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proved bile flow. Intravenous application of GSH effectively 
reduces early IRI in steatotic allografts and improves recov-
ery of these marginal donor organs following transplanta-
tion.  Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 In an attempt to overcome the discrepancy between 
liver organ availability and demand, livers with poor or-
gan quality are increasingly accepted for transplantation. 
In deceased organ donors, the prevalence of steatosis 
ranges from 13 to 28%, approaching 50% when sensitive 
histological techniques are used  [1, 2] . Demographic data 
suggest a strong increase of obesity in the population, 
which may have a negative impact on the quality of har-
vested allografts used for liver transplantation  [3] .

  Several human studies have demonstrated an in-
creased ischemia-reperfusion injury (IRI) following 
transplantation of steatotic liver grafts as evidenced by 
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 Abstract 

 Ischemia-reperfusion injury (IRI) is increased after transplan-
tation of steatotic livers. Since those livers are increasingly 
used for transplantation, protective strategies must be de-
veloped. Reactive oxygen species (ROS) play a key role in he-
patic IRI. In lean organs, glutathione (GSH) is an efficient 
scavenger of ROS, diminishing IRI. The aim of this study was 
to evaluate whether GSH also protects steatotic allografts 
from IRI following transplantation. Fatty or lean livers were 
explanted from 10-week-old obese or lean Zucker rats and 
preserved (obese 4 h, lean 24 h) in hypothermic University of 
Wisconsin solution. Arterialized liver transplantation was 
then performed in lean syngeneic Zucker rats. Recipients of 
fatty livers were treated with GSH (200  � mol/h/kg) or saline 
during reperfusion (2 h, n = 5). Parameters of hepatocellular 
damage and bile flow were measured. Transplantation of 
steatotic livers enhanced early reperfusion injury compared 
to lean organs as measured by increased aspartate amino-
transferase, alanine aminotransferase, and lactate dehydro-
genase plasma levels. Bile flow was also reduced in steatotic 
grafts. Intravenous administration of GSH effectively de-
creased liver damage in fatty allografts and resulted in im-
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elevated plasma liver enzyme levels and delayed organ 
function  [3, 4] . Zucker rats homozygotic for a leptine-re-
ceptor gene defect (fa/fa) develop macrovesicular hepatic 
steatosis. Studies have described increased reperfusion 
injury in fa/fa Zucker rats compared to animals with 
healthy livers following warm and cold ischemia  [5, 6] . 
Therefore, fa/fa Zucker rats may represent a suitable ani-
mal model of IRI following transplantation of non-alco-
holic fatty livers. Therefore, those rats may represent a 
suitable animal model of reperfusion injury following 
transplantation of non-alcoholic fatty livers.

  Although the precise sequence of events leading to IRI 
in liver transplants has not been completely described, 
the generation of reactive oxygen species (ROS) and dis-
turbances of the hepatic microcirculation may play key 
roles in the mechanisms following reperfusion injury  [7, 
8] . Administration of the antioxidant glutathione (GSH) 
has been shown to attenuate ischemia-reperfusion injury 
following warm ischemia or liver transplantation in 
healthy organs  [9, 10] . However, the effect of GSH on he-
patocellular damage caused by reperfusion of transplant-
ed fatty livers remains largely unknown. Recent work has 
demonstrated differences in the cellular and humoral re-
sponse in healthy and diseased livers following exposure 
to ischemia and reperfusion  [11] .

  The purpose of the present study is to test the efficacy 
of post-ischemic intravenous GSH administration in pre-
venting early reperfusion injury after transplantation of 
fatty livers. Despite promising results in several experi-
mental studies, no agent has made its way into clinical 
practice  [12] . This discrepancy between experimental 
studies and patient treatment may be in part due to the 
frequent use of healthy grafts in many animal studies  [13, 
14] . This is not representative of the clinical situation, in 
which organ shortage often necessitates the use of grafts 
of poor quality (i.e. steatotic grafts) from extended crite-
ria donors. Thus, the results of our study may provide a 
novel and clinically relevant therapeutic approach for the 
protection of steatotic organs, thereby increasing the pool 
of transplantable livers.

  Methods 

 Animals 
 Male syngeneic Zucker rats (Charles River Wiga, Sulzfeld, Ger-

many) aged 10–14 weeks were used in this study. Animals were 
housed in a temperature- and humidity-controlled room under a 
constant 12-hour light/dark cycle. Rats with a homozygote point 
mutation of codon 269 in the leptine receptor gene (fa/fa) develop 
massive obesity. In contrast, animals with a heterozygote defect of 

this gene (fa/–) remain lean. Donors (body weight: fa/fa 478  8 
63 g, fa/– 345  8  72 g) and recipients (fa/– 318  8  22 g) had free ac-
cess to water and rat chow (standard diet; Altromin, Lage, Ger-
many). Recipient rats were fasted 12 h prior to donor operation and 
liver transplantation. All procedures were carried out in accor-
dance with the guidelines of the Animal Welfare Act and the Guide 
for the Care and Use of Laboratory Animals from the National 
 Institutes of Health. The institutional animal care and use com-
mittee of the Government of Upper Bavaria and the Ludwig-Maxi-
milians-University (Munich, Germany) approved this project.

  Experimental Groups 
 Male Zucker rats were randomly assigned to three groups (n = 

5/group;  table 1 ). In group 1 (fa/– veh) livers were explanted from 
lean male Zucker rats and subjected to 24 h of cold ischemia (4   °   C) 
in University of Wisconsin solution. Orthotopic arterialized liver 
transplantation was then performed on lean male Zucker rats 
(fa/–). During reperfusion, 6 ml of saline 0.9% (vehicle) were in-
fused continuously at a rate of 3 ml/h starting 20 min before 
declamping of the portal vein and hepatic artery.

  In group 2 (fa/fa veh) and 3 (fa/fa GSH) steatotic livers were 
explanted from obese male Zucker rats (homozygote, fa/fa). After 
a cold ischemia period of 4 h these livers were transplanted into 
lean Zucker rats (fa/–). This reduction in ischemic time from 24 h 
in lean organs to 4 h in steatotic grafts was applied based on pre-
vious studies by Amersi et al.  [6] . During reperfusion, animals in 
group 2 received 6 ml saline (vehicle) by continuous infusion at a 
rate of 3 ml/h (vehicle), whereas animals in group 3 received GSH 
(Tationil 600, Roche, Italy) at a concentration of 200  � mol/h/kg 
dissolved in 6 ml saline. Reperfusion time was 120 min in all 
groups.

  Surgical Procedures 
 Donor and recipient procedures were performed under spon-

taneous ether inhalation. For continuous monitoring of mean ar-
terial blood pressure and for substitution of plasma volume, left 
carotid artery and jugular vein were cannulated with polyethyl-
ene catheters. Body temperature was kept between 36.5 and 
37.5   °   C using a heating pad. Donor livers were preserved by retro-
grade aortal flush with 15 ml of University of Wisconsin solution 
and stored at 4   °   C for 24 h (group 1) or 4 h (group 2/3). Before im-
plantation, livers were rinsed with 10 ml of Ringer’s lactate solu-
tion at 4   °   C via portal vein (hydrostatic pressure: 10 cm H 2 O). 
Orthotopic liver transplantation was performed according to the 
cuff technique described by Kamada and Calne  [15] . Grafts were 
rearterialized and simultaneously reperfused via portal vein and 

Table 1.  Study groups

Group Donor Recipient Treatment CIT, h

1: fa/– veh fa/– fa/– veh 24
2: fa/fa veh fa/fa fa/– veh 4
3: fa/fa GSH fa/fa fa/– GSH 4

CIT = Cold ischemia time; veh = vehicle. 
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hepatic artery as described by Post et al.  [16] . Portal clamping 
times never exceeded 20 min. Five minutes after declamping, all 
rats received 0.5 ml of albumin (5%) and 0.5 ml of sodium bicar-
bonate to maintain blood pressure and physiological pH values. 
After 120 min of reperfusion, animals were sacrificed and liver 
weight was determined.

  Quantification of Bile Synthesis 
 To quantify liver function during the reperfusion period, bile 

flow was quantified as previously described  [17] . The common 
bile duct was cannulated with a polyethylene tube during donor 
surgery. Cumulative bile flow ( � l/g/min) was calculated from to-
tal bile volume secreted between start of reperfusion and end of 
experiment (120 min).

  Determination of GSH and GSSG 
 As opposed to other plasma parameters, determination of 

GSH (reduced GSH prior to oxidation, administered form) and 
GSSG (oxidized form of GSH following radical scavenging or 
spontaneous oxidation) in plasma requires a separate isolation 
procedure as described previously by Jaeschke et al.  [18] . A total 
of 500  � l of whole blood is required for determination of total 
GSH (GSH total = sum of GSH and GSSG). For GSSG analysis, 
an aliqot (200  � l) of blood was mixed immediately with 200  � l 
of 10 mmol/l N-ethylmaleimide (NEM) in 100 mmol/l phosphate 
buffer (pH 6.5) containing 17.5 mmol/l EDTA. The remaining 
blood was centrifuged for 1 min. An aliquot (100  � l) of plasma 
was pipetted into 100  � l sulfosalicylic acid (5%) for determina-
tion of total GSH. To separate GSSG from NEM and NEM-GSH, 
an aliquot of NEM-treated plasma was passed through a Sep-
PakC18 cartridge (Waters, Framingham, Mass., USA) followed 
by 1 ml of 100 mmol/l phosphate buffer (pH 7.5). GSSG in the 
eluates and total GSH in acidified plasma samples was deter-
mined by an enzymatic test as described previously  [19] . GSH 
plasma concentrations were calculated as difference between to-
tal GSH and GSSG.

  Plasma Collection and Storage 
 Whole blood was obtained via arterial catheter line (approxi-

mately 1.5 ml) in microcentrifuge tubes (Microtainer, Becton 
Dickinson, Rutherford, N.J., USA) and centrifuged at 16,000  g  for 
15 min at 4   °   C. Plasma was separated, placed in pyrogen-free mi-
crocentrifuge tubes, immediately frozen, and stored (–80   °   C) un-
til assayed for alanine aminotransferase (ALT), aspartate amino-
transferase (AST) and lactate dehydrogenase (LDH).

  Assessment of Serum Aminotransferases 
 Serum aminotransferases were used as established markers of 

hepatic injury. AST and ALT were measured 2 h after reperfusion 
with a kinetic UV test using a serum multiple analyzer (Olympus 
AU 2700)  [20] .

  Assessment of Lactate Dehydrogenase 
 Systemic cellular damage was determined by assaying serum 

levels of LDH 2 h after reperfusion with a kinetic UV test using a 
serum multiple analyzer (Olympus AU 2700)  [21] .

  Histology 
 Representative histological sections (HE staining) of fatty liv-

ers were examined 2 h after reperfusion.

  Statistics 
 The results are presented as mean  8  SD. One-way ANOVA 

followed by the Student-Newman-Keuls test or Tukey test as a 
post hoc test for multiple comparisons was used to determine sig-
nificance of the differences between experimental means. p  !  
0.05 was considered to be significant.

  Results 

 Plasma GSH and GSSG 
 Plasma GSH was determined in rats receiving steatot-

ic organs and treated with vehicle or GSH at time of re-
perfusion (t = 0 min) and 15, 30, 60 and 120 min thereaf-
ter ( fig. 1 ). GSH-treated rats displayed systemic peak GSH 
levels 15 min after reperfusion. Plasma GSH levels were 
significantly increased in GSH treated rats throughout 
the whole experiment compared to vehicle-treated ani-
mals (p  !  0.05).

  Plasma GSSG levels were significantly elevated 60 and 
120 min after reperfusion in GSH-treated animals com-
pared to non-treated rats (p  !  0.05;  fig. 2 ).

  Plasma Aminotransferases (ALT/AST) 
 Alanine Aminotransferase 
  ALT levels were significantly increased in recipients of 

steatotic livers compared to recipients of lean livers after 
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  Fig. 1.  Plasma GSH levels determined at time of reperfusion (0) 
and 15, 30, 60, and 120 min after liver transplantation. Livers were 
explanted from lean (fa/–) or obese (fa/fa) rats. Prior to declamp-
ing, recipient animals received vehicle or GSH (200  � mol/kg body 
weight/h). n = 5/group. Values are presented as mean  8  SD. Data 
were analyzed by one-way ANOVA.  *  p  !  0.05 vs. fa/– veh. 
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reperfusion (p  !  0.05;  fig.  3 ). In recipients of steatotic 
grafts, administration of GSH significantly reduced plas-
ma ALT levels compared to administration of vehicle
(p  !  0.05).

  Aspartate Aminotransferase 
  Plasma AST levels were significantly enhanced in ve-

hicle-treated recipients of fatty livers compared to rats re-
ceiving lean organs (p  !  0.05;  fig. 4 ). In recipients of stea-
totic livers, treatment with GSH was associated with a 
significant reduction of AST compared to administration 
of vehicle (p  !  0.05).

  Lactate Dehydrogenase 
 LDH, a non-organ-specific marker of IRI, was signifi-

cantly higher in recipients of fatty livers treated with ve-
hicle compared to recipients of lean livers following liver 
transplantation (p  !  0.05;  fig. 5 ). In recipients of steatotic 
livers, the administration of GSH significantly reduced 
serum LDH levels compared to the administration of ve-
hicle (p  !  0.05).

  Bile Flow 
 Two hours after reperfusion, cumulative bile flow (a 

sensitive marker of liver function) was significantly di-
minished in steatotic livers receiving vehicle compared to 

lean grafts (p  !  0.05;  fig. 6 ). GSH treatment, however, sig-
nificantly increased bile flow in steatotic grafts compared 
to treatment with vehicle (p  !  0.05).

  Histology 
 Histological sections (HE staining) demonstrated a 

50–80% degree of steatosis (data not shown). Two hours 
after liver transplantation, no alterations between the 
groups and due to IRI were evident.

  Discussion 

 The critical organ shortage for liver transplantation 
has resulted in the routine acceptance of steatotic organs. 
In the general population, steatosis occurs with a preva-
lence of 13–50%  [1, 2] . Steatotic livers substantially con-
tribute to the donor pool, thereby partially compensating 
for organ shortage. Clinical and experimental studies 
have shown that steatotic livers are more susceptible to 
IRI than lean livers  [3, 4, 22–25] . This results in increased 
plasma aminotransferases and diminished liver function 
in the early postoperative phase following transplanta-
tion  [3, 4] . Other risk factors, including cold ischemia 
time and donor age  [26, 27] , have been shown to exhibit 
additive detrimental effects on organ function and sur-
vival following liver transplantation. Steatosis is a par-
ticularly relevant risk factor for IRI due to its increasing 
prevalence. Moreover, in contrast to risk factors such as 
cold ischemia time, steatosis cannot be affected by chang-
ing allocation procedures. Nonetheless, future experi-
mental studies should consider other risk factors beside 
steatosis to better mimic the clinical situation.

  Due to the clinical importance of steatosis for outcome 
following liver transplantation, animal models of steato-
sis have been established  [2] . Genetically obese Zucker 
rats have been shown to develop liver steatosis mimicking 
non-alcoholic fatty liver disease  [2, 28] . Interestingly, the 
pathophysiological mechanisms associated with reperfu-
sion injury after orthotopic liver transplantation have 
been shown to be different between lean and steatotic 
Zucker rats  [11] . Lean rats tend to develop hepatic apop-
tosis following ischemia-reperfusion whereas necrosis is 
the predominant form of cell death in steatotic organs 
 [11] . Moreover, steatotic livers exhibit an increased pro-
duction of reactive oxygen species (ROS) following warm 
and cold ischemia and reperfusion  [5, 29] . These results 
collectively suggest that steatosis has to be considered 
when investigating new therapeutic strategies in liver 
transplantation.
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  Fig. 2.  Plasma GSSG levels determined at time of reperfusion (0) 
and 15, 30, 60, and 120 min after liver transplantation. Livers were 
explanted from lean (fa/–) or obese (fa/fa) rats. Prior to declamp-
ing, recipient animals received vehicle or GSH (200  � mol/kg body 
weight/h). n = 5/group. Values are presented as mean  8  SD. Data 
were analyzed by one-way ANOVA.  *  p  !  0.05 vs. fa/– veh. 
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  The present data indicate that steatotic livers harvest-
ed from genetically obese Zucker rats develop signifi-
cantly more organ injury compared to lean allografts. In-
terestingly, increased organ injury following transplanta-
tion of fatty organs was evident despite a reduction in 
cold ischemia time from 24 h in lean to 4 h in steatotic 

organs. These findings are supported by previous results 
demonstrating increased organ damage and diminished 
organ function in fatty compared to lean organs follow-
ing IRI  [30, 31] . Cold ischemia time of 24 h for healthy 
donor organs was based on previous studies, demonstrat-
ing significant IRI in recipient animals  [13, 17] . For stea-
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  Fig. 3.  Serum ALT levels determined 2 h after liver transplanta-
tion. Livers were explanted from lean (fa/–) or obese (fa/fa) rats. 
Prior to declamping, recipient animals received vehicle or GSH 
(200  � mol/kg body weight/h). n = 5/group. Values are presented 
as mean  8  SD. Data were analyzed by one-way ANOVA.  *  p  !  
0.05 vs. fa/– veh; # p  !  0.05 vs. fa/fa veh. 
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  Fig. 4.  Serum AST levels determined 2 h after liver transplanta-
tion. Livers were explanted from lean (fa/–) or obese (fa/fa) rats. 
Prior to declamping, recipient animals received vehicle or GSH 
(200  � mol/kg body weight/h). n = 5/group. Values are presented 
as mean  8  SD. Data were analyzed by one-way ANOVA.  *  p  !  
0.05 vs. fa/– veh; # p  !  0.05 vs. fa/fa veh. 

  Fig. 5.  Serum LDH levels determined 2 h after liver transplanta-
tion. Livers were explanted from lean (fa/–) or obese (fa/fa) rats. 
Prior to declamping, recipient animals received vehicle or GSH 
(200  � mol/kg body weight/h). n = 5/group. Values are presented 
as mean  8  SD. Data were analyzed by one-way ANOVA.  *  p  !  
0.05 vs. fa/– veh; # p  !  0.05 vs. fa/fa veh. 
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  Fig. 6.  Bile flow ( � l/g liver weight/min) during 2 h of reperfusion. 
Livers were explanted from lean (fa/–) or obese (fa/fa) rats. Prior 
to declamping, recipient animals received vehicle or GSH (200 
 � mol/kg body weight/h). n = 5/group. Values are presented as 
mean  8  SD. Data were analyzed by one-way ANOVA.  *  p  !  0.05 
vs. fa/– veh; # p  !  0.05 vs. fa/fa veh. 
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totic organs, cold ischemia time was substantially re-
duced to avoid deleterious organ damage  [7] .

  In healthy organs, continuous administration of GSH 
protects liver tissue from reperfusion injury after warm 
and cold ischemia  [9, 10, 32] . Endogenous GSH is concen-
trated in the intracellular space  [33] . It reacts with oxi-
dants released during reperfusion resulting in formation 
of oxidized GSH (GSSG)  [34] . Its effect on ischemia-re-
perfusion injury in steatotic grafts, however, remains un-
known. In the present study, GSH was administered at a 
dosage of 200  � mol/kg body weight/h to provide stea-
totic organs with supraphysiological GSH levels. This 
dosage has been shown to ameliorate IRI following trans-
plantation of lean liver allografts  [30]  and resulted in 
peak plasma GSH levels below the limit of toxicity in hu-
mans (500  �  M )  [35] . As has been found in lean organs, the 
administration of GSH at the beginning of reperfusion 
significantly decreased early liver injury (plasma amino-
transferase levels) and ameliorated liver function (bile 
flow) in steatotic grafts.

  Determination of the exact mechanisms which are re-
sponsible for the beneficial effects of GSH in steatotic or-
gans was beyond the scope of our study. Nonetheless, 
GSSG levels, the oxidized form of GSH, were increased in 
GSH-treated recipients of fatty grafts. This suggests that 
intravenously applied GSH was mostly oxidized. Oxida-
tion of GSH is known to be associated with detoxification 
of detrimental ROS  [36, 37] . In addition, the metabolism 
of GSH produces glycine  [35] , which also has protective 
properties against liver reperfusion injury  [14] . It has 
been proposed that the GSH-induced reduction of ROS is 
associated with improved sinusoidal perfusion, signifi-
cant decrease of leukocytes sticking to sinusoids, as well 

as prevention of sinus endothelial cell injury in lean or-
gans  [10, 32] . Steatotic livers are characterized by de-
creased sinusoidal blood flow due to swollen hepatocytes 
which may induce chronic hypoxia  [38]  and ATP deple-
tion  [39] . Moreover, ischemia-reperfusion injury in fatty 
organs is associated with enhanced leukocyte adhesion 
and microcirculatory failure, potentially based on an in-
creased ROS release  [23, 25, 29, 40] . These studies collec-
tively suggest that GSH may also decrease ROS in fatty 
organs following cold storage and transplantation, there-
by improving microcirculation and preventing endothe-
lial damage, at least during the early reperfusion period 
which was of particular interest in this study.

  In summary, the present study demonstrated in-
creased IRI in transplanted, fatty allografts. Continuous 
postischemic infusion of GSH, a ROS scavenger, amelio-
rated early hepatocellular injury and improved liver func-
tion in fatty organs. The protective effects of GSH were 
associated with an increase in oxidized plasma GSSG, in-
dicating detoxification of ROS by GSH. Since no severe 
side effects of GSH administration have been reported, 
this peptide has significant potential to be a useful and 
safe means of improving the function of steatotic organs 
following liver transplantation in humans. A prospective 
randomized trial is required to verify these promising ex-
perimental results in the clinical arena.

  Acknowledgment 

 This work was supported in part by a grant from the Deutsche 
Forschungsgemeinschaft (DFG 440-Scha 857/1-1 and Scha 857/
1-2).
 

 References 

  1 Marsman WA, Wiesner RH, Rodriguez L, 
Batts KP, Porayko MK, Hay JE, et al: Use of 
fatty donor liver is associated with dimin-
ished early patient and graft survival. Trans-
plantation 1996;   62:   1246–1251. 

  2 Koneru B, Dikdan G: Hepatic steatosis and 
liver transplantation current clinical and ex-
perimental perspectives. Transplantation 
2002;   73:   325–330. 

  3 McCormack L, Petrowsky H, Jochum W, 
Mullhaupt B, Weber M, Clavien PA: Use of 
severely steatotic grafts in liver transplanta-
tion: a matched case-control study. Ann Surg 
2007;   246:   940–946. 

  4 Angele MK, Rentsch M, Hartl WH, Witt-
mann B, Graeb C, Jauch KW, et al: Effect of 
graft steatosis on liver function and organ 
survival after liver transplantation. Am J 
Surg 2008;   195:   214–220. 

  5 Soltys K, Dikdan G, Koneru B: Oxidative 
stress in fatty livers of obese Zucker rats: rap-
id amelioration and improved tolerance to 
warm ischemia with tocopherol. Hepatology 
2001;   34:   13–18. 

  6 Amersi F, Shen XD, Moore C, Melinek J,
Busuttil RW, Kupiec-Weglinski JW, et al: Fi-
bronectin-alpha 4 beta 1 integrin-mediated 
blockade protects genetically fat Zucker rat 
livers from ischemia/reperfusion injury. Am 
J Pathol 2003;   162:   1229–1239. 

  7 Bilzer M, Paumgartner G, Gerbes AL: GSH 
protects the rat liver against reperfusion in-
jury after hypothermic preservation. Gas-
troenterology 1999;   117:   200–210. 

  8 Jaeschke H: Mechanisms of liver injury. II. 
Mechanisms of neutrophil-induced liver cell 
injury during hepatic ischemia-reperfusion 
and other acute inflammatory conditions. 
Am J Physiol Gastrointest Liver Physiol 
2006;   290:G1083–G1088. 

  9 Bilzer M, Baron A, Schauer R, Steib C,
Ebensberger S, Gerbes AL: GSH treatment 
protects the rat liver against injury after 
warm ischemia and Kupffer cell activation. 
Digestion 2002;   66:   49–57. 



 Glutathione Reduces Graft Injury Eur Surg Res 2010;45:13–19 19

 10 Schauer RJ, Kalmuk S, Gerbes AL, Leiderer 
R, Meissner H, Schildberg FW, et al: Intrave-
nous administration of GSH protects paren-
chymal and non-parenchymal liver cells 
against reperfusion injury following rat liver 
transplantation. World J Gastroenterol 2004;  
 10:   864–870. 

 11 Selzner M, Rudiger HA, Sindram D, Madden 
J, Clavien PA: Mechanisms of ischemic in-
jury are different in the steatotic and normal 
rat liver. Hepatology 2000;   32:   1280–1288. 

 12 Amersi F, Farmer DG, Shaw GD, Kato H, 
Coito AJ, Kaldas F, et al: P-selectin glycopro-
tein ligand-1 (rPSGL-Ig)-mediated blockade 
of CD62 selectin molecules protects rat stea-
totic liver grafts from ischemia/reperfusion 
injury. Am J Transplant 2002;   2:   600–608. 

 13 Bradham CA, Schemmer P, Stachlewitz RF, 
Thurman RG, Brenner DA: Activation of nu-
clear factor-kappaB during orthotopic liver 
transplantation in rats is protective and does 
not require Kupffer cells. Liver Transpl Surg 
1999;   5:   282–293. 

 14 Schemmer P, Bradford BU, Rose ML, Bun-
zendahl H, Raleigh JA, Lemasters JJ, et al: In-
travenous glycine improves survival in rat 
liver transplantation. Am J Physiol 1999;  
 276:G924–G932. 

 15 Kamada N, Calne RY: A surgical experience 
with 530 liver transplants in the rat. Surgery 
1983;   93:   64–69. 

 16 Post S, Gonzalez AP, Palma P, Rentsch M, 
Stiehl A, Menger MD: Assessment of hepatic 
phagocytic activity by in vivo microscopy af-
ter liver transplantation in the rat. Hepatol-
ogy 1992;   16:   803–809. 

 17 Schauer RJ, Bilzer M, Kalmuk S, Gerbes AL, 
Leiderer R, Schildberg FW, et al: Microcircu-
latory failure after rat liver transplantation is 
related to Kupffer cell-derived oxidant stress 
but not involved in early graft dysfunction. 
Transplantation 2001;   72:   1692–1699. 

 18 Jaeschke H, Mitchell JR: Use of isolated per-
fused organs in hypoxia and ischemia/reper-
fusion oxidant stress. Methods Enzymol 
1990;   186:   752–759. 

 19 Tietze F: Enzymic method for quantitative 
determination of nanogram amounts of total 
and oxidized GSH: applications to mamma-
lian blood and other tissues. Anal Biochem 
1969;   27:   502–522. 

 20 Bergmeyer HU, Horder M, Rej R: Interna-
tional Federation of Clinical Chemistry 
(IFCC) Scientific Committee, Analytical 
Section: approved recommendation (1985) 
on IFCC methods for the measurement of 
catalytic concentration of enzymes. Part 3. 
IFCC method for alanine aminotransferase 
( L -alanine: 2-oxoglutarate aminotransfer-
ase, EC 2.6.1.2). J Clin Chem Clin Biochem 
1986;   24:   481–495. 

 21 Bais R, Philcox M: Approved recommenda-
tion on IFCC methods for the measurement 
of catalytic concentration of enzymes. Part 8. 
IFCC Method for Lactate Dehydrogenase ( L -
Lactate: NAD+Oxidoreductase, EC 1.1.1.27). 
International Federation of Clinical Chem-
istry (IFCC). Eur J Clin Chem Clin Biochem 
1994;   32:   639–655. 

 22 Reddy MC, Koneru B, Soni S, Patel D: 31P 
nuclear magnetic resonance study of phos-
pholipids in ischemia/reperfusion injury in a 
rat fatty liver model. Transplantation 1996;  
 61:   1151–1155. 

 23 Teramoto K, Bowers JL, Kruskal JB, Clouse 
ME: Hepatic microcirculatory changes after 
reperfusion in fatty and normal liver trans-
plantation in the rat. Transplantation 1993;  
 56:   1076–1082. 

 24 Selzner M, Clavien PA: Fatty liver in liver 
transplantation and surgery. Semin Liver Dis 
2001;   21:   105–113. 

 25 Sun CK, Zhang XY, Zimmermann A, Davis 
G, Wheatley AM: Effect of ischemia-reper-
fusion injury on the microcirculation of the 
steatotic liver of the Zucker rat. Transplanta-
tion 2001;   72:   1625–1631. 

 26 Burroughs AK, Sabin CA, Rolles K, Delvart 
V, Karam V, Buckels J, et al: 3-month and 
12-month mortality after first liver trans-
plant in adults in Europe: predictive models 
for outcome. Lancet 2006;   367:   225–232. 

 27 Afonso RC, Hidalgo R, Paes AT, Zurstrassen 
MP, Fonseca LE, Pandullo FL, et al: Impact 
of cumulative risk factors for expanded cri-
teria donors on early survival after liver 
transplantation. Transplant Proc 2008;   40:  
 800–801. 

 28 Phillips MS, Liu Q, Hammond HA, Dugan 
V, Hey PJ, Caskey CJ, et al: Leptin receptor 
missense mutation in the fatty Zucker rat. 
Nat Genet 1996;   13:   18–19. 

 29 Nardo B, Caraceni P, Pasini P, Domenicali 
M, Catena F, Cavallari G, et al: Increased 
generation of reactive oxygen species in iso-
lated rat fatty liver during postischemic re-
oxygenation. Transplantation 2001;   71:   1816–
1820. 

 30 Lehmann TG, Wheeler MD, Schwabe RF, 
Connor HD, Schoonhoven R, Bunzendahl 
H, et al: Gene delivery of Cu/Zn-superoxide 
dismutase improves graft function after 
transplantation of fatty livers in the rat. He-
patology 2000;   32:   1255–1264. 

 31 Choi S, Noh J, Hirose R, Ferell L, Bedolli M, 
Roberts JP, et al: Mild hypothermia provides 
significant protection against ischemia/re-
perfusion injury in livers of obese and lean 
rats. Ann Surg 2005;   241:   470–476. 

 32 Schauer RJ, Gerbes AL, Vonier D, Meissner 
H, Michl P, Leiderer R, et al: GSH protects 
the rat liver against reperfusion injury after 
prolonged warm ischemia. Ann Surg 2004;  
 239:   220–231. 

 33 Lauterburg BH, Adams JD, Mitchell JR: He-
patic GSH homeostasis in the rat: efflux ac-
counts for GSH turnover. Hepatology 1984;  
 4:   586–590. 

 34 Bilzer M, Lauterburg BH: GSH metabolism 
in activated human neutrophils: stimulation 
of GSH synthesis and consumption of GSH 
by reactive oxygen species. Eur J Clin Invest 
1991;   21:   316–322. 

 35 Aebi S, Assereto R, Lauterburg BH: High-
dose intravenous GSH in man: pharmacoki-
netics and effects on cyst(e)ine in plasma and 
urine. Eur J Clin Invest 1991;   21:   103–110. 

 36 Akerboom TP, Gartner M, Sies H: Cellular 
hydroperoxide metabolism: the roles of GSH 
peroxidases and of catalase in liver. Bull Eur 
Physiopathol Respir 1981;   17(suppl):221–227. 

 37 Dickinson DA, Forman HJ: GSH in defense 
and signaling: lessons from a small thiol. 
Ann NY Acad Sci 2002;   973:   488–504. 

 38 Seifalian AM, Piasecki C, Agarwal A, David-
son BR: The effect of graded steatosis on flow 
in the hepatic parenchymal microcircula-
tion. Transplantation 1999;   68:   780–784. 

 39 Serkova NJ, Jackman M, Brown JL, Liu T, Hi-
rose R, Roberts JP, et al: Metabolic profiling 
of livers and blood from obese Zucker rats. J 
Hepatol 2006;   44:   956–962. 

 40 Yamagami K, Hutter J, Yamamoto Y, Schau-
er RJ, Enders G, Leiderer R, et al: Synergistic 
effects of brain death and liver steatosis on 
the hepatic microcirculation. Transplanta-
tion 2005;   80:   500–505. 

  


