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Abstract

Parametric seemingly unrelated regression (SUR) models are a common tool for multi-

variate regression analysis when error variables are reasonably correlated, so that separate

univariate analysis may result in inefficient estimates of covariate effects.

A weakness of parametric models is that they require strong assumptions on the func-

tional form of possibly nonlinear effects of metrical covariates. In this paper, we develop

a Bayesian semiparametric SUR model, where the usual linear predictors are replaced by

more flexible additive predictors allowing for simultaneous nonparametric estimation of

such covariate effects and of spatial effects. The approach is based on appropriate smooth-

ness priors which allow different forms and degrees of smoothness in a general framework.

Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques.

Keywords Bayesian semiparametric models, correlated responses, Markov random fields,

MCMC, P-splines.
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1 Introduction

Multivariate regression analysis is needed in many applications. Neglecting existing asso-

ciation between response variables can lead to biased and inefficient estimation of covariate

effects. Correspondingly, analysis of correlated response data has received great attention

and interest. For multivariate Gaussian response, the parametric seemingly unrelated re-

gression (SUR) model (Zellner, 1962) is a standard tool in econometrics. More recently,

parametric SUR models have been developed for non-Gaussian responses, such as categor-

ical or counted outcomes, see for example Chen and Dey (2000) and Winkelmann (2000)

for recent works.

As in univariate regression, the assumption of a parametric linear predictor for assessing

the impact of covariates on responses is often too restrictive in realistically complex situ-

ations. In particular, it is generally often difficult if not impossible to specify parametric

functional forms for nonlinear effects of metrical covariates or of time scales in longitudinal

studies in advance. For univariate responses, the development of more flexible non- and

semiparametric regression models has been a main topic of recent research, see for example

Hastie and Tibshirani (1990), Green and Silverman (1994), Fan and Gijbels (1996) or, for

an introductory survey, Fahrmeir and Tutz (2001, ch. 5). There has also been substantial

interest in extending parametric models for longitudinal or clustered data, where the same

response variable is observed repeatedly, see Wild and Yee (1996), Lin and Carroll (2000)

and Fahrmeir and Tutz (2001, ch. 6 & 7) for some recent works.

Astonishingly, there is a distinct lack of non- and semiparametric regression models for

truly multivariate responses, in particular for seemingly unrelated regression. A notable

exception is the Bayesian approach of Smith and Kohn (2000) to nonparametric seem-

ingly unrelated regression. Their method uses basis function representations of unknown

functions in combination with Bayesian variable selection and model averaging. In a sim-
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ulation study, they show that the shape of nonlinear effects can be considerably biased

and that estimation can become inefficient when applying separate univariate regressions

instead of a multivariate model.

In this paper, we present a Bayesian approach to geoadditive seemingly unrelated regres-

sion (SUR), which is based on smoothness priors. Predictors incorporate linear para-

metric components, additive components for nonlinear effects of metrical covariates and

a spatial component for geographical effects. The approach extends previous works of

Fahrmeir and Lang (2001a) and Lang and Brezger (2002) for univariate generalized ad-

ditive models or for multicategorical response (Fahrmeir and Lang, 2001b) to the present

situation. Inference is fully Bayesian and relies on efficient MCMC techniques. The

method is implemented in BayesX, an open domain software which can be downloaded

from http://www.stat.uni-muenchen.de/~lang/bayesx/bayesx.html.

It is interesting to ask how much is gained by using SUR models instead of separate

univariate regressions. For linear SUR models (Greene, 1993) it is well known that the

greater the correlation of the errors, the greater the efficiency gain when using SUR, and

the less correlation there is between the design matrices, the greater the gain. On the

other side, if the equations are actually uncorrelated or if the design matrices are identical

in all equations, SUR and ordinary least squares (OLS) regressions give the same results.

It is to be expected that this is similar for additive and geoadditive SUR models. We

study and illustrate this with applications to artificial and real data sets.

The rest of the paper is organized as follows: In Section 2 we describe our Bayesian semi-

parametric seemingly unrelated regression model. Section 3 outlines the MCMC procedure

used for estimation. We demonstrate in Section 4 the usefulness of our approach through

two simulation studies. Section 5 concludes this work with applications to marketing

research and malnutrition of children in a developing country.
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2 Bayesian geoadditive SUR

As common in hierarchical Bayesian models, we first describe the observation model. This

is supplemented by appropriate prior assumptions for unknown parameters in a second

stage.

2.1 Observation model

Suppose that regression data consist of observations yi = (yi1, ..., yik)′, i = 1, . . . , n,

on a multivariate response y and on covariates. We distinguish between a vector

xir = (xir1, ..., xirpr)′ of metrical or spatial covariates whose influence on the r th compo-

nent of yi, will be modelled nonparametrically, and a further vector vir = (vir1, ..., virqr)′

of covariates, whose effect is modelled in the common usual form. We call a covariate

spatial if it provides information in which region of a geographical map a particular obser-

vation has been made. For each component yir, r = 1, ..., k, of the response we assume a

semiparametric regression model

yir = ηir + εir, i = 1, . . . , n, (1)

with additive predictors

ηir = fr1(xir1) + ... + frpr(xirpr) + v′irγr. (2)

The functions frj are possibly nonlinear functions of metrical or spatial covariates. Type

and degree of smoothness is controlled by priors described in the following section. The

linear combination v′irγr corresponds to the usual parametric part of the predictor, in-

cluding an intercept term. Note that the mean levels of the unknown functions are not

identifiable. To ensure identifiability, the functions are constrained to have zero means.

The errors εi = (εi1, . . . , εik), i = 1, . . . , n, are assumed to be i.i.d. multivariate Gaus-

sian with mean zero and a covariance matrix Σ, i.e. εi|Σ ∼ N(0, Σ). This implies with
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ηi = (ηi1, ..., ηik)′ that

yi|ηi, Σ ∼ N(ηi, Σ), (3)

where responses yi are conditionally independent, given the predictors ηi.

2.2 Prior specifications

For Bayesian inference, the unknown functions frj , the ”fixed effects” parameters γr and

the covariance matrix Σ of the errors are considered as random variables and have to be

supplemented by appropriate prior distributions.

2.2.1 Priors for nonlinear functions

We start by describing the general form of a prior for an unknown (possibly nonlinear)

function frj of covariate xrj . For notational convenience, we omit indices and illustrate

the approach for a specific function f with covariate x. Let f = (f(1), . . . , f(n))′ be the

vector of corresponding function evaluations at the observed values of x. We express the

vector f as the matrix product of a (deterministic, non random) design matrix X and a

vector of unknown regression parameters β, i.e.

f = Xβ. (4)

The general form of the prior for β is

β|τ2 ∝ exp(− 1
2τ2

β′Kβ) (5)

where K is a penalty matrix that penalizes too abrupt jumps between neighbouring pa-

rameters. In most cases K will be rank deficient and therefore the prior for β improper.

This implies that β|τ2 follows a partially improper Gaussian prior β|τ2 ∼ N(0, τ2K−)

where K− is a generalized inverse of the penalty matrix K.
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The variance parameter τ2 is the equivalent to the smoothing parameter in a frequentist

approach and controls the trade off between flexibility and smoothness. In order to be

able to estimate the ”smoothing parameter” τ2 simultaneously with β, a highly dispersed

but proper hyperprior is assigned to it. We choose an inverse gamma distribution with

hyperparameters a and b, i.e. τ2 ∼ IG(a, b). A prior for a function f is thus defined by

specifying a design matrix X, a smoothness prior for β, and the hyperparameters a and b

of the inverse gamma prior for τ2. A particular prior depends on the type of the covariate

and on prior beliefs about smoothness of f . We will now give specific examples.

Metrical covariates

Let us first consider the case of a metrical covariate x. Several alternatives are currently

available for a smoothness prior of the unknown function f . Among others, these are

random walk priors (Fahrmeir and Lang, 2001a), Bayesian smoothing splines (Hastie and

Tisbshirani, 2000) and Bayesian P-splines (Lang and Brezger, 2002). In the following

we will focus on P-splines. Compared to smoothing splines, a P-splines approach allows

a more parsimonious parameterization, which is a particular advantage in a Bayesian

approach where inference is based on MCMC techniques.

The basic assumption behind the P-splines approach is that the unknown smooth function

f can be approximated by a spline of degree l defined on a set of equally spaced knots

ζ0 = xmin < ζ1 < . . . < ζs−1 < ζs = xmax within the domain of x. It is well known (de

Boor, 1978) that such a spline can be written in terms of a linear combination of m = s+ l

B-spline basis functions Bt, i.e.

f(x) =
m∑

t=1

βtBt(x).

A crucial point with splines is the choice of the number and also the position of the knots.

For a small number of knots the resulting function space may be not flexible enough to

capture the variability of the data. For a large number of knots estimated curves may
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tend to overfit the data. As a remedy Eilers and Marx (1996) suggest a moderately large

number of knots (usually between 20 and 40) to ensure enough flexibility, and to define

a roughness penalty based on differences of adjacent regression coefficients to guarantee

sufficient smoothness of the fitted curves. In our Bayesian approach we replace difference

penalties by their stochastic analogues, i.e. first or second order random walk models for

the regression coefficients

βt = βt−1 + ut, or βt = 2βt−1 − βt−2 + ut

with Gaussian errors ut ∼ N(0, τ2) and diffuse priors β1 ∝ const, or β1 and β2 ∝ const,

for initial values, respectively. A first order random walk penalizes abrupt jumps βt−βt−1

between successive states and a second order random walk penalizes deviations from the

linear trend 2βt−1 − βt−2. Obviously, a P-spline prior for f is of the general form (4) and

(5). The columns of the design matrix X consist of the basis functions Bt evaluated at

the observations. For example for a second order random walk prior we obtain

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 5 −2

1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for the penalty matrix in (5). Finally, we note that simple random walk priors as considered

for function estimation in Fahrmeir and Lang (2001a, b) can be seen as a special case of

Bayesian P-splines.
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Spatial covariates

Suppose now that x is a spatial covariate, i.e. the values of x represent the location or site

in connected geographical regions. For simplicity we assume that the regions are numbered

consecutively, i.e. x ∈ {1, . . . , S}. For the spatial effect of x we choose Markov random field

priors common in spatial statistics. These priors reflect spatial neighbourhood relations.

Usually one assumes that two sites s and j are neighbours if they share a common boundary

although more sophisticated neighbourhood definitions are possible, see for example Besag

et al. (1991). The most common Markov random field prior used is given by

βs|βj j �= s, τ2 ∼ N

⎛
⎝ ∑

j∈∂s

βj/Ns, τ
2/Ns

⎞
⎠ , (6)

where Ns is the number of adjacent sites and j ∈ ∂s denotes, that site j is a neighbour

of site s. Thus the (conditional) mean of f(s) = βs is an unweighted average of function

evaluations f(j) = βj of neighbouring sites j. Of course, generalizations of (6) using

weighted averages for the conditional mean are possible, see Besag et al. (1991) and

Fahrmeir and Lang (2001b) for an application. Since for every site one parameter is

estimated, the design matrix X for a spatial effect is a simple 0/1 incidence matrix where

the number of columns is equal to the number of sites. If observation i is located in site

s then the element in the i th row and s th column of X is one, zero otherwise.

Further examples

P-splines and Markov random fields are not the only prior specifications supported by

our approach. In fact, time varying seasonal effects as considered in Fahrmeir and Lang

(2001a), 2 dimensional extensions of P-splines proposed in Lang and Brezger (2002) for

modelling interactions of metrical covariates, or i.i.d random effects fit well in the general

form (5) and are supported by our software. Details are omitted to keep the paper in

reasonable length.
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2.2.2 Further prior assumptions

In the absence of any prior knowledge a natural assumption for fixed effects parameters

are independent diffuse priors, i.e.

p(γrj) ∝ const, r = 1, ..., k j = 1, . . . , qr.

Another choice would be a multivariate Gaussian prior which allows to model prior knowl-

edge.

For the covariance matrix Σ of the errors, we choose an inverse Wishart prior

Σ ∼ IW (A, B) (7)

where A is a scalar and B is a k x k symmetric and positive definite matrix. The p.d.f. is

given by

P (Σ) ∝ |Σ|−A−(k+1)/2 exp(−tr(BΣ−1))

for |Σ| > 0 and zero elsewhere. A standard choice for A is 1 and B = diag(c, . . . , c) with

a small c, e.g. c = 0.005.

We complete the Bayesian model specification by the assumption that priors for function

evaluations, fixed effects parameters and for variances are all mutually independent.

3 Bayesian Inference through MCMC

Inference is fully Bayesian and uses MCMC simulation, drawing from full conditionals

of single parameters or blocks of parameters given the rest and the data. Some matrix

notation will be introduced for deriving full conditionals. Let y.r = (y1r, ..., ynr)′ and

η.r = (η1r, ..., ηnr)′ denote the vector on the r th response variable and the corresponding

vector of predictors. Then the additive predictors (1) can be written as

η.r =
pr∑

j=1

Xrjβrj + Vrγr (8)
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where βrj is the vector of regression parameters for function frj and Xjr is the respective

design matrix. The matrix Vr is the usual design matrix for fixed effects with rows v′ir,

i=1,...,n.

Let β = (..., β′
rj , ...)

′ denote the stacked vector of all regression parameters, τ2 =

(..., τ2
rj , ...)

′ the vector of corresponding variances τ2
rj and γ = (γ′

1, ..., γ
′
r)

′ the stacked

vector of all fixed effects parameters. Posterior analysis is then based on

p(β, τ, γ,Σ|y) ∝
n∏

i=1

p(yi|ηi, Σ)
k∏

r=1

pr∏
j=1

(
p(βrj |τ2

rj)p(τ2
rj)

)
p(Σ), (9)

where p(yi|ηi) is given by the Gaussian observation model (3) for observation

yi = (yi1, ..., yik)′ and predictor ηi.

MCMC simulation is carried out by drawing from full conditionals for the blocks

βrj , r = 1, . . . , k, j = 1, . . . , pr,

γr, r = 1, . . . , k,

τ2
rj , r = 1, . . . , k, j = 1, . . . , pr,

Σ.

They are given as follows:

(i) The full conditional for βrj is Gaussian, βrj |· ∼ N(μrj , P−1
rj ), with precision matrix

Prj =
X ′

rjXrj

σ2
r|−r

+
Krj

τ2
rj

(10)

and mean

μrj = P−1
rj

(
1

σ2
r|−r

X ′
rj(y.r − o.r)

)
. (11)

In (10) and (11), σ2
r|−r is the (conditional) variance

σ2
r|−r = σ2

r − Σr,−rΣ−1
r Σ′

r,−r,

derived from partitioning Σ into

Σ =

⎛
⎜⎜⎜⎝

σ2
r Σr,−r

Σ′
r,−r Σr

⎞
⎟⎟⎟⎠ ,
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(after reordering for the r th component of the error variable). The vector o.r in

(11) is an offset vector. The i th component oir of the offset vector o.r is given by

oir = Σr,−rΣ−1
r (yi,−r − ηi,−r) + η̃ir, (12)

where yi,−r and ηi,−r are obtained from yi and ηi by omitting the r th components

of yi and ηi, respectively. The working predictor η̃ir is obtained from ηir by deleting

the j th effect frj .

(ii) The full conditional for γr is Gaussian, γr| · ∼ N(μγr , P
−1
γr

), with

Pγr =
1

σ2
r|−r

V ′
rVr, μγr = (V ′

rVr)−1V ′
r (y.r − o.r). (13)

where the offset o.r is defined in (12) and η̃ir now obtained from ηir by deleting the

linear fixed effects term v′irγr.

(iii) Full conditionals for the variance parameters τ2
rj are inverse Gamma distributions

with parameters

a′rj = arj +
rank(Krj)

2
, b′rj = brj +

1
2
β′

rjKrjβrj . (14)

(iv) The full conditional for Σ is an inverse Wishart distribution with parameters

A′ = A +
n

2
, B′ = B +

1
2

n∑
i=1

(yi − ηi)(yi − ηi)′. (15)

All full conditionals involved have known distributions, hence Gibbs sampling can be used

to update the parameters of the model.

A fast implementation of MCMC updates requires efficient sampling from the full con-

ditionals for the regression parameters βrj of nonlinear functions. Following Rue (2001)

drawing random numbers from p(βrj |·) is as follows:

(i) Compute the Cholesky decomposition Prj = LL′ of the posterior precision matrix.
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(ii) Solve L′βrj = z, where z is a vector of independent standard Gaussians. It follows

that βrj ∼ N(0, P−1
rj ).

(iii) Compute the mean μrj by solving

Prjμrj =
1

σ2
r|−r

X ′
rj(y.r − o.r)

with respect to μrj . This is achieved by first solving by forward substitution Lν =

1
σ2

r|−r

X ′
rj(y.r − o.r) followed by backward substitution L′μrj = ν.

(iv) Add μrj to the previously simulated βrj , then βrj ∼ N(μrj , P
−1
rj ).

The algorithms involved take advantage of the special structure of the precision matrices.

For P-splines the precision matrices are band matrices where the bandwidth is the maxi-

mum between the degree l of the spline and the order of the random walk. The precision

matrices of spatial effects modelled by Markov random field priors are sparse matrices but

usually no band matrices. However, the regions of a geographical map can be reordered

according to the Cuthill Mc-Kee algorithm (see George and Liu (1981) p. 58 ff) to obtain

band matrix like precision matrices. The bandsize of the precision matrix usually differs

from row to row. Rue (2001) uses matrix operations for band matrices to draw random

numbers from the high dimensional full conditionals, i.e the different band sizes in every

row are not utilized. In our implementation the different band sizes are exploited by us-

ing the envelope method for Cholesky decompositions of sparse matrices as described in

George and Liu (1981). Our limited experience shows that the speed of the computations

improves up to 30%.
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4 Simulation Studies

4.1 Simulation study 1

To investigate how well our approach performs, we first carry out a simulation study based

on a model used also by Smith and Kohn (2000) but does not include spatial components.

The model includes the same four functions as in Smith and Kohn (2000) and is specified

through

y1 = sin(8πx1) + ε1

y2 = [φ(x2; 0.2, 0.05) + φ(x2; 0.6, 0.2)]/4 + ε2

y3 = 1.5x3 + ε3

y4 = cos(2πx4) + ε4.

The covariate values are i.i.d. samples from x1 ∼ U(0, 1), x2 ∼ U(0, 1) and⎛
⎜⎜⎜⎝

x3

x4

⎞
⎟⎟⎟⎠ ∼ N

( ⎛
⎜⎜⎜⎝

0.5

0.5

⎞
⎟⎟⎟⎠ , 0.3

⎛
⎜⎜⎜⎝

1 0.6

0.6 1

⎞
⎟⎟⎟⎠

)
.

Because the covariance matrix Σ reported in Smith and Kohn (2000) turned out not to

be positive definite, we chose

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.7 0.6 0.9

1 0.7 0.9

1 0.7

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We simulated 250 replications of the model each with n = 100 observations. For each repli-

cation we estimated a Bayesian SUR model with cubic P-splines and both first and second

order random walk penalties. For comparison, we additionally estimated univariate Gaus-

sian regression models ignoring the correlations of the errors. To assess the dependence of

results on the hyperparameters we estimated the models with three different choices for
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the hyperparameters a and b of the variances τ2
r1. We used a = 1, b = 0.005, a = b = 0.001

and a = b = 0.0001.

Figure 1 a) - h) shows posterior mean estimates of f1-f4 averaged over the 250 replications

for both multivariate fits (left panels) and the corresponding separate univariate fits (right

panels). The results shown are based on second order random walk penalties only. For

first order random walks we get almost identical results, except for function f3 where a

small bias can be observed at the boundaries. Figure 2 displays boxplots of log(MSE)

for multivariate and univariate fits where the empirical mean squared error MSE for a

function f is defined as

MSE(f̂) =

√√√√ 1
100

100∑
i=1

(f(xi) − f̂(xi))2.

Both Figures 1 and 2 present results only for the choice a = b = 0.0001 of hyperparameters.

Figure 3 compares boxplots of log(MSE) for the three choices of hyperparameters. The

figure shows results only for function f1, for the functions f2 − f4 we obtain comparable

results. Finally, Table 1 investigates the average coverage of pointwise credible intervals

based on nominal levels of 80% and 95%. Using MCMC simulation techniques, credible

intervals are estimated by computing the respective quantiles of the sampled function

evaluations. From Figures 1-3 and Table 1 we can draw the following conclusions:

• Compared to separate univariate regressions, fitting a SUR model considerably re-

duces the estimation bias and the MSE. The differences become smaller for the linear

function f3.

• The dependence of results on the choice of the order of the penalty is very small for

SUR regressions, but slightly (sometimes considerably) higher for univariate regres-

sions (compare the last three boxplots of Figure 3 b).

• The dependence of results on different choices of hyperparameters is negligible for
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SUR regressions. For univariate regressions the dependence is stronger although the

results for f2 − f4 not shown in Figure 3 are less severe.

• Coverage rates for SUR regressions are generally closer to the respective nominal

level than for the univariate regressions. The smallest differences are once again

obtained for the linear function f3.

We also simulated data with uncorrelated errors, i.e. Σ = I, to compare the SUR fit

to separate regression fits in this situation. It turned out that there is no practical loss

of efficiency when applying a SUR model in a situation where the errors are actually

uncorrelated.

4.2 Simulation study 2: a geoadditive SUR model

In this study we investigate how well nonparametric and spatial components can be re-

covered and separated from each other in a geoadditive model. Simulations are based on

the model

yi1 = f11(xi1) + f12(si1) + εi1

yi2 = f21(xi2) + f22(si2) + εi2

Here, x1 and x2 are drawn again from U(0, 1) and f11 and f21 are identical to the functions

f1 and f2 used in the first simulation study. s = (s1, s2) are centroids of districts in a map

of Zambia and f12(s) and f22(s) are bivariate functions of the centroids shown in Figure

4 a) and b). Note that we assume for every observation different districts in equation

one and two. Several experiments with equal districts showed relatively little differences

between SUR and univariate regressions, although we did not get identical results (e.g.

because of different estimates for the variance parameters). We observed a tendency to

slightly better results with SUR regressions for highly curved functions and to almost
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identical results for linear functions. The error covariance matrix in our example was set

to

Σ =

⎛
⎜⎜⎜⎝

1 0.9

0.9 1

⎞
⎟⎟⎟⎠ .

As in Section 4.1, results are based on 250 simulation runs. The dependence on the

hyperparameters is assessed with the same three choices for a and b as in 4.1.

Results for the functions f11 and f21 of the metrical covariates x1 and x2 are almost

identical to Section 4.1 and therefore completely omitted. Figure 4 c) - f) shows posterior

means for the functions f12 and f22 averaged over the 250 replications. The graphs c)

and d) show results for SUR and the graphs e) and f) for univariate regressions. Results

are restricted to the choice a = b = 0.0001 for the hyperparameters. Comparable results

are obtained for the other choices. Figure 5 displays boxplots of log(MSE) for SUR

and univariate regressions and for the three choices of hyperparameters a and b. Table 1

investigates the average coverage of pointwise credible intervals based on nominal levels

of 80% and 95%. We draw the following conclusions:

• Fitting a SUR model reduces the estimation bias and the MSE only for function f12.

For the linear function f22 results are almost identical.

• Results for spatial functions are more dependent on the choice of hyperparameters

as for metrical functions. Both for SUR and univariate regressions results are con-

siderably improved by the choices a = b = 0.001 and a = b = 0.0001.

• Average coverages are close to the nominal levels for SUR with a = 1, b = 0.005

while for univariate regressions coverages are below the nominal level. For the choices

a = b = 0.001 and a = b = 0.0001 average coverages are close to or above the nominal

levels for both SUR and univariate regressions. For these choices and function f12,

average coverages are considerably above the nominal level for SUR.

16



5 Applications to real data

5.1 Sales of Orange Juice

Recently, semiparametric regression has received much attention in the marketing liter-

ature. E.g., van Heerde et al. (2001) proposed a kernel based approach to estimate the

functional relationship between a brand’s unit sales and price discounts while modeling

other predictors parametrically. Similarly, Hruschka (2002) developed a semiparametric

market share attraction model and used cubic smoothing splines to estimate price effects

on a brand’s market share. In empirical applications, both semiparametric models per-

formed better compared to strictly parametric model specifications in terms of MSE (for

estimation and validation samples) or BIC and bootstrapped error sum of squares. A

Bayesian (but) parametric SUR sales response model to derive micro-marketing pricing

strategies has been presented by Montgomery (1997).

This marketing application also deals with sales response modeling and serves as a teaching

example, demonstrating some features of semiparametric SUR models. We apply our

model to a data set which consists of weekly sales and prices for 6 brands (j=1,. . . ,6) of

the product category orange juice, collected over a 2-year time span (t=1,. . . ,104 weeks,

starting in January 2000) in 6 retail stores (k = 1, . . . , 6). The data were provided by

MADAKOM, 50825 Cologne, Germany.

To keep things simple for illustration purposes, our primary interest is in own-brand price

effects. We therefore model a brand’s unit sales as a function of its own price to determine

the shape of the price response function, adjusting for calendar time. Let njkt denote the

raw unit sales of brand j in store k and week t. To correct for skewness and for different

store sizes, we transformed the raw unit sales to the working responses

y1kt =
lnn1kt

1/104
∑

t lnn1kt
, · · · , y6kt =

lnn6kt

1/104
∑

t lnn6kt
.
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The nominator adjusts for skewness, and the denominator for the different store sizes. We

further pooled the data over the stores (k = 1, . . . , 6). In a first attempt, we based our

analyses on the working SUR model with 6 equations for the 6 brands

yjkt = fj1(pricejkt) + fj2(t) + εjkt, j = 1, · · · , 6,

using cubic P-splines and second order random walk priors for the smooth functions. The

estimated 6 × 6 correlation matrix for the errors is estimated as

Σ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.45 0.46 0.14 0.22 0.17

0.45 1.00 0.44 0.22 0.33 0.20

0.46 0.44 1.00 0.10 0.22 0.19

0.14 0.22 0.10 1.00 0.28 0.27

0.22 0.33 0.22 0.28 1.00 0.29

0.17 0.20 0.19 0.27 0.29 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

showing moderate correlations. Figure 6 displays the 6 own-price response functions, esti-

mated with the SUR model. For low to medium prices, the functions show the decreasing

pattern one would expect. For higher prices, however, some curves indicate a slight in-

crease in brand sales toward the upper limit of the observed brand prices. Clearly, this

nonmonotonicity would be hardly interpretable. Interestingly, 4 out of 6 curves are of a

reverse-S shape indicating saturation and threshold levels. Figure 7 picks out the effects

of calendar time for two brands. There is a clear seasonal pattern, with a higher effect

during winter time.

Figure 8 shows price response functions for two selected brands, now estimated by univari-

ate regressions. Compared to the results from the SUR model, the overall shapes remain

similar, but the curves are rougher and look less robust. This is caused by the lack of

information on the other brands’ sales and prices that is not used in these univariate,

separate regressions, respectively.

18



We finally illustrate a typical issue in SUR modelling: Frequently, correlation of the errors

is caused by unobserved heterogeneity or omitted regressors. To demonstrate this aspect,

we extended our working SUR model by including additional store dummies (which we

deliberately omitted in the starting model) in each of the six brand equations to capture

store-specific effects. Figure 9 shows the resulting price response curves for two selected

brands from this revised SUR model. As a result of incorporating the store indicator

variables, the price response functions now show the expected monotonically decreasing

pattern. Comparing the estimated covariance matrices for both SUR models, we also

notice much smaller correlations in the extended SUR model.

5.2 Child Malnutrition in Zambia

In the second application, errors are reasonably correlated but the design matrices are very

close to each other, so that we cannot expect much gain in efficiency by using a geoadditive

SUR model. We give some further comments in the conclusion. Child malnutrition is a

problem of great social and economic relevance in many developing countries. We will

consider the influence of socio-demographic variables as well as district-specific regional

effects on two anthropometric indices: stunting- which is insufficient height-for-age (an

indication of chronic undernutrition) and underweight- which is insufficient weight-for-

height. The indices are defined as standard deviation units (z-scores) from the median of

a reference population. The z-scores for child i with anthropometric index AIi are defined

as zi = (AIi −MAI)/σ, where MAI refers to the median of the reference population and

σ refers to the standard deviation of the reference population.

We will analyze data for 4847 children from the 1992 DHS survey for Zambia, one of the

poorest sub-saharan African countries. While Kandala et al. (2001) considered stunting as

the only response variable, we analyze the correlated responses stunting and underweight
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simultaneously with a geoadditive SUR model. We present results for a selected model,

including the metrical covariates Age (child’s age in months) and BMI (mother’s body

mass index) as well as the spatial covariate S (districts in Zambia). In addition, we

included socio-demographic categorical covariates such as household size, mother’s educa-

tional attainment, child’s gender type, mother’s working status as well as fever and cough

as indicators of acute disease. Fever and cough turned out to be nonsignificant for stunt-

ing, while fever has a significant negative effect on underweight. The geoadditive SUR

model used for the final analysis was

stunting = f11(Age) + f12(BMI) + f1
spat(s) + v′1γ1 + ε1

underweight = f21(Age) + f22(BMI) + f2
spat(s) + v′2γ2 + ε2,

where v2 contains fever and cough in addition to the categorical covariates in v1. Thus the

design matrices are almost the same in both equation, so that we cannot expect much gain

in efficiency when using a SUR model. Nonlinear effects of Age and BMI are modelled by

P-splines of degree 3 and second order random walk penalty, and spatial effects through

a Markov random field prior.

The posterior mean estimate of the covariance matrix Σ, with correlation in the lower

diagonal, is given by

Σ̂ =

⎛
⎜⎜⎜⎝

0.805 0.519

0.656 0.777

⎞
⎟⎟⎟⎠ .

Figure 10 displays the nonlinear effects of child’s age and mother’s BMI on stunting and

underweight, respectively. Shown are the posterior means within 80% and 95% pointwise

credible intervals. For the age effects on both stunting and underweight, virtually similar

patterns are noticeable. There is a continuous worsening of the nutritional status of chil-

dren up till about 20 months of age. Such an immediate deterioration in nutritional status

is worrisome as the worsening is associated with weaning age at around 4-6months. One

reason for this finding could be that, according to surveys, most parents give their children
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liquids other than breastmilk shortly after birth which might contribute to infections at

the early age. The lower panels of Figure 10 reveals that influence of mother’s BMI on

stunting and underweight is approximately of an inverse U shape. This appears quite

reasonable as obesity of the mother (possibly due to poor quality of diet) is of less risk for

the nutritional status of the child.

District-specific regional effects are shown in Figure 11 through maps of significance (80%),

showing regions with positively significant (white colored), negatively significant (black

colored) and non significant (grey colored) regional effects. There is a sizeable difference

between significantly worse undernutrition in the Central province and better nutrition in

the Northern and South-Western provinces. Also similar patterns exist for stunting and

underweight.

We do not display posterior estimates of the fixed effects γ1 and γ2 here. They are coherent

with previous findings.

6 Conclusions

Simulations and applications illustrated that there can be considerable gain in using semi-

parametric SUR models instead of semiparametric regressions when errors are reasonably

correlated and design matrices differ between equations. On the other hand, we do not have

to expect much gain for situations as in the last application. We re-run this application

with separate univariate regressions, and indeed there was not a big difference. It seems

that correlation between errors may affect estimation of smoothing parameters, similarly

as in nonparametric regressions with serially correlated errors but further investigation of

this issue is necessary.

Another comment concerns specification and parameterization of the error covariance

matrix. Using an inverse Wishart prior gives satisfactory results when the dimension of
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the response vector is not too large (k ≤ 10). For higher dimension more parsimonious

parameterizations, for example based on Cholesky decompositions of the precision matrix

(the inverse of the covariance matrix) will be a promising alternative (see Pourahmadi

(1999) and Smith and Kohn (2002)). We also plan to extend our approach to SUR models

for categorical responses, using Gaussian SUR models in latent threshold mechanisms as

in Fahrmeir and Lang (2001b).

As pointed out by the referees, other MCMC updating schemes might be useful. In

particular, joint block updates as in Knorr-Held and Rue (2002) could be considered, and

the fixed effects γ could be integrated out analytically, similarly as in Gamerman et al.

(2002). Note, however, that we had no problems with convergence or the mixing of the

chains in both the simulation studies and the applications.
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Table 1: Simulation study 1 and 2. Average coverage rates in percent for the functions f1 −

f4 of simulation study 1 and the spatial functions 12 and f22 of simulation study 2. The first

column indicates the respective estimation technique used and the choice of hyperparameters. For

simulation study 1 results are shown only for P-splines with second order random walk penalty.

f1 f2 f3 f4 f12 f22

80% , SUR, a=1 b=0.005 80 76 83 80 82 79

80% , univ., a=1 b=0.005 36 64 85 73 71 79

95% , SUR, a=1 b=0.005 95 92 97 94 96 94

95% , univ, a=1 b=0.005 56 80 98 91 90 94

80% , SUR, a=b=0.001 80 77 83 79 87 81

80% , univ., a=b=0.001 56 69 85 78 80 82

95% , SUR, a=b=0.001 95 93 96 94 97 95

95% , univ, a=b=0.001 79 86 97 94 95 96

80% , SUR, a=b=0.0001 80 77 84 80 87 80

80% , univ., a=b=0.0001 54 68 85 78 79 82

95% , SUR, a=b=0.0001 95 93 97 94 95 95

95% , univ, a=b=0.0001 76 85 98 94 96 97
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Figure 1: Simulation study 1. Posterior mean estimates (dashed lines) of nonparametric functions

f1-f4 averaged over the 250 replications. Left panels display SUR estimation results, right panels

the corresponding univariate regressions ignoring correlations. For comparison the true functions

are included (solid lines). The results are based on P-splines with second order random walk penalty

and the choice a = b = 0.0001 for the hyperparameters of variances.
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Figure 2: Simulation study 1. Boxplots of log(MSE) for SUR and univariate regressions, respec-

tively. The results are based on the choice a = b = 0.0001 for the hyperparameters of variances.
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Figure 3: Simulation study 1. Boxplots of log(MSE) for the three different choices of the hyper-

parameters a and b for function f1.
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Figure 4: Simulation study 2: The top graphs show maps of the true spatial effects for equation one

(left panel) and equation two (right panel). The middle and bottom graphs show average posterior

means of the spatial effects f12 (left panel) and f22 (right panel) for SUR and univariate regressions,

respectively. The results presented are based on the choice a = b = 0.0001 for the hyperparameters

of variances.
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Figure 5: Simulation study 2: Boxplots of log(MSE) for SUR and univariate regressions, respec-

tively.
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Figure 6: Application on orange juice sales. Estimated price response functions for brands 1 to

6. Shown are the posterior means together with 80% and 95% pointwise credible intervals.

32



 1  26.75  52.5  78.25  104

-0.1

-0.0

 0.0

 0.0

 0.1

a: brand 1

week

 1  26.75  52.5  78.25  104

-0.1

-0.0

 0.0

 0.1

 0.1

b: brand 2

week

Figure 7: Application on orange juice sales. Estimated time trends for brand 1 and 2. Shown are

the posterior means together with 80% and 95% pointwise credible intervals.
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Figure 8: Application on orange juice sales. Estimated price response functions for brand 1 and

2 based on separate univariate regressions ignoring correlations. Shown are the posterior means

together with 80% and 95% pointwise credible intervals.
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Figure 9: Application on orange juice sales. Estimated price response functions for brand 1 and 2

when additional store dummies are included into the SUR model. Shown are the posterior means

together with 80% and 95% pointwise credible intervals.
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Figure 10: Application on child malnutrition in Zambia. Nonparametric effects of child’s age

(top) and mother’s BMI (bottom) on stunting (left panels) and underweight (right panels). Shown

are the posterior means together with 80% and 95% pointwise credible intervals.
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a: posterior probabilities of stunting b: posterior probabilities of underweight

Figure 11: Application on child malnutrition in Zambia. Posterior probabilities on stunting (left

panel) and underweight (right panel) based on a nominal level of 80%.
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