
responses, i.e. variables belonging to blocks on the left of the boxes of Yi and Yj. In other 
words, suppose that Yi is continuous, in order to find the variables directly influencing Yi, a 
regression of Yi on all the variables belonging to its present and past, i.e. contained in the 
same box or in boxes on its right, is performed. 
A forward and backward selection procedure (Caputo et al. 1999) is then performed 
alternating a “nesting” step, where variables are added to enlarge a minimal model, and a 
“reducing” step that follows a typical likelihood ratio reduction procedure. The criteria are 
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based on the change in the F – statistic (Rao, 1995) derived by comparing the R2 of the full 
model with R2 of the reduced model at a 0.05 significance level.  
In Table 3 the results of the system of univariate regressions for the first postulated chain 
are reported. For the second postulated chain, the results concerning the variables in the 
first three boxes only (reading Figure 5(b) from the left to the right) are reported in Table 4. 
The results relative to the background variables are not reported; they are identical to 
those in Table 3 because the corresponding boxes in Figure 5(a) and in Figure 5(b) are 
defined in the same way. The level of the discrete variables is reported in the tables with 
“group = level of the variable”. For instance being heterozygous for Raas1, i.e. Rass1=1, is 
represented by writing Raas1(group=1). From Table 3 we read that Raas1 results as an 
indirect protective factor for SBP (via Uric and BMI), because it significantly reduces the 
probability of having high uricemy. 
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Table 3. Results of the system of univariate regressions for the first postulated 
chain 
 

Response 
variable 

Explanatory variables 

BMI SBP Glyc Uric Chol 
Est. Coeff. 0.049 0.055 0.503 0.014 
t-value 2.66 3.71 3.09 2.80 
SBP BMI Therapy(group=0)   
Est. Coeff. 0.769 -7.670   
t-value 3.30 4.15   
Therapy Glyc Age Raas2(group=0) Raas2(group=1) 
Est. Coeff. -2.006 2.567 -171.103 -169.962 
t-value 2.94 2.34 151.10 112.98 
Therapy Glyc*Raas2(group=0) Glyc*Raas2(group=1)   
Est. Coeff. 1.974 1.964   
t-value 2.89 2.88   
Glyc Chol Trig Age Snps6(group=0) 
Est. Coeff. 0.065 0.232 0.344 27.318 
t-value 2.77 6.00 3.46 3.62 
Glyc Snps6(group=1) FamSTR(group=0) Trig*Snps6(group=0) Trig*Snps6(group=1) 
Est. Coeff. 30.786 4.800 -0.219 -0.241 
t-value 3.92 2.39 5.18 5.49 
Chol Trig Uric Glyc  
Est. Coeff. 0.459 6.276 0.532  
t-value 6.60 2.97 2.60  
Trig Chol Uric Glyc Snps6(group=0) 
Est. Coeff. 0.575 14.882 4.077 343.264 
t-value 5.39 4.35 5.23 3.87 
Trig Snps6(group=1) Glyc*Snps6(group=0) Glyc*Snps6(group=1)  
Est. Coeff. 372.277 -3.861 -4.045  
t-value 3.94 4.36 4.26  
Uric Trig Raas1(group=0) Raas1(group=1) Raas4(group=0) 
Est. Coeff. 0.010 -0.565 -0.732 0.550 
t-value 4.83 2.41 3.36 2.40 
Uric Raas4(group=1) Snps3(group=0) Snps3(group=1) Raas4*Snps3 
Est. Coeff. 0.834 -0.320 -0.175 -0.236 
t-value 3.03 1.13 0.55 2.82 
FamHID Snps3(group=0) Snps3(group=1)   
Est. Coeff. 1.146 1.229   
t-value 2.37 2.67   
FamSTR FamHYP(group=0)    
Est. Coeff. 0.806    
t-value 2.65    
FamDYS FamDIA(group=0) FamHYP(group=0) Adducine(group=0) Adducine(group=1) 
Est. Coeff. 1.723 0.386 -24.307 -25.340 
t-value 4.14 0.84 83.89 68.01 
FamDYS FamHYP*Adducine    
Est. Coeff. 1.396    
t-value 2.23    
FamHYP FamSTR(group=0) FamDYS(group=0)   
Est. Coeff. 0.773 1.051   
t-value 2.46 2.67   
FamDIA FamDYS(group=0)    
Est. Coeff. 1.601    
t-value 4.11    
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Raas2   Raas4 
group=0 group=1   

 Odds1 Odds2 Odds1 Odds2     
Est. Coeff. 2.171 25.026 -1.796 24.366     
t-value 101.82 84.30   
Raas3 Gender    
 Odds1 Odds2       
Est. Coeff. -0.580 -28.244       
t-value 202.03    

Snps6   Raas1 
group=0 group=1   

 Odds1 Odds2 Odds1 Odds2     
Est. Coeff. -22.167 -22.724 -21.515 -22.271     
t-value 50.30 45.54   

Raas2 Snps3 Snps4 
group=0 group=1 group=0 group=1 

 Odds1 Odds2 Odds1 Odds2 Odds1 Odds2 Odds1 Odds2 
Est. Coeff. 22.674 -0.317 23.208 -0.333 -2.884 -0.448 -1.716 -0.804 
t-value 78.85 62.05 3.13 2.63 

Raas2 FamHID   Snps3 
group=0 group=1 group=0   

 Odds1 Odds2 Odds1 Odds2 Odds1 Odds2    
Est. Coeff. 1.208 24.444 2.203 25.282 1.202 1.260    
t-value 91.19 68.71 2.63   

Raas2 Age*RAAS2 Adducine 
group=0 group=1 group=0 group=1 

 Odds1 Odds2 Odds1 Odds2 Odds1 Odds2 Odds1 Odds2 
Est. Coeff. -300.598 35.928 -330.468 11.066 5.023 -0.547 5.504 -0.149 
t-value 27.44 41.96 8.28 9.24 
Adducine Age    
 Odds1 Odds2    
Est. Coeff. -5.540 0.118    
t-value 9.41    

 
 
 
 

 
 
Table 4. Results of the system of univariate regressions for the second postulated 
chain 
 

Response 
variable 

Explanatory variables 

SBP Therapy(group=0) BMI   
Est. Coeff. -7.670 0.769   
t-value 4.15 3.30   
Therapy Glyc FamHID(group=0) Raas2(group=0) Raas2(group=1) 
Est. Coeff. -1.917 0.914 -163.198 -161.6044 
t-value 2.73 2.47 137.68 98.28 
Therapy Glyc*Raas2(group=0) Glyc*Raas2(group=1)   
Est. Coeff. 1.883 1.869   
t-value 2.69 2.66   
Glyc Therapy(gropu=0) Trig BMI Chol 
Est. Coeff. 50.575 0.178 3.037 -0.064 
t-value 2.29 4.58 3.88 2.86 
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Glyc FamHID(group=0) Snps6(group=0) Snps6(group=1) Trig*Snps6(group=0) 
Est. Coeff. 4.037 26.674 37.902 -0.243 
t-value 2.20 4.21 4.86 4.86 
Glyc Trig*Snps6(group=1) BMI*Therapy(group=0) Therapy*Snps6  
Est. Coeff. -0.241 -2.382 -5.673  
t-value 5.55 2.85 2.22  
Chol Trig Trig^2 Uric Glyc 
Est. Coeff. 0.448 -0.001 -7.186 -0.642 
t-value 6.50 4.21 3.38 3.53 
Chol BMI    
Est. Coeff. 1.978    
t-value 2.38    
Trig Glyc Chol Uric Snps6(group=0) 
Est. Coeff. 4.077 0.575 14.882 343.264 
t-value 5.23 5.39 4.35 3.87 
Trig Snps6(group=1) Glyc* Snps6(group=0) Glyc* Snps6(group=1)  
Est. Coeff. 372.277 -3.861 -4.045  
t-value 3.94 4.36 4.26  
Uric Trig BMI Gender FamHYP(group=0) 
Est. Coeff. 0.005 0.059 1.147 -0.485 
t-value 3.71 2.55 7.54 3.13 
Uric Raas1(group=0) Raas1(group=1) Trig*BMI  
Est. Coeff. -0.276 -0.622 -0.001  
t-value 1.31 3.21 3.19  
BMI FamSTR(group=0)    
Est. Coeff. 1.285    
t-value 2.66    
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5 Results 
 
In this section we discuss how, starting from both statistical as well as clinical 
considerations it is possible to investigate and visualize through the final chain the 
determinants of hypertension and their dependence structure. The chain graphs shown in 
Figure 8 and Figure 9 are associated to the postulated chains in Figure 5(a) and 5(b), 
respectively.  
Initially only the highly significant influences and associations (those with t-value ≥ 3) were 
represented. The results of the regression analyses (Table 3 and Table 4) indicated some 
important genetic relations that might have been excluded with such a strict criterion. Thus 
in the final graph we also included some links, which are not highly statistically relevant 
(2.2 ≤ t-value < 3) but are of great interest from a biological - genetic viewpoint. In Figure 8 
and Figure 9 highly significant and weakly significant links are represented by thick lines (t-
value ≥ 3) and thin lines (2.2 ≤ t-value < 3) respectively.  
Consider the final chain in Figure 8. Notice that, apart from a weak quadratic effect of age 
on SBP (found in the initial screening phase shown in Section 4.2), age directly acts on the 
final phenotypes SBP and BMI through interaction with a genotype or family history.  
Nevertheless, the results in Table 3 and the final chain in Figure 8 attribute an important 
role to age. It indirectly influences the phenotypes SBP and BMI. In particular age affects 
BMI only indirectly via Therapy and glycaemia. For instance age has an increasing effect 
on both plasma glucose level (Glyc) and the probability of being treated, i.e. at risk for 
hypertension. This suggests that older patients are more likely to become at risk for 
hypertension and to have a high BMI since the glycaemia level in older patients is usually 
higher. This is a very important clinical statement.  
The relation between BMI and SBP could have a substantial biological explanation in 
hypertensive metabolic syndrome (see Castellano M., Di Serio C., et al., 2002). 
Quantitative trait and genetic variable effects are supposedly mediated by increased 
insulin levels, related to high BMI, that affects systolic blood pressure. The results in Table 
3 and in Figure 8 seem to be consistent with this hypothesis. An interpretation of the 
missing edges in terms of conditional independencies although appealing in this 
framework has a meaning in exploratory terms only, since the data-driven strategy 
adopted does not ensure the equivalence of the Markov properties. However, it provides 
important directions for further steps in the search for candidate genes. From our analyses 
the hypertensive metabolic syndrome seems to have genetic ground through BMI only. 
Moreover the phenotype BMI is influenced by Adrenergic Receptor genes (Snps3 and 
Snps6) and by the polyphormisms on the renine gene (Raas1, and Raas4) through uric 
acid (Uric) triglycerides (Trig) and glycaemia (Glyc). In general, Figure 8 shows that a 
crucial role is played by intermediate phenotypes, which behave like “genetic” filters in the 
chain.  
Some further remarks about genetic interactions are still needed. Triglycerides and Snps6 
show an interactive protective effect on glycaemia, whereas separately each of these 
factors have an increasing risk effect on glycaemia. The distributions of Glyc and Trig 
conditionally on Snps6 (see Figure10) provide a possible explanation to this apparent 
inconsistency. From Figures 10(a) and 10(b) we notice that  in the wild type group 
(Snps6=0) Glyc  has many outliers and extreme values, very likely corresponding to 
diabetic patients. Being diabetic (mostly concentrated in wild type allele of Snps6) is an 
increasing risk factor for having a high glycaemia level. Thus, the Glycaemia mean level 
for patients with Snps6=0 is higher due to the extreme values. To understand the 
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interaction between triglicerides  and Snps6, it is useful to look at the distribution of 
triglicerides in the patient group with Snps6=0 (Figure 10(c)); patients in this group have 
the lowest values of triglicerides. Since triglicerides and glycaemia are positively correlated 
(correlation coeff.= 0.424, p<0.05), we can deduce that the patients detected by the 
extreme values in glycaemia (probably diabetic and with Snps6=0) are mainly responsible 
for the revealed detrimental effect of triglicerides on glycemia. We notice that the 
considerations above suggest to investigate Snps6 as a possible candidate for diabetes.  
The chain itself can help not only in identifying some candidate genes but also in retrieving 
information about epistatic genetic interactions. The interaction term Raas4*Snps3 shows 
a protective effect on Uric Acid (coef= -0.236, p < 0.0025), whereas  Raas4 itself has a 
detrimental main effect on uric acid and Snps3 is not significative. This suggests that a 
combined effect of possessing a pathogenic genotype for both polymorphisms has a 
significant protective impact on Uric Acid as compared to the effect of possessing only 
Raas4 or Snps3. This may be associated to some evidence of functional relevance in 
activity modulation of both sympathetic nervous system (through ARF) and Raas (renin 
angiotensin aldosterone system). Furthermore it is interesting to notice that genetic factors 
affect the intermediate phenotype cholesterol indirectly only, through Uric Acid and 
tryglicerides; this suggests that there is no direct genetic predisposition to high cholesterol. 
The associations discussed above are only an example of the amount of information and 
suggestions that the graphical models methodology may provide to genetics. 
The results can be summarised as follows: 

I. relevance of age and its interactions with some quantitative traits in affecting BMI and 
SBP;  

II. key role of the quantitative traits (in the third block) in connecting the genotypes and 
environmental variables with the final phenotypes. Interactions among genotypes and 
intermediate quantitative traits have significant influence on the level of the other 
intermediate quantitative traits. 

III. Identification of epistatic interactions among the involved genes (ARF and Raas).  
IV. Family history (FamSTR, FamHYP, FamDYS and FamDIA) is a predisposing factor 

for high values of intermediate traits. For instance, the stroke occurrence in the family 
directly predisposes to higher plasma glucose levels. Other family history aspects are 
indirectly informative for the final phenotypes in interaction with the genotypes. 

With one single graph (Figure 8) we are able to represent all these influences, 
associations and interactions within and between the different biological levels. 
The second postulated chain (Figure 5(b)) was strongly consistent with the "insulin 
resistance" mechanism. However the associated final chain (Figure 9) does not lead to as  
biologically convincing explanation as does the final chain in Figure 8. This is mainly due 
to the role of BMI and to irrelevance of age. Indeed, BMI is not affected by any of the 
genetic variables suggesting that there is no genetic predisposition to a high BMI, which is 
quite inconsistent with biological knowledge (see Cusi and Bianchi,1998). Moreover, age 
does not affect BMI except through family history variables. This does not have a 
straightforward biological explanation. Other inconsistencies in Figure 9 with clinical 
principles are the absence of a direct impact of cholesterol on SBP.  
 
(Figure 8 here) 
 
(Figure 9 here) 
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6 Conclusions 
 
We have proposed a new statistical approach to investigate the complex structure of a 
genetic disorder such as hypertension, accounting for its multifactorial nature. We have 
expressed the genotype-phenotype biological chain as a chain graph. A graphical chain 
model has then been inferred in order to: i) define the complex phenotype, ii) analyse 
eventual epistatic interactions affecting the final phenotype iii) identify the filter-like role of 
some intermediate phenotypes. 
Two possible chains, incorporating two different biological hypotheses, are postulated and 
compared. The major initial difference between them was whether BMI was to be treated 
as a final phenotype rather than as a prognostic factor. As seen in Figure 8, the hypothesis 
that BMI is a final response is more consistent with biological evidence.  
In conclusion, even if graphical models cannot assess a causality structure in the data, 
they can help in excluding some postulated “directions” in the association links. Moreover, 
both the outstanding associations and the “causal” relations linking the studied variables 
can be read from the final graphs in Figure 8 and Figure 9. The filter role of the quantitative 
traits in connecting the genotypes and environmental variables to the final phenotypes was 
relevant. In addition, several important interactions among genes (epistatic interactions) 
and among these and quantitative traits have been suggested. All these results may be 
useful and interesting for further research in this multifactorial genetic disease. Moreover, 
the graphical chain model approach could be an important tool to study other multifactorial 
diseases. 
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Appendix 1. 
 
The following tables show the genotype distributions. 
Figure10(a) shows the box-plots of the conditional distributions of the variable Glycaemia 
given the levels of the Snps6. The distributions of the variables Glyc and Trig in the patient 
group with Snps6=0 are given in Figure 10(b) and Figure 10(c), respectively. 
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(Figure 10 here) 
 
 
Table 5 Distribution of the genotypes included in the analysis 

Snps1  Snps2 
 Frequency Percent   Frequency Percent 
0 245 89.7  0 109 39.9 
1 28 10.3  1 136 49.8 
2 0 0  2 28 10.3 
Total 273 100.0  Total 273 100.0 
 
Snps3  Snps4 
 Frequency Percent   Frequency Percent 
0 93 34.1  0 28 10.3 
1 146 53.5  1 101 37.0 
2 34 12.5  2 144 52.7 
Total 273 100.0  Total 273 100,0 
 

Snps5  Snps6 
 Frequency Percent   Frequency Percent 
0 220 82.4  0 175 64.1 
1 46 17.2  1 88 32.2 
2 1 0.4  2 10 3.7 
Total 267 100.0  Total 273 100.0 
 

Raas1  Raas2 
 Frequency Percent   Frequency Percent 
0 84 30.8  0 192 70.3 
1 137 50.2  1 75 27.5 
2 52 19.0  2 6 2.2 
Total 273 100.0  Total 273 100,0 
 

Raas3  Raas4 
 Frequency Percent   Frequency Percent 
0 136 49.8  0 99 36.3 
1 48 17.6  1 121 44.3 
2 89 32.6  2 53 19.4 
Total 273 100.0  Total 273 100.0 
 

Adducine  
 Frequency Percent  
0 184 74.8  
1 51 20.7 
2 11 4.5  
Total 246 100.0  
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Figure 1. Genotype-Phenotype chain 
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Figure 2. First postulated structure in complex diseases 
 

Figure 3. Marked chain graph 
 

 
 

 
Figure 4. Chain graph for the genotype-phenotype chain 
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Figure 5. First (a) and second (b) postulated dependence chains 
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Figure 6a) screening for interaction. First postulated chain. 

 
 
 
 
  

Figure 6b) screening for non-linearities. 
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Figure 7a) screening for interaction. Second postulated chain. 
 
 

 
 
Figure 7b) screening for nonlinearities.  
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Figure 8. Final chain related to the first postulated chain 
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Figure 9. Final chain related to the second postulated chain 
 

RAAS 3gender

RAAS 1

snips 6

famSTR

famHYP
famDIA

famDYS

snips 3

snips 4

RAAS 2

Adducine

age

RAAS 4

famHID

BMI

Uric

Glyc

Trig

Chol

Therapy

SBP

 
 
 
 



 26 

Figure 10. Box-plot of the variable Glycaemia conditionally on the levels of Snps6 
(A); distribution of Glycaemia conditionally on Snps6=0 (B); distribution of 
Triglicerides conditionally on Snps6=0 (C).  
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