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re-analyse the available meta-analysis data sets to detect 
new loci in the extremes. Moreover, our investigation offers 
an explanation for discrepant findings when analysing quan-
titative traits in the general population and in the extremes. 
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 Introduction 

 Genome-wide association studies (GWAS) have been 
very successful in detecting single nucleotide polymor-
phisms (SNPs) associated with complex diseases and 
traits or phenotypes. Despite the success, SNPs collec-
tively account for only a small proportion of the estimat-
ed heritability of most of the complex phenotypes, this is 
commonly referred to as ‘missing heritability’  [1] . Cur-
rently, meta-analyses on permanently increasing sample 
sizes are performed to reveal additional associated SNPs 
 [2–5] . One might think that with larger sample sizes, al-
most every influential SNP should be detectable. How-
ever, both the study design (e.g. cross-sectional design for 
the quantitative trait (QT) association or case-control 
(CC) design) and the underlying assumption about the 
genetic effect (i.e. the QT distribution by genotype) have 
a large impact on the detectability of new associated 
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 Abstract 

  Objective:  Genome-wide association studies have identi-
fied robust associations between single nucleotide poly-
morphisms and complex traits. As the proportion of pheno-
typic variance explained is still limited for most of the traits, 
larger and larger meta-analyses are being conducted to de-
tect additional associations. Here we investigate the impact 
of the study design and the underlying assumption about 
the true genetic effect in a bimodal mixture situation on the 
power to detect associations.  Methods:  We performed simu-
lations of quantitative phenotypes analysed by standard lin-
ear regression and dichotomized case-control data sets from 
the extremes of the quantitative trait analysed by standard 
logistic regression.  Results:  Using linear regression, markers 
with an effect in the extremes of the traits were almost un-
detectable, whereas analysing extremes by case-control de-
sign had superior power even for much smaller sample sizes. 
Two real data examples are provided to support our theo-
retical findings and to explore our mixture and parameter 
assumption.  Conclusions:  Our findings support the idea to 
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SNPs. This topic has first been addressed as ‘selective ge-
notyping’ of individuals with extreme phenotypes  [6, 7]  
mainly for cost-efficiency reasons – initially for linkage 
studies  [8] , later for association studies  [7]  and most re-
cently also for next generation sequencing  [9] . General 
power considerations for association tests have been add-
ed  [7, 10]  and new statistical methods have also been de-
veloped  [11] .

  Here we explore the impact of the study design and 
more importantly the underlying assumption about the 
genetic effect which has been largely ignored before for 
ever-growing GWAS meta-analyses. By simulating large 
scale cohorts and CC samples, we evaluate the power of 
standard association tests to detect SNP effects in the tails 
of a quantitative phenotype. We simulate sample sizes in 
the order of magnitude of the most recently published 
GWAS meta-analyses for standard normally distributed 
quantitative phenotypes and quantitative phenotypes de-
rived from a mixture of two and more normal distribu-
tions. Two real data examples are used to underline our 
findings. First, we analysed the body mass index (BMI) 
and height quantitatively and dichotomized in a popula-
tion-based cross-sectional investigation genotyped by 
the ‘Cardio-Metabochip’ (n = 4,518;  � 200,000 SNPs). 
Secondly, we explored our assumption of a mixed-dis-
tributed quantitative phenotype and our parameter 
choices for two GWAS-derived obesity SNPs in two large 
population-based cross-sectional investigations (n = 
16,463). Finally, we discuss implications for future large-
scale GWAS meta-analyses.

  Materials and Methods 

 Simulations 
 We compared linear and logistic regression analyses as stan-

dard approaches to detect a single SNP association in a GWAS by 
direct mapping using simulation studies. We have selected simu-
lation parameter combinations that highlight the most interesting 

results, although more parameter combinations were explored (see 
online suppl. material, www.karger.com/doi/10.1159/000332824).

  For the simulation studies, we drew  n  genotypes under the 
Hardy-Weinberg equilibrium for varying minor allele frequen-
cies (MAF; see  table 1 ). Afterwards we drew phenotypes condi-
tional on the genotype for two situations: (1) the standard situa-
tion of a normally distributed phenotype, and (2) the situation of 
a bimodal distribution resulting from the mixture of two normal 
distributions. Both situations are displayed in  figure 1 . In the on-
line supplementary material, extensions beyond the bimodal set-
ting are provided.

  (1) For the standard situation of a normally distributed pheno-
type, the expected value and variance for the phenotype condi-
tional on the genotype were given by

  E(Y i   �  x i ) =  �  1  +  �  1 x i   and

  Var(Y i   �  x i ) =  �  1  2 ,

  where Y i  is the phenotype of person i, x i  is the given genotype. The 
intercept  �  1  is the phenotype expected value for an individual 
without risk allele and  �  1  is the effect of the risk allele or risk ge-
notype.  �  1  2  is the common phenotypic variance. 

 (2) For the situation of a mixture of two normal distributions 
N 1 ( �  1 ,  �  1  2 ) and N 2 ( �  2 ,  �  2  2 ), the expected value and variance for 
the phenotype conditional on the genotype were given by

  E(Y i   �  x i ) = w 1 ( �  1  +  �  1 x i ) + w 2 ( �  2  + �  2 x i ) and 

   Var(Y i   �  x i ) = (w 1  �  1  2  + w 2    �  2  2 ) + w 1 w 2 (( �  1  +  �  1 x i ) – ( �  2  +  �  2 x i )) 2 ,

  where w 1  and w 2  are weights for the mixture distribution (w 1  + 
w 2  = 1). Similar to the situation of only one normal distribution, 
 �  2  is the phenotype expected value for an individual without risk 
allele,  �  2  is the effect of the risk allele or risk genotype and  �  2  2  is 
the common phenotypic variance for the second normal distribu-
tion, respectively. 

 Simulations were performed for an additive and a recessive 
genetic model. For the additive genetic model, we coded geno-
types x i  as 0, 1 or 2 corresponding to the sum of the carried risk 
alleles of each individual. For the recessive genetic model, homo-
zygous carriers of the risk allele were coded as x i  = 1, whereas all 
other individuals were coded as x i  = 0.

  We generated 1,000 replicates for each simulation setting de-
fined by the parameter combinations shown in  table 1  that are 
based on empirical data from the literature  [5]  and our real data 
example 2. In each simulation setting, we investigated three as-
certainment schemes: first, we simulated n = 130,000 individuals 

Table 1.  Parameter values for the simulation studies referred to in the main text (additional results for other 
parameter choices are provided in the online suppl. material)

Parameters Values

Unimodal distribution � = 0, � = 3
Bimodal mixture distribution � = (0, 8), � = (3, 4), w = (0.9, 0.1)
Minor allele frequency (MAF) 0.01; 0.05; 0.2; 0.4
Genetic effect for first normal distribution �1 0; 0.05; 0.10; 0.15; 0.20; 0.25
Genetic effect for second normal distribution �2 0; 0.05; 0.10; 0.15; 0.20; 0.25
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from the population for each replicate (‘QT association’) mim-
icking the stage I sample size of Speliotes et al.  [5] . QT associa-
tions were analysed by linear regression analysis. Secondly, we 
selected cases and controls from the sample of n = 130,000 indi-
viduals (‘empirical CC association’) or selected cases and con-
trols from the population (‘CC association’). Both CC associa-
tions were analysed by logistic regression analysis (online suppl. 
table 5 shows what happens if linear regression is used instead, 
applied to either the QT values of the individuals in the extremes 
or to binary (0/1)-coded outcomes). We defined cases as indi-
viduals beyond the 99th percentile of the overall phenotype dis-
tribution, while controls were defined as  ̂  50th percentile of the 
overall phenotype distribution. Note that the two CC ascertain-
ment schemes differ: for the empirical CC association ascertain-
ment scheme, the empirical percentile of the given n = 130,000 
individuals results in 1,300 cases and 65,000 controls (cut-off of 
cases:  1 99th percentile; cut-off of controls:  ̂  50th percentile), 
whereas for the CC association scheme, the number of cases and 
controls is theoretically unlimited. We decided to explore 5,000 
cases and 5,000 controls as a still practical setting of ongoing and 
future GWAS, given the medians of 700 cases and 1,200 controls 
for published CC studies in the GWAS catalogue  [12] . In the main 
text, we focus on the QT association and the CC association as-
certainment scheme, while the results for the empirical CC as-
sociation scheme, simulation settings with altered samples sizes 
and altered percentile cut-offs are provided in the online supple-
mentary material.

  The comparison-wise power was defined as the proportion of 
replicates with p values for the SNP effect below the significance 
level  �  of 5  !  10 –6 . This significance level was used by Speliotes 
et al.  [5]  for SNP selection after stage I (the SNPs followed up in 
the independent stage II). Note that the power for the standard 
situation of a normally distributed phenotype can also be evalu-
ated analytically using tools like QUANTO 1.2.3 (http://hydra.
usc.edu/gxe,  [13] ) or the Genetic Power Calculator  [14]  (available 
at http://pngu.mgh.harvard.edu/ � purcell/gpc/).

  In addition, we also ran 10,000 replicates for simulations un-
der the null hypothesis of no genetic association for both linear 
and logistic regression setting and all three ascertainment 
schemes ( �  = 5  !  10 –4 ). In all cases we observed no evidence for 
an inflated empirical type I error rate (data not shown).

  Real Data Applications 
 Example 1 
 To demonstrate the impact of the different ascertainment 

strategies, we analysed the baseline (cross-sectional)-measured 
BMI and height of the population-based Heinz Nixdorf Recall 
study (http://www.recall-studie.uni-essen.de/; details in  [15] ). A 
total of n = 4,518 individuals were genotyped by the ‘Cardio-
Metabochip’ at the Department of Genomics, Life & Brain Center. 
This Illumina iSELECT chip includes roughly 200,000 SNPs se-
lected to represent genome-wide hits of large scale consortia such 
as the GIANT (Genetic Investigation of Anthropometric Traits) 
Consortium (for information on the chip design, see  [16] ). We fol-
lowed the analysis plans of Speliotes et al.  [5]  for BMI and Lango 
Allen et al.  [17]  for body height and worked with the residuals 
which derived by adjusting for age and sex. Reflecting the pro-
ceeding in our simulations, the residuals were analyzed under a 
(log-) additive genetic model by linear regression for the QT as-
sociation, while we used logistic regression for the empirical CC 
association (cut-off of cases:  1 99th percentile; cut-off of controls: 
 ̂  50th percentile).

  Example 2 
 To demonstrate that our assumption of mixed distributed 

quantitative phenotype and our chosen parameters may be rea-
sonable, we re-analysed real data sets from two large population-
based cross-sectional investigations of European origin (total n = 
16,463) derived from the KORA (‘Cooperative Health Research in 
the Region of Augsburg’; http://www.helmholtz-muenchen.de/
kora/; n = 12,002) and the Heinz Nixdorf Recall study (see above; 
n = 4,461). We focus on SNPs at two loci ( FTO, MC4R ) for which 
GWAS have first detected robust genome-wide findings. Geno-
typing was carried out by MALDI-TOF MS at the Helmholtz 
Zentrum, München, and at the Department of Genomics, Life & 
Brain Center, Bonn, adapting similar quality control criteria (de-
tails in  [18] ). Following the analysis plan of Speliotes et al.  [5] , the 
phenotype of interest was BMI residuals which was derived by 
adjusting the BMI by age, age 2  and sex. With the resulting BMI 
residuals, we fitted the genotype-stratified BMI residual distribu-
tions and visualized them in comparison to the histogram of the 
real data. To assess goodness-of-fit, we also perform two-sided 
Kolmogorov-Smirnov tests (observed data compared to best fit 
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  Fig. 1.  Density plots by SNP genotype (arbitrarily called AA, AG and GG) for (1) the (conditionally) normal dis-
tributed phenotype ( a ) and (2) the phenotype of a bimodal mixture distribution ( b ). As examples for the investi-
gated parameters, the figures also display the average genotypic effects  �  1  and  �  2  for the additive genetic model. 
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normal/mixed distribution) and derived quantile-quantile plots 
irrespective of genotype (see online suppl. material). The analyses 
were performed using the R package  mixtools  and  nor1mix .

  Results 

 Simulations 
 Power Estimates for the QT Association 
  Figure 2  displays empirical power estimates in addi-

tive genetic models for different MAF under the standard 
situation of a (conditionally) normally distributed pheno-
type (black bars) and for the situation of a (conditionally) 
bimodal mixture distribution (grey bars). Even for a sam-
ple size of n = 130,000 ( �  = 5  !  10 –6 ), the QT associations 
have a very limited power for MAF below 5% under both 
simulated phenotype scenarios in case of small and mod-
erate effect sizes (those below 0.15 in BMI units – see  [5] ). 
As expected, power always increased the more common 

the variants and the stronger the effects. Interestingly, in 
cases for which no ceiling effect of the estimated power 
was observable, power also depended on the second nor-
mal distribution of the mixture scenario. This observa-
tion was more pronounced the more frequent the inves-
tigated variant. In comparison to the standard situation 
of a (conditionally) normally distributed phenotype 
(black bars), larger power estimates of the mixture sce-
nario were only limited to scenarios in which the effect 
size of the second normal distribution was stronger than 
the effect size for the first normal distribution.

  The results of power simulation in recessive genetic 
models are presented in  figure 3 . In cases with MAF = 
0.01 and MAF = 0.05, there is almost no power to detect 
any effect (which is why the corresponding figures have 
been omitted). In general, power under a recessive model 
was lower than power under an additive model and again 
the relative larger power estimates of the mixture sce-
nario were only limited to scenarios in which the effect 
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  Fig. 2.  QT association using an additive genetic model: the power estimates for a QT analysed by linear regres-
sion for (1) the standard situation of a (conditionally) normal distributed phenotype and (2) the situation of a 
bimodal mixture distribution (n = 130,000;  �  = 5  !  10 –6 ; 1,000 replicates). MAF = 0.01 ( a ), 0.05 ( b ), 0.2 ( c ) and 
0.4 ( d ), respectively. 
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sizes of the second normal distribution was stronger than 
the effect size of the first normal distribution.

  As visible in the additional simulations performed for 
the online supplementary material, the smaller the dis-
tance between the expected values of the underlying two 
or three normal distributions, the larger the resulting 
power estimates. With regard to variability, more vari-
ance in the extremes or shifting the weights in the bimod-

al setting from w = (0.9, 0.1) to w = (0.8, 0.2) had relative-
ly little impact on the power of the QT association scheme.

  Power Estimates for the CC Association 
  Figures 4  and  5  display empirical power estimates 

for the CC association scheme with 5,000 CC pairs. If 
MAF = 0.05 and the phenotype is (conditionally) normal 
distributed under an additive genetic model, power in-
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  Fig. 3.  QT association using a recessive genetic model: the power estimates for a QT analysed by linear regression 
for (1) the standard situation of a (conditionally) normal distributed phenotype and (2) the situation of a bimod-
al mixture distribution (n = 130,000;  �  = 5  !  10 –6 ; 1,000 replicates). MAF = 0.2 ( a ) and 0.4 ( b ), respectively. 
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  Fig. 4.  CC association using an additive genetic model: the power 
estimates for selective genotyping of extremes from a QT for (1) 
the standard situation of a (conditionally) normal distributed 
phenotype and (2) the situation of a bimodal mixture distribution 
(5,000 CC pairs with cases:  1 99th percentile, and controls:  ̂  50th 
percentile of the QT distribution;  �  = 5  !  10 –6 ; 1,000 replicates). 
MAF = 0.05 ( a ), 0.2 ( b ) and 0.4 ( c ), respectively.   



 Pütter   /Pechlivanis   /Nöthen   /Jöckel   /
Wichmann   /Scherag    

Hum Hered 2011;72:173–181 178

creases slightly in comparison to the situation of MAF = 
0.01 (data not shown) and reaches a maximum of 0.53 for 
the largest simulated effect ( �  1  = 0.25). If the phenotype 
is (bimodal) mixed distributed actually, power may be 
further increased the stronger the effect of the second 
distribution  �  2  for this maximum  �  1 . For more common 
variants (MAF  6 0.2) and a conditionally normal distrib-
uted QT, CC sampling of 5,000 pairs has limited or no 
power to detect effects of  �  1   ̂  0.15 and this is even more 
extreme for a recessive genetic model ( fig. 5 ). However, in 
case of mixed distributed QT with an effect  �  2   6 0.20 for 
the second normal distribution, the CC association anal-
ysis may meet a power  6 0.5.

  In the additional simulations performed for the online 
supplementary material, we observed that the more ex-
treme the selection (also for the controls) under the CC 
association ascertainment scheme the larger the power es-
timates. For these extreme settings, varying the other pa-
rameters has little impact on power. When similarly as-
sessing power under the empirical CC association ascer-
tainment scheme, we observed advantages of sampling 
(symmetrically) from both extremes only in the pre-
science of effects in both tails (trimodal). Finally, under 
both CC association schemes (for the settings considered), 
the factor influencing power by far the most was the sam-
ple size of the smaller of the two (case or controls) groups.

  Using linear instead of logistic regression resulted in the 
same pattern when compared to QT association but had a 
larger impact in the empirical CC association scheme (with 
larger power estimates for the linear regression) as com-
pared to the balanced CC association scheme. When logis-
tic and linear regression were applied to the same 0/1-cod-
ed outcomes, this resulted in very similar power estimates, 

while when the original QT values were used in the linear 
regression, this resulted in increased power of the linear 
regression (as compared to the logistic regression).

  Real Data Applications 
 Example 1 
  Figure 6  displays scatter-plots of the results for the QT 

association versus the empirical CC association (cut-off 
of cases:  1 99th percentile; cut-off of controls:  ̂  50th per-
centile) for each of the roughly 200,000 SNPs of the Car-
dio-Metabochip. For the BMI residuals ( fig. 6 a), a strat-
egy of artificially dichotomizing the data set can result in 
additional findings that were not detected by the QT as-
sociation (at  �  = 5  !  10 –6 ), despite the larger sample size 
when analysing all individuals. With a window of  8 500 
kb of the additional findings, the smallest p values for the 
QT association were in the range of 0.001. In contrast, no 
additional findings were detected for the body height re-
siduals ( fig. 6 b).

  Example 2 
  Figure 7  displays the empirical and the fitted distribu-

tions of BMI residuals in n = 16,463 stratified by genotype 
(panels a and b: rs9935401 –  FTO ; panels c and d:  
 rs17700144 –  MC4R ). The better density fit was obtained 
for bimodal mixed distributions (panels b and d) as com-
pared to unimodal normal distributions (panels a and c). 
The parameter estimates are listed in online supplemen-
tary table 6. These estimates are comparable to the pa-
rameter choices of our simulation and may thus serve as 
their justification. Note that using BMI instead of BMI 
residuals for fitting the density reveals comparable results 
(data not shown). Additionally, we assessed the fit of uni- 
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  Fig. 5.  CC association using a recessive genetic model: the power 
estimates for selective genotyping of extremes from a QT for (1) 
the standard situation of a (conditionally) normal distributed 
phenotype and (2) the situation of a bimodal mixture distribution 

(5,000 CC pairs with cases:  1 99th percentile, and controls:  ̂  50th 
percentile of the QT distribution;  �  = 5  !  10 –6 ; 1,000 replicates). 
MAF = 0.2 ( a ) and 0.4 ( b ), respectively. 
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  Fig. 6.  Example 1: scatter-plots of –log 10 (p values) for all  � 200,000 
Cardio-Metabochip SNPs assessed for BMI (           a ) or body height re-
siduals ( b ). The results for the QT association on the X-axis are 
plotted against the empirical CC association (cut-off of cases: 

 1 99th percentile; cut-off of controls:  ̂  50th percentile) on the Y-
axis. SNPs with p values  ! 5  !  10 –6  in the empirical CC associa-
tion only are highlighted in black. 
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  Fig. 7.  Example 2: fitted BMI residuals in genotype-stratified samples (rs9935401 ( FTO ) and rs17700144 ( MC4R )) using uni- (               a ,  c ) and 
bimodal, mixed distribution ( b ,  d ). The histogram in the background represents the real data; arrows indicate the estimated means.           
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and multimodal models to BMI residuals using quantile-
quantile plots and Kolmogorov-Smirnov goodness-of-fit 
tests (see online suppl. material). These comparisons in-
dicated a better fit (particularly in the tails) in case of the 
mixture settings.

  Discussion 

 There is an ongoing trend to perform GWAS meta-
analyses at an ever growing size in order to detect most of 
the variants that contribute to the genetic architecture of 
a complex phenotype. While for the largest part our simu-
lation results support this view, we also found support for 
the idea of exploring samples selected from the extremes 
of a phenotype to detect new and other genetic variants.

  We demonstrated that if we alter the assumption of a 
(conditionally) normally distributed trait to a slightly 
more complicated mixture setting, investigators may be 
able to detect new genetic variants using selective geno-
typing at the extremes of the quantitative phenotype 
(even for much smaller sample sizes). Moreover as dis-
played in  table  2 , further increasing the sample size of 
population-based samples under the QT association as-
certainment scheme to e.g. n = 10 6  is of little help in case 
the genetic effect is largely driven by an effect in the ex-
tremes. This is simply due to the fact that the majority of 
individuals influence the QT association linear regres-
sion result, while the few individuals in the extremes have 
little impact. This observation has at least three implica-
tions. First, it may contribute to an understanding why 
some of the recent GWAS meta-analyses adapting either 
a population-based QT association linear regression view 
(e.g.  [5] ) as compared to an extremes (CC) view (e.g.  [18] ) 

may come up with slightly different result sets in addition 
to the possibility of a false-positive finding. Second, both 
our simulations and the real data example 1 support the 
idea that running a meta-analysis selecting cases and 
controls from the tails of a phenotype may be worthwhile 
to detect new associated variants. Third, as demonstrated 
in the real data example 2, estimating parameters from a 
mixture distributions setting and comparing them to the 
standard analysis may also add to our understanding of 
the genetic architecture of some complex traits.

  Besides these conclusions, particularly our simulation 
study also has some limitations. We generated data sets 
of QT loci and SNP genotype data that were derived from 
empirical estimates (see example 2) and were thought to 
mimic the ongoing search of associated SNPs (n = 130,000 
at  �  = 5  !  10 –6  or 5,000 CC pairs also at  �  = 5  !  10 –6 ). 
Given the very different sample sizes, power estimates are 
not comparable between the ascertainment schemes as 
has already been discussed intensively by others (e.g.  [10, 
19] ). Please note, that the sample size of 5,000 cases se-
lected using a  6 99th percentile phenotype cut-off may 
require a cross-sectional study size of n = 500,000 under 
the empirical CC association scheme. Furthermore our 
findings do not result from contrasting linear and logistic 
regression, as analysing the CC ascertainment schemes 
by linear regression resulted in a very similar observation 
if 0/1-coded outcomes were considered. Our choice of 
 �  = 5  !  10 –6  may be regarded as a too liberal significance 
level. However, given the monotone relationship between 
power and significance level, the power estimates ob-
tained here will likely be an overoptimistic view. Further-
more the choice of a bimodal mixture of two normal dis-
tributions may seem relatively arbitrary. We presented 
the real data example 2 for BMI to show the superior fit 
of the mixture densities which may of course only be due 
to the larger flexibility of a mixture density situation. De-
spite this real data example, the bimodal mixture situa-
tion remains a model of a slightly more complicated ge-
netic architecture of a complex trait. This model might 
match the empirical findings on both common and ex-
treme forms of complex traits – see  [20]  for examples re-
lated to type 2 diabetes and obesity. Extending the mix-
ture setting to more than two normal distributions re-
quires setting additional simulation parameters. Explor-
ing some trimodal mixture settings in general showed 
that effects in both extremes/tails may be detected best by 
selecting extreme cases and extreme controls from the 
population. Finally, one may question when power differ-
ences are expected, given that larger power estimates 
were often limited to mixture settings in which the effect 

Table 2.  QT association using an additive genetic model

MAF � 2
0. 25 0.5 1

0.4 0.880 1 1
0.2 0.563 1 1
0.1 0.163 0.996 1
0.01 0.001 0.020 0.538
0.001 0 0 0

Values are the power estimates for a quantitative trait in a pop-
ulation-based study analysed by linear regression and with a sam-
ple size of n = 1,000,000 when an effect is only present in the ex-
tremes (�1 = 0).
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sizes of the second normal distribution were larger than 
the first normal distribution. This question can only be 
accessed empirically – most likely the answer will be dif-
ferent for different phenotypes (see also our example 1 
contrasting BMI and height).

  In sum, we have supported the idea that selective sam-
pling and selective analysis of samples may contribute to 
the detection of new genetic variants of complex traits in 
addition to the ones detectable by large scale population-
based analyses. The future will show if the model propa-
gated to support this claim turns out to be useful for de-
tecting novel genes related to complex traits.
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