International Archives of Allergy and Immunology

Int Arch Allergy Immunol 2001;124:292-295

In vitro T Cell Reactivity in Nickel Allergy: Comparison of T Cell Clonality, Cytokine Expression and Mediator Production

Peter Thomas Burkhard Summer Christian Sander Bernhard Przybilla

Klinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität, München, Deutschland

Key Words

Lymphocytes \cdot Nickel allergy \cdot T cell receptor \cdot IL-4 \cdot IFN- $\gamma \cdot$ PCR

Introduction

Apart from typical symptoms of nickel contact allergy, there are also unusual manifestations, e.g. pseudolymphoma formation, airborne contact dermatitis or implantassociated intolerance reactions [1]. Delayed-type hypersensitivity to nickel is reflected by eczematous reactions upon patch test and by an antigen-specific T lymphocyte proliferation in vitro [2–4]. We now assessed to what extent peripheral blood mononuclear cells (PBMC) from nickel-allergic and from nonallergic individuals would proliferate in response to nickel stimulation in vitro. In addition, the production of IL-4 and IFN-y in these cultures was monitored by RT-PCR of the respective mRNA and by immunoassay of the supernatants. In addition, we examined with a PCR analysis of the several families of the T cell receptor gamma (TCR- γ) gene, if instead of being randomly stimulated T cells would show a clonal expansion pattern.

KARGER

Fax + 41 61 306 12 34 E-Mail karger@karger.ch www.karger.com 1018–2438/01/1243–0292\$17.50/0 Accessible online at: www.karger.com/journals/iaa

© 2001 S. Karger AG, Basel

Materials and Methods

Suspensions of PBMC were obtained by centrifugation from the peripheral blood of 10 nickel-allergic individuals and 5 controls not allergic to nickel. The subsequent cell culture was performed either with complete 10% AB serum containing medium alone or with the addition of phytohemagglutinin (PHA; $2.4 \mu g/ml$), tetanus toxoid (TT; $5.0 \mu g/ml$) or nickel sulfate ($10^{-4} M$, $10^{-5} M$). On day 5 a proliferative response was assessed by ³H-thymidine uptake and expressed as stimulation index.

Released IL-4 [detection limit (d.l.): 1.5 pg/ml] and IFN- γ (d.l.: 5.0 pg/ml) in the supernatants were measured by ELISA. Samples below d.l. were set to 0.75 pg/ml (IL-4) and 2.5 pg/ml (IFN- γ). To evaluate the respective actual mRNA levels extraction by the phenol/ chloroform method was done. RT-PCR (IL-4, IFN- γ , β -actin) was applied according to standard protocols. To cover the range of the TCR- γ chain we used a combination of primers for the main groups of the variable region (V γ 1–8, V γ 9, V γ 10, V γ 11) and a primer mix, which contains several sequences of different joining regions. The TCR region V γ 1–8 was detected by the consensus primer V γ 2. PCR products were separated on a 6% polyacrylamide gel and photographed after staining with ethidium bromide. Clonal expansion of few specifically reacting T cell populations would result in defined bands in contrast to a 'smear' in the case of polyclonal TCR- γ rearangement.

Correspondence to: PD Dr. P. Thomas

Klinik und Poliklinik für Dermatologie und Allergologie Ludwig-Maximilians-Universität München, Frauenlobstrasse 9–11

D-80337 München (Germany), Tel. +49 89 5160 6314

Fax +49 89 5160 6312, E-Mail Peter. Thomas@derma.med.uni-muenchen.de

Fig. 1. a Proliferative response (stimulation index) from PBMC of 10 nickel-allergic and 5 nonallergic individuals. **b** Production of IL-4 from PBMC of 10 nickel-allergic and 5 nonallergic individuals. d.l. was 1.5 pg/ml (samples below d.l. are expressed as 0.75 pg/ml. **c** Production of IFN- γ from PBMC of 10 nickel-allergic and 5 nonallergic individuals. d.l. was 5.0 pg/ml (samples below d.l. are expressed as 2.5 pg/ml). **•** = Nickel-allergic; \bigcirc = nonallergic.

Fig. 2. RT-PCR products of mRNA from cell culture series (here nickel-allergic individual No. 10). 1 = Medium; 2 = PHA; 3 = TT; 4 = NiSO₄ $10^{-4} M$; 5 = NiSO₄ $10^{-5} M$; M = DNA marker.

Allergic individuals	Medium alone	РНА	TT	NiSO ₄ 10 ⁻⁴ M	NiSO ₄ 10 ⁻⁵ M	
1	_	_	Vγ11	_	_	
2	_	_	Vγ11	Vγ10	_	
3	_	_	Vγ11	Vγ10	Vγ10	
4	_	_	Vγ9	Vγ9	Vγ9	
5	_	_	Vγ11	$V\gamma 2, V\gamma 11$	_	
6	Vy9	Vy9	Vγ9	Vγ9	Vy9	
7	_	_	_	Vγ10		
8	_	_	Vγ11	Vγ10	Vγ10	
9	_	_	_	_	_	
10	-	-	Vy9	Vy2	Vy2	
Controls						
11	_	_	Vγ11	-	Vγ11	
12	_	_	Vγ9	$V\gamma 2, V\gamma 9$	Vγ9	
13	_	_	Vγ9	-		
14	Vγ10	Vy2	Vγ10	Vy2	_	
15	-	-	-	Vγ11	Vγ10	

Table 1. Analysis of TCR- γ specificity upon medium or allergen

- = No preferential TCR- γ expression; V γ 2, V γ 9, V γ 10, V γ 11 =

predominant TCR-γ family.

stimulation (clonality)

Results and Discussion

PBMC of nickel-allergic patients proliferated upon the addition of nickel sulfate to a varying degree. Cells of the different blood donors - some of whom had actual eczema - showed a baseline IL-4 production. In contrast, IFN- γ in the supernatants was enhanced in nickel-stimulated cultures of allergic individuals (fig. 1). This was reflected by the predominant detection of IFN-y-specific mRNA on day 5 (tables 1, 2, fig. 2). Despite most T cells showing surface expression of TCR- $\alpha\beta$, the analysis of the concomitant rearrangement of TCR-y gene makes it possible to evaluate the array of T lymphocytes with regard to clonality. Here the analysis of the TCR- γ spectrum in the specifically stimulated cultures showed clonal expansion (tables 1, 2) in contrast to the unspecific, broad stimulation by PHA. This would point to a rather specific response in sensitized individuals in contrast to random T cell activation. Thus, the combined analysis of proliferative response in vitro, mRNA characterization and potential clonal TCR- γ rearrangement [5, 6] could further help to identify specific antigen/allergen-induced T cell activation.

Table 2. Qualitative evaluation (band intensity) of RT-PCR products (IL-4/IFN- γ)

Allergic individuals	Medium alone		PHA	РНА		TT		NiSO ₄ 10 ⁻⁴ M		NiSO ₄ 10 ⁻⁵ M	
	IFN-γ	IL-4	IFN-γ	IL-4	IFN-γ	IL-4	IFN-γ	IL-4	IFN-γ	IL-4	
1	_	_	+++	_	++	_	++	_	+++	_	
2	-	-	+++	++	++	-	+++	-	++	+	
3	-	-	+++	+	+	-	+++	-	+++	-	
4	_	-	+++	-	-	-	++	-	+++	-	
5	-	-	+++	-	+++	-	+++	-	+++	-	
6	+	-	+++	-	++	-	+++	-	+++	+	
7	-	-	+++	-	++	-	+++	-	+++	-	
8	+	-	+++	+	+	-	++	-	++	-	
9	+	-	+++	-	++	+	+++	-	+	_	
10	++	-	+++	-	+	-	+	-	++	-	
Controls											
11	-	-	+++	+	-	-	+	-	-	-	
12	-	-	+++	-	+	-	+	-	+	-	
13	-	-	+++	+	++	-	-	-	+	-	
14	_	-	+++	-	-	-	+	-	-	-	
15	-	-	+++	-	-	-	-	-	+	-	

mRNA was extracted from unstimulated (medium alone) or allergen stimulated cultures. - = Absent; + = visible band; ++ = strong band; +++ = very strong expression. Evaluation was done with reference to β -actin expression.

- 1 Möller H: Nickel dermatitis: Problems solved and unsolved. Contact Dermatitis 1990;23: 217–220.
- 2 Cederbrant K, Hultman P, Marcusson JA, Tibbling L: In vitro lymphocyte proliferation as compared to patch test using gold, palladium and nickel. Int Arch Allergy Immunol 1997; 112:212–217.
- 3 Kapsenberg ML, Wierenga EA, Stiekema F, Tiggelman A, Bos JD: Th1 lymphokine production profile from nickel-specific CD4+ Tlymphocyte clones from nickel contact allergic and non-allergic individuals. J Invest Dermatol 1992;98:59–63.
- 4 Mitchison NA: Specialization, tolerance, memory, competition, latency, and strife among T cells. Annu Rev Immunol 1992;10:1–12.
- 5 Thomas P, Thomas M, Summer B, Naumann T, Sander CA, Przybilla B: Intolerance of osteosynthesis material: Evidence of dichromate contact allergy with concomitant oligoclonal Tcell infiltrate and TH1-type cytokine expression in the peri-implantar tissue. Allergy 2000; 55:969–972.
- 6 Werfel T, Hentschel M, Kapp A, Renz H: Dichotomy of blood- and skin-derived IL-4producing allergen-specific T cells and restricted V β repertoire in nickel-mediated contact dermatitis. J Immunol 1997;158:2500– 2505.

In vitro T Cell Reactivity