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 Introduction 

 Polyunsaturated fatty acids (PUFAs) have a major im-
pact on human health. The composition of PUFAs in 
phospholipids has, among other complex diseases, been 
associated with the development of allergies  [1–3] . The 
biological effects of PUFAs are thought to be mediated by 
the availability of long-chain polyunsaturated fatty acids 
(LC-PUFAs) with  6 20 carbon atoms and  6 3 double 
bonds, such as the  � –6 LC-PUFA arachidonic acid (20:  
 4 � –6), the  � –3 LC-PUFAs eicosapentaenoic acid (20:  
 5 � –3) and docosahexaenoic acid (22:   6 � –3). These fatty 
acids have several important functions in human metab-
olism. The composition of LC-PUFAs such as arachidon-
ic acid and docosahexaenoic acid in phospholipids influ-
ences the integrity and fluidity of cell membranes. On the 
molecular level, LC-PUFAs fulfill several other central 
functions, such as acting as second messengers in intra-
cellular signaling pathways or regulating transcription. 
In addition, LC-PUFAs are precursors for eicosanoids 
(leukotrienes and prostaglandins) which play an impor-
tant role in inflammatory processes  [4] .

  Sufficient dietary supply with LC-PUFAs is therefore 
pivotal in every stage of human life because it has a sig-
nificant effect on blood and tissue LC-PUFA contents  [5] . 
Besides its predominant endogenous synthesis from  � –6 
fatty acid precursors, arachidonic acid is contained in 
meats and eggs, whereas marine foods are an important 
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 Abstract 

 Long-chain polyunsaturated fatty acids (LC-PUFAs) play an 
important role in several physiological processes and their 
concentration in phospholipids has been associated with 
several complex diseases, such as atopic disease. The level 
and composition of LC-PUFAs in the human body is highly 
dependent on their intake in the diet or on the intake of fat-
ty acid precursors, which are endogenously elongated and 
desaturated to physiologically active LC-PUFAs. The most 
important enzymes in this reaction cascade are the  �  5  and 
 �  6  desaturase. Several studies in the last few years have re-
vealed that single nucleotide polymorphisms (SNPs) in the 2 
desaturase encoding genes ( FADS1  and  FADS2 ) are highly as-
sociated with the concentration of  � –6 and  � –3 fatty acids, 
showing that beside nutrition, genetic factors also play an 
important role in the regulation of LC-PUFAs. This review fo-
cuses on current knowledge of the impact of genetic poly-
morphisms on LC-PUFA metabolism and on their potential 
role in the development of atopic diseases. 
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source for eicosapentaenoic acid and docosahexaenoic 
acid   [6] . Adequate supply with dietary LC-PUFAs is of 
special importance for the fetus and neonate during preg-
nancy and lactation to ensure optimal visual and cognitive 
development. The supply of LC-PUFA to the fetus by the 
mother is mediated by maternal-fetal placental transfer 
during pregnancy  [7, 8] . Sufficient LC-PUFA can be sup-
plied to the neonate by breastfeeding, which supplies pre-
formed LC-PUFA for the child, and is therefore regarded 
as the preferred method of feeding during the first 6 
months of life  [9] . Besides the positive effects of LC-PUFAs 
on visual and cognitive development, a protective effect of 
LC-PUFAs on allergy development in children was shown 
in 2 different studies, assuming that early LC-PUFA provi-
sion may modulate immune responses  [10, 11] .

  The Important Role of  �  5  and  �  6  Desaturase, 

Encoded by  FADS1  and  FADS2 , in Endogenous 

Production of LC-PUFAs 

 In addition to the dietary supply of preformed LC-PU-
FAs, they can also be derived by human metabolism from 
the precursor essential fatty acids, linoleic acid (18:   2 � –6) 

and  � -linolenic acid (18:   3 � –3), by consecutive desatura-
tion and chain-elongation. The rate-limiting enzymes in 
this reaction cascade are the  �  5  and  �  6  desaturase. These 
enzymes are membrane-bound proteins with amino-ter-
minal cytochrome  b5  domains carrying heme-binding 
motifs, 2 membrane-spanning domains, 3 His-box mo-
tifs and consist of 444 amino acids  [12] . The human  �  5  
desaturase shares 61% amino acid identity and 75% sim-
ilarity to the human  �  6  desaturase  [13] . The 2 enzymes 
catalyze the conversion of both  � –3 and  � –6 precursors 
to their respective LC-PUFA products in a reaction cas-
cade  [14] . In the first step,  �  6  desaturase converts linoleic 
acid (18:   2 � –6) to  � -linolenic acid (18:   3 � –6) in the  � –6 
pathway and  � -linolenic acid (18:   3 � –3) to stearidonic 
acid (18:   4 � –3) in the  � –3 pathway by inserting an addi-
tional  cis  double bond at position 6 of the fatty acid chain. 
After an elongation step [resulting in dihomo- � -linolenic 
acid (20:   3 � –6) and eicosatetraenoic acid (20:   4 � –3), re-
spectively],  �  5  desaturase catalyzes the formation of ara-
chidonic acid (20:   4 � –6) and eicosapentaenoic acid (20:  
 5 � –3). These molecules are either converted into eico-
sanoids or further elongated and desaturated, again with 
the help of a  �  6  desaturase  [4, 15] , resulting in several im-
portant LC-PUFAs, among them docosahexaenoic acid 
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  Fig. 1.  Metabolic pathway of  � –6 and  � –3 LC-PUFAs in humans. 

C
o

lo
r v

er
si

o
n 

av
ai

la
b

le
 o

n
lin

e



  FADS  Polymorphisms, Fatty Acid Levels 
and Atopy 

J Nutrigenet Nutrigenomics 2009;2:119–128 121

(22:   6 � –3). Several studies have shown that the final de-
saturation step in 22:   6 � –3 synthesis is catalyzed by the 
same  �  6  desaturase that acts also on 18-carbon PUFA 
substrates  [15–17] . The fact that fibroblasts from a human 
case of  �  6  desaturase deficiency were unable to desatu-
rate 18:   2 � –6 or 24:   5 � –3 support this hypothesis  [18] . Al-
though studies with human malignant cell lines suggest-
ed that separate  �  6  desaturases may act on these sub-
strates  [19, 20] , no  �  6  desaturase isozyme specific to 
24-carbon fatty acids is known at this time. An overview 
of the desaturation pathway is given in  figure 1 . The hu-
man desaturases were first cloned in 1999  [12, 13]  and the 
corresponding genes ( FADS1  for  �  5  desaturase and 
 FADS2  for  �  6  desaturase) were mapped to chromosome 
11q12–13.1 of the human genome in 2000  [21] , which 
shows conserved synteny to the mouse genomic region 
containing the murine  fads1  and  fads2  genes on chromo-
some 19  [4] . The 2 human genes are arranged in a head-
to-head orientation and build a gene cluster together with 
a third desaturase gene,  FADS3 . It is assumed that, due to 
their similar exon/intron organization (12 exons and 11 
introns) and a high degree of sequence homology, these 3 
genes have arisen evolutionary from gene duplication 
 [21] . While the function of the  �  5  and  �  6  desaturase, en-
coded by  FADS1  and  FADS2 , respectively, is well charac-
terized, the function of the protein product of the  FADS3  
gene is still unknown. Park et al.  [22]  identified several 
alternative splice forms of  FADS3  that are expressed in 
many tissues showing changes in abundance in response 
to human neuronal cell differentiation, and hypothesized 
a tissue- or PUFA-specific role of  FADS3  in LC-PUFA 
synthesis.  �  5  and  �  6  desaturase are expressed in the ma-
jority of human tissues, with highest levels in liver and, 
to a lesser extent, in the brain, heart and lung  [12, 13] . 
Studies on substrate specificity and enzyme kinetics of 
both enzymes exist, which have identified at least 5 sub-
strates for the mammalian  �  6  desaturase so far (18:   2 � –6, 
18:   3 � –3, 24:   5 � –3, 24:   4 � –6 and 16:   0)  [14, 17, 23–25]  and 
showed an additional  �  8  desaturase activity of this en-
zyme on 20:   2 � –6 and 20:   3 � –3  [26] . For the  �  5  desatu-
rase, no other substrates beside 20:   3 � –6 and 20:   4 � –3 are 
known to date, which speaks for a stricter substrate spec-
ificity of this enzyme.

  The importance of  �  6  desaturase for the formation of 
LC-PUFAs and their influence on membrane integrity 
and fluidity was shown in a recent study by Stoffel et al. 
 [27]  who generated a  fads2  –/–  mouse. In this animal mod-
el, the membrane polarity of Sertoli and ovarian follicle 
cells was completely disturbed due to the lack of LC-PU-
FAs in knockout mice caused by the  �  6  desaturase defi-

ciency. Furthermore, both male and female mice were in-
fertile and eicosanoid synthesis was disturbed. However, 
the administration of a LC-PUFA-rich diet (either C20:  
 4 � –6 or C20:   5 � –3/C22:   6 � –3) enabled the  fads2  –/–  mice 
to overcome the genetic defect, restored the fatty acid pat-
tern in membrane lipids and rescued spermatogenesis as 
well as normal follicle development. Similarly, eicosanoid 
synthesis was restored by administration of arachidonic 
acid. Similar effects were observed in another  fads2  –/–  
mouse by Stroud et al.  [28] , who additionally reported 
ulcerative dermatitis and ulceration of the small intestine 
in their mice. A  fads1  knockout mouse has not been de-
scribed until now.

  A female patient with reduced  �  6  desaturase activity, 
probably due to an inherited deficiency in  �  6  desaturase, 
was described by Williard et al.  [18] . This patient devel-
oped severe symptoms shortly after birth, including cor-
neal ulceration, feeding intolerance, growth failure, skin 
abnormalities (cheilosis, dystrophic nails and perineal 
dermatitis) and photophobia. Neurological examinations 
were normal. Due to the abnormalities in her plasma fat-
ty acid composition, the patient was provided with black-
currant seed oil, fish oil capsules and a vitamin A supple-
ment as fatty acid therapy, which was subsequently 
switched to a mixture of 20:   4 � –6 and docosahexaenoic 
acid. This therapy led to growth acceleration until nor-
mal height for her age, and an improvement of skin ab-
normalities.

  Candidate Gene Studies Reveal an Association 

between  FADS  Gene Cluster Polymorphisms and

LC-PUFA Levels in Different Tissues 

 The important function of the  �  5  and  �  6  desaturase in 
the synthesis of LC-PUFAs made it a perfect candidate 
gene for association studies of  FADS  gene cluster poly-
morphisms with PUFA and LC-PUFA levels in human 
tissues, to investigate the role of DNA variants on desatu-
rase activity. The human  FADS  gene cluster (including 
 FADS1 ,  FADS2  and  FADS3 ) comprises 91.9 kb on chro-
mosome 11q12–13.1 with a head-to-head orientation of 
 FADS1  and  FADS2  and a tail-to-tail orientation of  FADS2  
and  FADS3  ( fig. 2 ). All 3 genes have a similar exon/intron 
organization (12 exons, 11 introns), with  FADS1  span-
ning a 17.2-kb region,  FADS2  a 39.1-kb region and  FADS3  
an 18.0-kb region. Introns 1 of  FADS1  and  FADS2  are 
separated by an 11.4-kb region and  FADS3  is located in 
the 6.0-kb telomeric side of  FADS2 . In this 91.9-kb region, 
around 500 single nucleotide polymorphisms (SNPs) are 
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annotated in the NCBI database (dbSNP build 130). 
Schaeffer et al.  [29]  analyzed 18 selected SNPs in and 
around the  FADS1  and  FADS2  genes for association with 
fatty acids in serum phospholipids for the first time in 
727 German probands of the European Community Re-
spiratory Health Survey I. After calculation of linkage 
disequilibrium (LD) between the analyzed SNPs, which 
revealed a highly preserved LD block in the 48-kb ge-
nomic region from SNP rs174544 to SNP rs174589 ( fig. 2 ), 
3 redundant markers (r 2   1  0.99) were excluded from the 
analysis. Association analysis of the 15 remaining SNPs 
with 11  � –6 and  � –3 fatty acids showed highly signifi-
cant results for 11 SNPs, which are all located in the iden-
tified LD block, and all fatty acids (all p  !  1.0  !  10 –13 ) 
except for docosapentaenoic acid (22:   5 � –6) and docosa-
hexaenoic acid  (22:   6 � –3). Carriers of the minor alleles of 
these 11 SNPs (rs174544, rs174553, rs174556, rs174561, 
rs3834458, rs968567, rs99780, rs174570, rs2072114, 
rs174583, and rs174589) had enhanced levels of 18:   2 � –6, 
20:   2 � –6, 20:   3 � –6, and 18:   3 � –3 and decreased levels of 
18:   3 � –6, 20:   4 � –6, 22:   4 � –6, 20:   5 � –3, and 22:   5 � –3. Fat-
ty acids belonging to other pathways, such as oleic acid 
(18:   1 � –9) and docosahexaenoic acid  (22:   6 � –3), the 
source of which is mainly nutritional, did not show sig-
nificant associations with the genetic variants. For the 4 

SNPs beyond the LD block, the association with fatty acid 
levels weakened or vanished completely. Haplotype anal-
ysis was performed using all 11 associated SNPs as well 
as a subgroup of the first 5 strongly correlated SNPs in 
the gene cluster, and association results were in line with 
the findings of the single SNP analysis. The variability in 
fatty acid levels explained by the genetic variants for the 
11 analyzed SNPs varied from exceptionally high for ara-
chidonic acid (28.5%) to low for 22:   5 � –6 and 22:   6 � –3 
(1–3%). This first association study on  FADS  polymor-
phisms with fatty acid levels in serum phospholipids 
clearly showed a significant association with an accumu-
lation of desaturase substrates and a decline of desaturase 
products due to the minor alleles of the associated SNPs. 
The authors concluded that this might be the case as a 
result of a decline in the transcriptional levels or in the 
conversion rates of the desaturases in subjects carrying 
the minor alleles. Speculation about the possible causal 
SNPs revealed rs174561 and rs3834458 as the most inter-
esting variants, because these are located in CpG islands 
as well as in hypothetical promoter regions. However, due 
to the highly preserved LD structure in the gene cluster 
region, statements about the causal SNP can hardly be 
made, because 1 causal SNP is sufficient to cause associa-
tions in all others. Furthermore, it is also possible that the 
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  Fig. 2.  Schematic structure of the human  FADS  gene cluster lo-
cated on chromosome 11 and location of SNPs showing highest 
associations with fatty acid levels in different studies. SNPs with 
highest associations with fatty acids in the study of Schaeffer et al. 
 [29]  are marked with an asterisk ( * ). Most significant SNPs in all 
association studies which found a significant association of  FADS  
gene cluster SNPs and fatty acid levels are indicated as follows: 

° Malerba et al.  [30] ;  §  Rzehak et al.  [31] ;  ‡  Xie and Innis  [32] ; U Ta-
naka et al.  [33] . SNPs that were most significantly associated with 
allergic rhinitis and atopic eczema in the study of Schaeffer et al. 
 [29]  are marked in bold. The genomic position is given for each of 
the 3  FADS  genes (numbers below gene names). SNP rs174537 is 
located 8.6 kb upstream of the  FADS1  gene (the change in scaling 
is indicated by //). 
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functionally relevant variant was not among the ones that 
were directly analyzed, but is just highly correlated with 
the analyzed SNPs. Another interesting issue in this pa-
per was the association of  FADS  gene cluster polymor-
phisms with IgE levels, allergic rhinitis and atopic ecze-
ma. No significant association was observed for geno-
types or haplotypes with total or specific IgE levels. For 
allergic rhinitis and atopic eczema, protective odds ratios 
for carriers of the minor alleles of several SNPs were ob-
tained; however, after correction for multiple testing, the 
association did not remain significant. Although statisti-
cal significance concerning atopic diseases could not be 
proved in this study, it suggests a role of the desaturases 
in the development of atopy. The role of  FADS  genes in 
atopic diseases will be discussed again later in this re-
view.

  The association between  FADS  gene cluster polymor-
phisms and fatty acids was replicated in 3 independent 
studies, which additionally showed an association with 
fatty acids in plasma, erythrocyte membrane and breast 
milk phospholipids, beside the already known associa-
tion with serum phospholipids  [30–32] . The analysis of 
erythrocyte membrane phospholipids is a valuable tool 
for the study of fatty acid metabolism, because their fatty 
acid composition resembles that of circulating lipopro-
teins, which are assembled in the liver. Furthermore, 
long-term effects of fatty acid regulation can be deter-
mined better in erythrocyte membranes, because the fat-
ty acid composition of membranes is less influenced by 
short-term variations in dietary intake than serum/plas-
ma phospholipids. The first replication study  [30]  ana-
lyzed 13 SNPs spanning the complete  FADS  gene cluster 
(including  FADS3 ) in 658 north Italian subjects of the 
Verona Heart Project. Highly significant results were ob-
served for the majority of the analyzed  FADS1  and  FADS2  
SNPs and arachidonic acid in serum as well as erythro-
cyte membrane phospholipids (p  !  1.0  !  10 –4 ). Up- or 
down-regulation of all analyzed fatty acids dependent on 
the allele was in accordance with the results shown by 
Schaeffer et al.  [29] , although only 18:   3 � –3 and 20:   2 � –6 
in serum phospholipids and 18:   2 � –6 and 20:   2 � –6 in 
erythrocyte membranes reached significance. Haplotype 
analysis revealed a significant association between the 
constructed  FADS  cluster haplotypes and the level of ara-
chidonic acid in serum and erythrocytes (p  !  8.9  !  10 –4 ), 
but no significant association with any other fatty acid. 
This study showed evidence that  FADS  polymorphisms 
do not only contribute to the variability of short-term fat-
ty acid levels in serum, but also to the variability in me-
dium-term compartments, such as erythrocyte mem-

branes. The second replication study, which was per-
formed at the same time by Rzehak et al.  [31] , confirmed 
the results from the 2 previous studies by analyzing the 
association of 3  FADS  SNPs (rs174556, rs174561, and 
rs334458) with plasma and erythrocyte membrane fatty 
acids in 535 subjects (for plasma) and 163 subjects (for 
erythrocyte membranes) of the Bavarian Nutrition Sur-
vey II. To address the question whether  FADS  gene cluster 
polymorphisms have an influence on the fatty acid com-
position of human breast milk, Xie and Innis  [32]  geno-
typed 4 SNPs in  FADS1  and  FADS2  in 54 women, for 
whom data on fatty acid concentrations in breast milk 1 
month postpartum were available. The authors found 
significant associations between SNP rs174553 and the 
medium-chain fatty acid 14:   0 (p value = 4.6  !  10 –2 ), 
which is the end product of the de novo fatty acid syn-
thase complex in the mammary gland and 18:   1 � –7 (p = 
1.0  !  10 –3 ), which is the  �  9  desaturation-elongation 
product of 16:   0. Medium-chain fatty acids (10:   0, 12:   0, 
14:   0) had decreased levels for the G allele of rs174553, 
whereas only 14:   0 was statistically significant.  �  9  desatu-
rase products (16:   1 � –7, 18:   1 � –7 and 18:   1 � –9) increased 
in case of the G allele with significance only observed for 
18:   1 � –7. For SNP rs174553, significant differences in 
PUFA concentration were obtained for 20:   2 � –6, 20:   
4 � –6, 20:   5 � –3 and 22:   5 � –3 (p  !  2.6  !  10 –2 ). For SNP 
rs174575, concentrations of 20:   4 � –6, 22:   5 � –6, 20:   5 � –3 
and also, interestingly, 22:   5 � –3 and 22:   6 � –3 differed sig-
nificantly depending on the allele (p  !  4.4  !  10 –2 ). The 
direction of change in PUFA/LC-PUFA concentrations 
was the same as observed in the previous studies. Simul-
taneously, the authors analyzed the influence of  FADS1 
FADS2  polymorphisms on plasma phospholipid and 
erythrocyte ethanolamine phosphoglyceride fatty acids 
in 69 pregnant women at week 16 of gestation. They found 
significant associations between rs174553 and plasma 
18:   2 � –6, 20:   4 � –6, 22:   5 � –3 and 22:   5 � –6 (p  !  5.0  !  10 –3 ). 
An association with plasma 20:   4 � –6 was also found for 
SNP rs174575 (p = 3.0  !  10 –3 ). For  erythrocyte ethanol-
amine phosphoglyceride fatty acids, an association be-
tween rs174553 and levels of 18:   2 � –6, 20:   3 � –6, 20:   4
 � –6 and 22:   4 � –6 (p  !  3.8  !  10 –2 ) was observed, where-
as no association with  � –3 fatty acids was reported.

  The results of these association studies have been 
strengthened by a genome-wide association study pub-
lished by Tanaka et al. in 2009  [33] , where the authors 
analyzed plasma levels of 6  � –3 and  � –6 fatty acids in 
1,075 participants in the InCHIANTI study and found 
strongest associations in the  FADS  gene cluster. SNP 
rs174537, which is located at genomic position 61,309,256 
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in the 14.4 kb 5 �  region of  FADS1 , showed the most sig-
nificant association with arachidonic acid (p = 5.95  !  
10 –46 ). Individuals homozygous for the minor allele of 
rs174537 had lower concentrations of 20:   4 � –6 compared 
to the homozygous carriers of the major allele. The SNP 
accounted for 18.6% of the variance in the concentration 
of 20:   4 � –6. Furthermore, the SNP was associated with 
altered levels of 20:   2 � –6 (p = 6.78  !  10 –9 ) and 20:   5 � –3 
(p = 1.04  !  10 –14 ). The association with 18:   2 � –6 and 
18:   3 � –3 did not reach genome-wide significance (p = 
5.58  !  10 –7  and 2.76  !  10 –5 , respectively) and there was 
no association with 22:   6 � –3 at all. The effects of rs174537 
were confirmed in an independent sample of 1,076 par-
ticipants of the GOLDN study in erythrocyte membranes. 
A summary of all association studies on  FADS  polymor-
phisms and fatty acid levels is given in  table 1 .

   FADS  Gene Cluster Polymorphisms May Modulate 

the Development of Atopic Diseases 

 The levels and composition of various PUFAs and LC-
PUFAs has been associated with the development of atop-
ic diseases in numerous studies, although the direction of 
association differs among reports. Higher plasma levels 

of 18:   2 � –6, and lower levels of 18:   3 � –6, 20:   3 � –6 and 20:  
 4 � –6 in adults and children with atopic eczema have 
been reported very early  [34] . Several, but not all, follow-
ing studies on diverse atopic disorders observed distur-
bances in  � –6 and  � –3 fatty acids  [35–43] . A good review 
on the results of these studies is provided by Duchén and 
Björkstén  [1] . Analyses of the phospholipid PUFA com-
position in chord blood and early infancy resulted in 
partly contrary findings about the prediction of atopic 
development during the first months of life, based on the 
fatty acid composition  [44–48] . Despite small controver-
sies in the different studies, it is widely assumed that at-
opy is related to a disturbed metabolism of  � –6 and  � –3 
LC-PUFA  [1] . A defect in the enzyme activity of the  �  6 

 desaturase has been suggested to be present early in atop-
ic disease patients  [49] , due to the higher levels of 18:    
2 � –6 and lower levels of its longer metabolites in atopic 
children and adults. This defect in enzyme activity would 
explain the proposed dysregulation of arachidonic acid 
metabolism in atopy  [50] . Arachidonic acid is one of the 
main precursors of prostaglandins and leukotrienes  [51]  
and activates allergic immune responses via its products, 
prostaglandin E2 and leukotriene B4  [52–56] . For  � –3 
fatty acids like eicosapentaenoic acid and docosahexae-
noic acid, modulation of cytokine responses has also been 

Table 1. Genetic association studies with associations between FADS polymorphisms and fatty acid concentrations

Study n Most significant SNP(s) SNP location Associated metabolites p (most significant metabolite)

Schaeffer et al.
(2006) [29]

727 rs174544, rs174553,
rs174556, rs174561,
rs3834458, rs968567,
rs99780, rs174570,
rs2072114, rs174583,
rs174589

FADS1/2 fatty acids in serum
phospholipids

single analysis: <1.0 ! 10–13 (20:4�–6)
haplotype analysis: 3.7 ! 10–15 (20:4�–6)

Malerba et al.
(2008) [30]

658 rs174545, rs174556,
rs174561, rs3834458,
rs174570, rs174583,
rs174589, rs174611,
rs174627

FADS1/2/3 fatty acids in serum
phospholipids and
erythrocyte membranes

single analysis: <1 ! 10–4

(20:4�–6 in serum and erythrocytes)
haplotype analysis: <1 ! 10–4

(20:4�–6 in serum) and <2 ! 10–4

(20:4�–6 in erythrocytes)

Rzehak et al.
(2008) [31]

163 (plasma)
535 (erythrocytes)

rs174556, rs174561,
rs3834458

FADS1/2 fatty acids in plasma
phospholipids and
erythrocyte membranes

single analysis: 7.9 ! 10–10 (20:3�–6 in 
erythrocytes), plasma: data not shown
haplotype analysis: 2.7 ! 10–9

(20:3�–6 in erythrocytes) and 7.8 ! 10–11 
(20:4�–6 in plasma)

Xie et al.
(2008) [32]

69 (plasma/
erythrocytes)

54 (breast milk)

rs174553 FADS1 fatty acids in plasma
and erythrocyte 
phospholipids and in
breast milk

plasma : <1 ! 10–3 (18:2�–6, 20:2�–6 and 
20:4�–6),
erythrocytes: <1 ! 10–3 (20:3�–6),
breast milk: 1 ! 10–3 (18:1�–7)

Tanaka et al.
(2009) [33]

1,210 plus
1,076 (replication)

rs174537 5� upstream
region of FADS1

plasma fatty acids initial study: 5.95 ! 10–46 (20:4�–6)
replication study: <1.0 ! 10–3 (20:4�–6)
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shown  [57] , whereas dietary treatment with these  � –3 
fatty acids in inflammatory disorders suggests rather 
anti-inflammatory properties in contrast to the products 
of arachidonic acid  [58] .

  One reason for the proposed defect in enzyme activity 
of the  �  6  desaturase, possibly leading to an imbalance 
between  � –6 and  � –3 LC-PUFAs and therefore to dis-
turbed inflammatory processes, could be mutations or 
polymorphisms in the  �  6  desaturase encoding the  FADS2 
 gene. First concrete indications of a relation between the 
 FADS  genes and atopic diseases were provided by linkage 
studies  [59, 60] . In the first candidate gene study on the 
association of  FADS  polymorphisms with fatty acid com-
position in serum phospholipids, Schaeffer et al.  [29]  re-
ported a lower prevalence of allergic rhinitis and atopic 
eczema in carriers of the rare alleles of several SNPs for 
the first time, although these associations were not sig-
nificant after correction for multiple testing. No associa-
tion was found for total and specific IgE levels.

  An association between breastfeeding and the devel-
opment of atopic manifestations early in life has been 
suggested repeatedly  [61] . Several studies exist, which in-
vestigated the PUFA composition of human milk in rela-
tion to the atopic status of the mother  [62, 63]  and the 
development of atopic disease in children  [47, 64, 65] . Al-
though differences exist in the composition of colostrum, 
transitional and mature milk  [62, 66] , most studies agree 
on altered levels of  � –6 and  � –3 LC-PUFAs in milk of 
atopic mothers compared to non-atopic mothers  [47, 62, 
63] . The LC-PUFA composition of transitional human 
milk agrees especially well with the reported low levels of 
 � –6 and  � –3 LC-PUFAs in plasma  [35, 36, 40]  and mem-
brane phospholipids  [37, 43, 67]  in atopic children and 
adults. The composition of LC-PUFAs in maternal milk 
affects the PUFA status of the child, as has been shown 
by several studies  [68–70] . Those few studies dealing with 
the relationship between maternal milk PUFA composi-
tion and development of atopy in the children  [47, 64, 65]  
found contrary results on the influence of maternal milk 
 � –6 LC-PUFA composition on the children’s atopic sta-
tus, but low levels of the  � –3 LC-PUFAs 20:   5 � –3, 22: 
   5 � –3 and 22:   6 � –3 in maternal milk seemed to be related 
to early childhood development of allergies. The ratio of 
20:   4 � –6 to 20:   5 � –3 is consistently higher in milk from 
mothers of atopic children, suggesting a disturbed bal-
ance in the arachidonic acid and eicosapentaenoic acid 
metabolism in atopic patients, and corroborates the rela-
tionship between  � –3 LC-PUFA metabolism and atopy 
 [1, 47] . Besides the influence of maternal diet and lifestyle 
on the fatty acid composition in human breast milk  [71, 

72] , maternal  FADS  genotypes have a great influence as 
well, as was shown by Xie et al.  [32] . It would therefore be 
very interesting if  FADS  polymorphisms modulate the 
development of atopic diseases in early childhood by reg-
ulating the fatty acid composition in breast milk. To our 
knowledge, not a single study has investigated a possible 
modulation of the relationship between LC-PUFAs in 
breast milk and atopic status of the child by  FADS  geno-
types, although a  �  6  desaturase deficiency has been pro-
posed in atopic subjects  [1, 49] . The inclusion of  FADS  
genotypes in future cohort and intervention studies 
might help to understand the role of LC-PUFAs in allergy 
development better and may also lead to enhanced sensi-
tivity and precision of such studies  [6] .

  Conclusion and Outlook 

 This review focused on current knowledge of the ef-
fects of  FADS  gene cluster polymorphisms on fatty acid 
levels in different human tissues as well as the effect of 
these polymorphisms on the development of atopic dis-
eases.  FADS  genotypes account for up to 28% of the vari-
ability observed for fatty acid levels  [29] . Besides the reg-
ulation by dietary fatty acids and hormonal signals,  FADS  
genotypes are important regulators of desaturase activity 
and thus the balance of  � –6 and  � –3 PUFAs and LC-PU-
FAs in the human body.

  The integration of  FADS  genotypes into future studies 
on fatty acid-related phenotypes will help us to better un-
derstand the biological effects of PUFAs and LC-PUFAs. 
Large gene-nutrition-interaction studies on complex dis-
orders like atopic diseases are urgently needed to deter-
mine the influence of  FADS  polymorphisms on the onset 
of such diseases in the context of individual dietary fatty 
acid intake and to understand the complex regulation 
mechanisms of desaturase activity by dietary and endog-
enous fatty acids as well as individual  FADS  genotypes. 
Based on the results of such studies, individualized di-
etary recommendations dependent on the  FADS  geno-
type might help to balance PUFA/LC-PUFA intake and 
availability and by this contribute to the prevention of the 
onset of fatty acid-related diseases such as atopy later in 
life.

  Furthermore, the identification of the regulatory func-
tional  FADS  variants will improve our understanding of 
the regulation pathways and might better explain the 
contribution of polymorphisms in the biological effects 
of LC-PUFAs. First results on functional effects of a 
 FADS2  promoter polymorphism exist, where we were 
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able to show an increase in promoter activity and higher 
binding affinity of a specific transcription factor to the 
SNP-containing promoter region when the major allele 
was replaced by the minor allele in in vitro experiments 
 [73]  ( fig. 3 ). The consequence of the observed effects on 
 �  6  desaturase expression or activity and its biological im-
portance has to be analyzed in further studies.

  In summary, the knowledge that  FADS  gene polymor-
phisms influence fatty acid levels in human tissues and 
by this might modulate the characteristics of fatty acid-
related phenotypes, is hopefully just the starting shot for 
further studies on the interaction of nutritional and ge-
netic factors and their concerted effect on complex phe-
notypes like atopic diseases.
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  Fig. 3.  Results on functional studies of  FADS2  promoter SNP 
rs968567  [73] , showing a regulatory function of this SNP.  a  Pre-
diction of transcription factors binding sites by Genomatix Mat-
Inspector suggested allele-specific binding affinity of 3 transcrip-
tion factors (ELK1, STAT1 and STAT3). A higher binding affinity 
of the ELK1 protein to this promoter region when the minor T al-
lele of rs968567 is present could be verified by DNA affinity chro-
matography and immunoblotting (not shown). Numbers indicate 
the sequence position relative to the translation start site.  b  Rela-

tive promoter activity of constructs of the human    FADS2  gene 
promoter in 3 different human cell lines increased when the major 
C allele of rs968567 was replaced by the minor T allele, possibly 
due to increased binding of ELK1 transcription factor. Values rep-
resent the mean of 3 independent experiments performed in trip-
licates. Promoter activity of the construct with the major allele 
was used as reference and set at 100%. Numbers indicate the rela-
tive position to the  FADS2  translation start site.  *  Statistically sig-
nificant, t test.                       
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