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Abstract

Outlying pollutant concentration data are frequently observed in time
series studies conducted to investigate the effects of atmospheric pollution
and mortality /morbidity. These outliers may severely affect the estimation
procedures and even generate unexpected results like a protective effect of
pollution. Although robust methods have been proposed to downweight
the effect of outliers in the response variable distribution, little has been
done to handle outlying explanatory variable values. We consider a ro-
bust local polynomial smoothing technique which may be useful for such
purposes. It is based on downweighting points with a small design density
and may also be used as a diagnostic tool to identify outliers. Using data
from a study conducted in Sao Paulo, Brazil, we show how an unexpected
form of the relative risk curve of mortality attributable to pollution by
SO, obtained via nonrobust methods may be completely reversed when

the proposed technique is employed.

Key Words: Atmospheric pollution, nonparametric curve fitting, outliers, ro-

bust methods.



1 Introduction

Smoothing methods are widely used to eliminate random noise in regression
problems involving time series of explanatory and response variables. Typical
examples are studies of the association between daily measures of pollutant con-
centrations in the atmosphere and mortality as considered in Schwartz (1994),
Braga et al. (2001) and Singer et al. (2002), among others. In such ecological
studies, the frequent presence of outlying observations, requires robust smooth-
ing techniques and for such purposes, the LOWESS (LOcally WEighted Scatter
plot Smoothing) technique has been successfully employed to downweight the
effect of outliers in the response variable (Cleveland, 1979). The idea of the
LOWESS technique is to carry out a series of iteratively reweighted local poly-
nomial fits, where, in each step, the points with the largest residuals in the
previous step are downweighted. Alternatively, one of the several recently pub-
lished robust nonparametric methods may also be considered. For example, a
common approach to robustification is to replace the quadratic loss function
I(z) = 2? by functions which are less sensitive to outliers, e.g. the L; norm

l[(z) = |z| as proposed by Wang & Scott (1994).

More specifically, in the context of local constant fitting, the estimate of a

function m(-) at point z, given the data (X;,Y;),i =1,...,n, is

m(x) = argminz wi(z)l(Y; — a)
@ =1

with weights w;(z) = K[(X; — z)/h], where K is a kernel function and h is the
bandwidth. These local M-estimators are discussed in Hardle & Gasser (1984),
Truong (1989) and Hall & Jones (1990). An improvement on such estimators
involve a local linear instead of constant fit, as discussed in Tsybakov (1986),
Fan, Hu & Truong (1994) and Yu & Jones (1998). Honda (2000) enriched the
concept by accounting for correlated errors. These papers, however, deal with
robustness against outlying responses. The task of how to treat outliers in the
predictors remains unexamined, a fact which was already noted by Hastie &

Tibshirani (1990).

To illustrate the importance of the development of such techniques we consider



the data set analyzed by Conceicdo et al. (2001) and Singer et al. (2002)
to evaluate the association between mortality attributed to respiratory causes
of children under five and the concentration of PM;y, SO2, O3 and CO in
the city of Sdo Paulo, Brazil, from 1994 to 1997 (the data is available in
www.ime.usp.br/~jmsinger). The number of daily respiratory deaths as a func-
tion of the SO concentration is depicted in Figure 1. Days with high pollutant
concentrations (as compared to the majority of the data) are clearly identified.
The effect of such observations is to ”pull” the fitted curve downward (dotted
line), suggesting that the effect of the pollutant on children mortality decreases
for concentrations beyond 50 (jg/m?), a fact that has no biological plausibil-
ity. To better understand the effect, observe the two data points at the lower
right side of the picture. Although they do not seem to correspond to vertical
outliers, they definitely disturb the local linear fit. A possible reason for this is
that high concentrations of the pollutant are not coupled with a large number
of deaths, contrary to what is expected; this is probably due to the sparse de-
sign for large concentrations. It seems clear that some robust method must be
employed to bypass this inconsistency. In the light of this example, we consider
a robust local polynomial smoothing technique which downweights the effect of
outliers both in the response and in the explanatory variables (application of
this method on the given data yields the solid line in Figure 1). It may also be

used as a diagnostic tool to identify outliers in the explanatory variables.

In Section 2 we give a short review over some existing related concepts. In
Section 3 we introduce the new outlier robust smoother and in Section 4 we
return to the example addressed above. We finish with a discussion in Section

o.

2 An overview of related concepts

2.1 Ridging

Seifert & Gassser (1996, 2000) show that the conditional variance of a local
linear fit can be unbounded in situations where the design is clustered or sparse.

In many cases, the presence of sparse data is a problem highly related to outlying



predictors. As a solution, they propose to use data adaptive ridging, i.e. they
replace the local linear fit by a weighted sum of a local linear and a local constant
fit. An appropriate choice of a data adaptive selected ridge parameter achieves
a balance between these two estimators and is successful in robustifying the
procedure against unbounded variance. However, this form of robustification is
not exactly what we desire here. Note that outlying predictors correspond to
regions with sparse design and in those situations the ridge estimator performs
a local constant fit. Thus, the estimator will more or less reproduce the response
value associated to the outlying observations, which is the opposite of what we

expect of an outlier robust method.

2.2 Variable bandwidth

Fan & Gijbels (1992) discuss a local linear estimator based on a global variable
bandwidth, i.e., a bandwidth which depends on the predictors. In particular, let
(X1,Y1),...,(X,,Y,) be a random sample from a population (X,Y’). Assume
that m(z) = E(Y|X = ) is the mean regression function of Y given X and let
f(-) denote the (design) density of X. Then

> (Y —a(z) — b(x)(z — X;))* (X)) K

j=1
is minimized in terms of a(x) and b(x), applying a variable bandwidth h(X;) =
hn/o(X;), where «(-) is some nonnegative function. This leads to the local
estimator m(z) = a(x). Fan & Gijbels (1992) show that the optimal variable
bandwidth, i.e., the bandwidth minimizing the asymptotic MSE, is achieved
by setting a(x) proportional to (f(z)[m” (z)]?/o?(z)) 1/5, where m” denotes the
second derivative of m and o?(z) denotes the conditional variance of Y. For
a(z) = f(z), the estimator m(x) obtained by minimizing (1) is asymptotically

equivalent to a nearest-neighbour estimator.

Although not explicitly stated by the authors, this kind of estimator may be
considered as a first step towards robustification against outlying predictors.
Let us assume that «(-) is any monotone increasing function of f(-). Then

the factor a(X;) in the minimization problem (1) downweights all points with



a small design density, which is what we expect for the outlying covariates.
There is, however, a serious drawback with this approach to robustification.
The function «(-) appears again in the argument of the kernel K and covariates
lying in sparse regions, (e.g. outliers) become associated to huge bandwidths,
h(X;); thus they will have a large influence on the estimation at remote (i.e., all
other!) data points. This effect is also contrary to the desired one. To overcome
this problem, one could either replace the function «(-) in K by a more suitable
function () or simply leave it out. For simplicity and transparency of the

concept we will focus on the last alternative.

3 Robustness against outlying predictors

3.1 Soft robustification

In the light of the above discussion, we consider the estimator
iz, @) = a(x),

obtained by minimizing

n

S (¥ — a(a) — ba) (@ — X;) a(X;)K ( ‘Xj) )

h
i=1 "

where a(-) is any monotone increasing function of f(-).

In order to avoid singularities due to sparse designs, we propose to use kernels
with unbounded support in the presence of outlying predictors. In this paper

we use Gaussian kernels in all examples.

Note that asymptotically, i.e., for h, — 0 and nh,, — oo, the estimator (2)
is equivalent to a local linear estimator. In fact, the factor «(-) is vanishing in
the leading terms of asymptotic bias as well as asymptotic variance expressions
as may be deducted from the results presented in Fan & Gijbels (1996). This
however is not surprising, since the asymptotic bias and variance of local lin-
ear estimators do not depend on the design density f(-). The weight function
a(-) essentially modifies the influence of the design density, regardless if «(-)

depends on f(-) or not. However, asymptotics for horizontal outliers seem not



to make much sense, since for n — oo the data will be arbitrarily dense at any
location z for which f(z) > 0. Consequently we will not focus on asymptotic

considerations in this paper.

Normally the function «(-) is unknown and we obtain the estimator m(x, &) by

minimizing (2) with «(-) replaced by a consistent estimator, &(-).

A near-at-hand idea is to use a(-) = f(-). We estimate the density by

)

To select the bandwidth g,, we choose the modified normal reference bandwidth

A 1 — X, —«x
flx) =— K(
(@) ngn; In

selector proposed by Silverman (1986), namely
gn = 0.9An~1/,

where

A = min(standard deviation, interquartile range/1.34). (3)

We defer the task of how to select the bandwidth h,, to Subsection 3.5.

As a further improvement, one could imagine to use not the density f(-), but a
power f¥(-) with k& > 1 as the weight function (). As we shall see, the larger
the exponent, the better is the robustification. However, the exponent cannot

increase arbitrarily, since then estimation becomes unstable.

In the sequel we will refer to the method intoduced above as soft robustification.
Under this method, outliers are downweighted but not eliminated. When one
is convinced that the outliers do not contain useful information, it might be
desirable to eliminate them from the estimation procedure. This approach,

called hard robustification, will be introduced in the following subsection.

3.2 Hard robustification

Under soft robustification procedures, outliers still influence estimated values

associated to predictors lying in their neighbourhood. To avoid this, one could



consider automatically cutting off points associated to estimated density val-
ues which fall beyond a certain barrier. This barrier can be calculated data-
adaptively by applying an idea similar to that of the normal reference bandwidth

selector. In a (very) rough approximation, one can assume

f() ~ ¢ﬂ,A2(')7
where ¢, 42 denotes the density function of a normal distribution with mean
pu = median(X7y,..., X,) and standard deviation A given in (3). Let p denote
the proportion of expected outliers ( typically, p = 0.05 or p = 0.01). Then the

required barrier is given by

1
0= ¢y a2(wpr2) = by az(p+A-2,)= Z¢(Zp/2)7
where z,,/5 and z,/, are the p/2 quantiles of the distribution of X and of the
N(0,1) distribution, respectively. The estimator m(z) is now obtained by min-

imizing

n
51— aa) = ba) o = X)) a1y o K (T 2) - @
j=1 "

Surely the question arises whether one can rely on estimation results in areas
where the data were downweighted or even cut off. This, however, is a question
inherent to any robust method. In particular, when applying soft robustification
techniques, we must face the question of whether it is correct to downweight the
data on the one hand, i.e., to pretend not to trust the data, but to believe in the
estimation results in the same region, on the other hand. Some decision has to
be made and we suggest to base it on areas of confidence, which can be selected
by means of density estimation. Within the areas of confidence, i.e., for all
with f (z) > J, the estimation is considered to be reliable . Outside these areas,
the reliability of the estimation procedures is questionable and interpretation
of the estimated curve must be taken cautiously. This will become clearer in

the following example.



3.3 Example

We now apply the proposed methods to a simulated data set, generated by
contaminating the underlying function m(z) = (z — 3)? with Gaussian noise
(o = 0.75). The predictor values are assumed to be uniformly distributed in

the interval [0,6].

In Figure 2 we illustrate how the soft robust fit is affected by successively adding
outlying predictors. We start without outliers and finish with a cluster of seven
outliers. In each case we take the estimated density and the third power of the

estimated density as weights.

A similar investigation was carried out under the hard robustification method;
the results are depicted in Figure 3. The development of the kernel density and

the cut off barrier are shown in Figure 4.
An analysis of these figures leads us to conclude that

e The proposed soft method succeeds to robustify the local estimator in
areas where the data is associated with a non-negligible design density,
i.e., within the areas of confidence. However, the fit is still affected in a

neighbourhood of the outlier.

e Weighting with the third power of the density yields a better robustifica-
tion effect than weighting with the density itself.

e When only one or two outliers are present, the hard robustification method
produces a fit which is completely unaffected by the outliers (see top of

Figure 3). Like desired, only the outliers are removed from the data set.

e For bigger clusters of outliers soft and hard robustification methods yield
the same results since in this case the density does not get cut off. Note
that the cut off barrier is decreasing with an increasing number of outliers

(see Figure 4).

e The bigger the cluster, the smaller is the effect of robustifictaion as ex-
pected, since a big cluster is probably not just a group of outliers but

rather contains genuine information.



e From Figure 4 we may observe that values at the boundary are down-
weighted in general, even if they are not outlying, due to the smoothing
effect of the kernel density estimator. This is a desirable property, since

boundary points are known to provide possibly spurious information.

In all estimations in this example we used the same global bandwidth hy =
0.6, motivated by the result of one-sided cross-validation (OSCV) discussed in
Subsection 3.5.

Note that the outliers considered in this example could be regarded as outlying
predictors as well as outlying responses. Thus methods which robustify against
outlying responses should work here as well. In fact, when one outlier is present,
the S-Plus function loess yields the same effect of a hard robustifiction procedure
after 2 iterations. We chose this example only to demonstrate the effect with a
particularly difficult kind of horizontal outliers. In Subsection 3.4 and Section

4 we will provide examples where vertical robustification methods fail.

3.4 Simultaneous robustness for predictor and response vari-

ables

Now we show that robust methods for outlying predictors and responses can
be combined successfully. We chose the robust LOWESS method of Cleveland
(1979), which is one of the most widely used robustification methods. It is

implemented in S-Plus.

The data shown in Figure 5 were generated by contaminating the underlying
function m(z) = 61/2 with Gaussian noise (o = 3) and the predictors are uni-
formly distributed in the interval [0, 6]. One vertical outlier at point (2;25) and
two horizontal outliers at (7.5;11) and (8;10.5) were intentionally added by
hand, yielding a total of n = 51 data points. Note that the observations with
outlying predictors cannot be regarded as outlying responses, since, when com-
pared to the other data points, they are not located at a considerable distance

from the function m.

Figure 5 (top) shows the result of a simple local linear fit and a LOWESS fit
after 4 iterations. The LOWESS fit succeeds to eliminate the influence of the



vertical outlier, but fails to handle the horizontal outliers.

An illustration that the local linear as well as the LOWESS fit can be robus-
tified against outlying predictors via the soft robustification method (with the

estimated density as weight function) is given in the bottom part of Figure 5.

All the estimation procedures were carried out by means of the S-Plus function

loess with smoothing parameter equal to 0.45.

3.5 Some notes about bandwidth selection

In principle, any arbitrary local linear (constant or variable) bandwidth se-
lection routine can be applied to select the bandwidth h,. Possible methods
to select constant bandwidths are, among others, cross-validation (CV), one-
sided cross-validation (Hart & Yi, 1998), plug-in methods (Ruppert, Sheather
& Wand, 1995), methods based on the AIC (Hurvich, Simonoff & Tsai, 1998)
or the RSC criteria (Fan & Gijbels, 1995). For local variable bandwiths, i.e.,
bandwidths of the form h(z), we may also refer to Fan & Gijbels (1995), and
further to Fan, Gijbels, Hu & Huang (1996) or Doksum, Petersen & Samarov
(2000).

However, we should point out that the results of bandwidth selection routines
can be seriously affected by horizontal outliers. As an example, we demon-
strate the effect of outliers on cross-validation and one-sided cross-validation
techniques for the simulated data examined in Subsection 3.3. The results of
the selection of a bandwidth for a local linear estimator under increasing num-
bers of outliers is shown in Figure 6 for each method (CV or OSCV). As may
be deducted from the plot, the bandwidth obtained under CV is considerably
affected by a single outlier, while that obtained under OSCYV seems to be some-
what more robust. The corresponding bandwidths are bigger under OSCV than
under CV as the number of outliers increases. A similar analysis was conducted
for the example of Subsection 3.4; the selected bandwidths under CV and OSCV

for none, one and two horizontal outliers are summarized in the following table.

10



Selection | Horizontal outliers
method 0 1 2
cv 1.60 1.97 1.36
osSCVv | 125 1.28 1.08

Here again, OSCYV yields more stable bandwidth values than CV. The seemingly
better robustness of OSCV to outlying predictors is in conformity to other

robustness properties of this methodology (Hart & Lee, 2002).

We finally remark that the above results do not change significantly when using
a soft robustified estimator instead of a local linear estimator under the CV
(OSCV) routines. The problem is intrinsic to the bandwidth selector and not
to the smoothing method.

4 Relative Risk curves for respiratory deaths

We now return to the example addressed in the introduction. Following a stan-
dard analysis strategy for this type of data as in Schwartz (1994), a generalized
additive ”core” model including terms to control for trend, days of the week,
seasonality, temperature, humidity and non-respiratory deaths was initially fit-

ted.

A scatter plot of the deviance residuals from this ”core” model versus the SO9
concentrations is presented in Figure 7 (top) along with a LOWESS smoother
(dotted line). The resulting curve is falling for high concentrations, whereas

the soft robustified fit is slightly rising.

Regarding the plot, this effect seems to be not so serious - however the mis-
leading effect of the horizontal outliers becomes much more dramatic when
regarding relative risk curves similar to those presented in Singer et al. (2002).
The generalized additive model considered by those authors is typical for count
data like the ones investigated here. For our purposes, it suffices to know that

the model may be generally expressed as

11



In[E(respiratory death)] =« + Zf;ll i(Xi) + f(SO9)

where X;,72=1,...,p—1 denote variables like temperature, humidity, etc. The
relative risk of death at a concentration SOs(j) of the pollutant SO4 relative to

the risk of death at the minimum concentration SO9(min) is given by

E(respiratory death|SO2(j))

RR(j) = E(respiratory death|SOg(min))

= exp[f(SO2(j)) — f(SO2(min))].

In the center portion of Figure 7, we show the relative risk curve (-) and its soft
robustified counterpart(+). The plot shows a tremendous influence of the hor-
izontal outliers. The relative risk curve obtained by a simple local fit suggests
that the risk of respiratory death decreases with increasing pollutant concen-
tration, what is obviously unacceptable. The relative risk curve obtained by a

soft robustified local linear fit (weighted with the density) behaves as desired.

The form of the kernel density estimation for these data is presented in the bot-
tom portion of Figure 7 and suggests that there is no need for a hard robustified

version of the local linear fit in this case.

5 Discussion and Outlook

We showed that local linear and LOWESS smoothers can be robustified against
outlying predictors. The main idea is to plug in the estimated density into
the minimization problem. Such an idea is not restricted to these estimators
and can certainly be applied to local polynomial estimators in general, but
also simulations with smoothing splines led to the desired results. In fact, we
believe that it is not an exaggeration to claim that any smoothing method which
is based on minimization (maximization) of any loss (likelihood) function can
be robustified against outlying responses by applying the concept introduced in

this paper.
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We further verified that robustification against outlying responses can be achieved
for multivariate smoothing and for derivative estimation, results which we do

not present here, since they would burst the framework of the paper.

We feel that there is still plenty of room for further research in this area. Beyond
the topics mentioned above, a challenging task seems to be the problem of
bandwidth selection; in particular, we mention the problem of robustness of
common bandwidth selection routines to horizontal outliers. Up to now, this
task is only rudimentarily treated even for vertical outliers. In the context
of local Ly regression, Wang & Scott (1994) introduced a version of CV with

robustness against outlying responses.
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Figure 1: Respiratory deaths versus SO concentration, local linear fit (dotted)

and fit with robustness to horizontal outliers (solid).
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Figure 2: Data (+), local linear fit (solid line) and soft robustification by weight-
ing with the density (dashed line) and third power of the density (dotted line)
for varying numbers of outliers. Vertical lines indicate the end of the confidence
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Figure 3: Data (+), local linear fit (solid line) and hard robustification by
weighting with the density (dashed line) and third power of the density (dotted
line) for varying numbers of outliers. Vertical lines indicate the end of the

confidence area. 18
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Figure 4: Density estimations and cut off barriers of the data set used in Ex-

ample 3.3.
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Figure 5: Top: Simulated data, underlying function (solid line), local linear
(dashed line) and loess fit (dotted line); bottom: soft robustified local linear
(short-dashed) and loess fit (long-dashed).
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Figure 6: Bandwidth selected by CV (solid) and OSCV (dotted) for increasing
numbers of outliers.
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Figure 7: Top: Deviance residuals versus SOy concentration with a loess fit
(dotted line) and a soft robustified fit (solid line); Middle: Relative risk curves
versus SOz concentration resulting from a local linear (-) and a soft robustified
fit (+), each evaluated at all measured values of SOy concentration; bottom:
Kernel density estimation of the SO2 concentration.

22



