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Abstract

The proportional odds model has become the most widely used model in
ordinal regression. Despite favourable properties in applications it is often
an inappropriate simplification yielding bad data fit. The more flexible
non-proportional odds model or partial proportional odds model have the
disadvantage that common estimation procedures as Fisher scoring often
fail to converge. Then neither estimates nor test statistics for the validity
of partial proportional odds models are available. In the present paper es-
timates are proposed which are based on penalization of parameters across
response categories. For appropriate smoothing penalized estimates exist
almost always and are used to derive test statistics for the assumption of
partial proportional odds. In addition, models are considered where the
variation of parameters across response categories is constrained. Instead
of using prespecified scalars (Peterson & Harrell, 1990) penalized estimates
are used in the identification of these constrained models. The methods
are illustrated by various applications. The application to the retinopa-
thy status in chronic diabetes shows how the proposed test statistics may
be used in the diagnosis of partial proportional odds models in order to

prevent artefacts.

KeEYwoORDS: Partial proportional odds model, ordinal regression, penal-

ized estimation, penalized test statistics, constrained models.



1 Introduction

Since McCullagh’s (1980) paper on regression models for ordinal data cumula-
tive type models have become a standard tool in ordinal regression. When the
outcomes of Y are ordinal with assigned values 1,...,k the general cumulative

logit model has the form
log (P(Y < r|2)/P(Y >1|®)) =%, + 27, (1)

r=1,...,¢g =k —1, where v, = (v,,-.-,7,) is a category-specific parameter
which depends on the response category. The simpler version is the proportional
odds model

log (P(Y <r|®)/P(Y >r|x)) =7, + 2, (2)

r=1,...,q, which assumes that the parameter v = (v,,...,7,) does not depend
on the category; « is a so-called global parameter vector. The simpler version
has several advantages. The observable response Y may be seen as a coarser
version of an underlying unobservable continuous variable Y = —a'y + ¢ with
Yor < -+ < 7Y, denoting the category boundaries on the latent continuum that
define the levels of Y by ¥V = rif 7, ; < Y < 7, Basically one has an
unidimensional regression model (for the latent variable) with straightforward
interpretation of parameters. In addition, model (2) has the property of stochastic
ordering (McCullagh, 1980), here in the form of proportional odds, meaning
that for two populations characterized by covariates x,, , one obtains that the

proportion of cumulative odds does not depend on the response category, i.e.

PV <r|@)/PV > rlz) ,
log <P<Y < 2)/PY > 7] w2>> = (@ =)y

As compared to the general model the proportional odds model makes economic
use of parameters which is always a recommendable modelling strategy. The

drawback is that often the simple model does not fit the data well. Moreover,
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assuming falsely that the odds are proportional can lead to invalid results. There-
fore one has to investigate if the assumption of proportional odds holds for all or
part of the covariates and to provide estimates for the general model. Candidates
for tests are likelihood ratio tests, score tests and the Wald test (see Peterson &
Harrell, 1990). Although the likelihood ratio test has desireable statistical proper-
ties, maximization of likelihood functions has to be performed twice. More severe
is the problem of numerical instability. While the proportional odds model (2)
only postulates vy, < ... < 7, the restriction that probabilities are from the in-
terval [0, 1] yields for the general model the restriction vy, +&'y, < ... < 7y, +x'y,
which has to hold for all possible -values. That means that in applications Fisher
scoring often fails to converge. The alternative is to fit £ —1 separate binary mod-
els with y =1if Y <rand y = 0if Y > r. Although asymptotic covariances
may be derived (Brant, 1990) the separate maximum likelihood estimates cannot
be used to find estimates for the closed general model (1). Moreover, they do not
correspond to the overall maximum likelihood estimates for the general model.
Because of these problems with the likelihood ratio test, most often the score
test has been used (e.g. in the SAS implementation). But what if the score test
rejects the proportional odds model? With the existence of maximum likelihood
estimates for the non-proportional model being questionable the further analysis

of the data is questionable.

An example where several of these problems occur concerns the effect of diabetes
and smoking on the retinopathy status (Bender & Grouven, 1998). With the
retinopathy status given in three categories and three further covariates, one
of them with a quadratic effect (for details see Section 3), the score test for
the assumption of proportional odds is 16.693 which, when compared to a y*-
distribution with 5 degrees of freedom (df), shows that the proportional odds
model is inadequate. Likelihood ratio and Wald test cannot be applied since

estimates for the non-proportional odds model do not exist. In cases like that,



if category-specific parameters are not available, practitioners often interpret the
global effects, even if the proportional odds model does not hold. In the case of
the retinopathy data the investigation of the smoking effect yields the values 1.685
(score test), 1.715 (Wald test) and 1.706 (likelihood ratio test). Comparison to
the y2-distribution with 1 df shows that smoking is not significant, but based on a
model which is not appropriate. As will be shown in Section 3 the non-significance
of smoking is an artefact which is due to the fitting of the wrong model (see also

Bender & Grouven, 1998, who investigate dichotomized responses).

Even with the score test there are difficulties when trying to find a simpler model.
The score test looks like a good device for testing the adequacy of the simpler
proportional odds model since it is only necessary to fit the simpler model for
which estimates for most data sets exist. But this holds only for the fit of the
proportional odds model itself, not for the fit of the partial proportional odds

model where only part of the variables have global weights.

To be more specific let P = {1,...,p} denote the index set for all of the p
variables and S C P denote a subset. The most general model considered is the
non-proportional odds model (NPOM). Let the partial proportional odds model
PPOM(S) be defined as the model where the variables x;, j € S, are global
variables, i.e. the hypothesis

‘HS: ’yﬂ::’)/]q,jES,

is assumed to hold for all j € S. Obviously the proportional odds model is
equivalent to PPOM(P) and the non-proportional odds model is equivalent to
PPOM((@). The models PPOM(S) are only partially ordered with NPOM being
the most general and PPOM(P) being the most restrictive model. In order to find
a simple structure one has to test not only H, but the hypotheses Hy, S C P.
But when fitting model PPOM(SS) one has to fit category-specific parameters Yjrs
J ¢ S, which means that only in the trivial case S = P, one can avoid the fitting
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of category-specific parameters.

In the present paper the numerical difficulties are circumvented by using penalized
likelihood methods. However, in contrast to common penalization approaches
where penalization is used to obtain smooth effects of covariates (Eilers & Marx,
1996, Ruppert & Carroll, 1999, Ruppert, 2000) penalization in the following refers
to the variation of effects across response categories. It may be considered as a
form of 'vertical’ smoothing (across the response) whereas smoothing across the
values of the predictor may be seen as a form of 'horizontal” smoothing (across
the values of explanatory variables). As a by-product alternative models with a
simple structure between the proportional and the non-proportional odds model

may be obtained.

The focus here is on cumulative type models. Alternative models for ordinal re-
gression and comparisons between different types of models have been considered
by Cox (1988), Brant (1990), Tutz (1991), Armstrong & Sloan (1989), Greenland
(1994), Albert & Chib (2001). Overviews are found in Barnhart & Sampson
(1994) and from a more general view in Agresti (1984, 1999).

2 Penalized estimates for non-proportional models

Let more generally the cumulative type model for observations (Y}, x;) be given
by
P(Y; <r|=z;) = F(n,),
where F' is a strictly monotone distribution function. The general model has
predictor
Tir = Yor + Ty, (3)
r=1,...,q = k — 1, whereas the model with homogeneous effects (the propor-

tional odds model if F' is the logistic distribution) has predictor
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Thir = Tor + $;7
A common framework for these models is the multivariate generalized model

which has the form
m =h(Z,8) or g(mw) =270,
!

where m; = (m;,...,m,) with components 7, = P(Y; = r|z;) and g is the

1'is the inverse link or response function. These

link function, whereas h = ¢~
functions are determined by F'. For the model with homogenous effects the design

matrix Z; and the parameter vector are given by

Z; = [Iqxq’ L1 ® ], B = (Y0, 7)),

! —

with ;x4 denoting the unit matrix, 17, = (1,...,1) and v5 = (o1, - - -, Vo) For

the general model (3) one uses instead

Zi = [Iqxqa]qxq ® w;]a /61 - (7657115 st 772);

with v, = (V5 %,), 7 = 1,...,¢. For further details see Fahrmeir & Tutz
(2001).

2.1 Penalized likelihood

In the following fitting procedures are considered for the general partial proportio-
nal-odds model PPOM(S) which has global effects for z;, j € S, and category-
specific effects for z;, j € S = P\S. In obvious notation the predictor is given
by

Nir = Yor + Ti5Ys + T 6V 5.0

where in @; ¢ the variables z,;, j € S, and in @, 5 the variables z;;, j ¢ S, are

177
collected. With B corresponding to the parameters v, v5, {7vs,}, 7 = 1,...,¢,

the proposed penalized log-likelihood has the form

L,(B) =1(B) -5 -7(B), (4)



where

l(/@) = Z Z Yir log(ﬂir)a

i=1 r=1

is the usual log-likelihood. The penalty term is given by

T(IB) = Z )‘j Z(Aryjr)Qa

je{oyus r=2
where A is the difference operator operating on adjacent response categories,
i.e. Ay, =7, —Vj,—1- Thus 7 penalizes the differences of the parameters across
response categories. The amount of smoothing is determined by the smoothing
parameters \;, j € {0} US. If \; =0, j € {0} U S, maximization of the
penalized likelihood yields the unconstrained maximum likelihood by use of the
iterative Newton procedure with Fisher scoring. For small values of the smoothing
parameters and many category-specific variables the iterative procedure often
fails to converge since the restrictions imposed by ordering are not fullfilled. In
the following the non-existence of estimates means that the Newton procedure
with Fisher scoring fails. For the special case \; — 00, j € S, the model with
homogeneous effects is fitted. Maximization of (4) yields the estimation equation
5,(B) = 0 where s,(8) = 9l,(8)/0B is the penalized score function which has

the form

Sp(IB) = Z ZéDiE;I(yi —-m;) — PB,
i=1

with D; = 0h(n;)/0n, n; = (1n;, . --,mq) and y; = (yila---ayiq) where y;, =1
it Y, = r, y, = 0 otherwise. Z; is the design matrix corresponding to model
PPOM(S) and the matrix P represents the penalization and the smoothing pa-
rameters (see appendix). The corresponding fitting procedure is iterative Newton
with modified Fisher scoring, i.e. the penalized Fisher matrix is used as weight.

Starting with B(k) the procedure obtains an update B(Hl) by

B(’CH) _ B(k) 4 Fp (B(k))_lsp (B(k)>; (5)



where F,(8) = F(B)+ P, F(B) = >.I_, Z{D;%;"' D, Z;. If the amount of smooth-
ing is increased the estimates are closer to the usual maximum likelihood es-
timates of the proportional odds model. Since these exist under much weaker
conditions, in most cases limiting smoothing parameters ), exist such that (5)

converges for A; > .

2.2 Existence of estimates: a small simulation study

In a small simulation study the potential of smoothed estimates is evaluated. It

is assumed that a non-proportional odds model holds with predictors

Ny = —0.4+04-z,
where z,, i =1,...,n, are drawn from an uniform distribution on [—1, 1].

For sample size n = 300 Fisher scoring without penalization failed in 17 from 100
simulations when the non-proportional odds model (NPOM) was assumed. For
these 17 simulations the improvement is investigated which results from fitting
the model with penalization as compared to the fit of the proportional odds model

(POM) for which estimates exist.

The loss functions which are considered are mean squared error loss

n k
MSEL = %Z Z(ﬂ-ir - ﬁ-ir)27

=1 r=1
mean relative squared error loss
n k ~
1 T — )2
MRSEL = — E E 7( — ir) ,
n 4 s
i=1 r=1 w



and mean entropy or Kullback-Leibler loss

n k
MEL = %ZZleog<

=1 r=1

)

Figure 1 shows the resulting losses for the 17 simulations when both models, POM

Ty
T

and NPOM, are fitted. For the fitting of the NPOM the smoothing parameter is
chosen to be the minimal value where the model may be estimated by penalized
Fisher scoring. Figure 1 shows that the fitting of the NPOM based on penalization
yields distinctly smaller losses in all cases with the exception of two simulations

where Kullback-Leibler loss is not improved.

Table 1 summarizes these results by showing the mean values of the loss functions.
The mean losses for the POM are about twice as much as for the penalized NPOM.
Averaging the ratios of the losses yields a factor of at least 0.53 by which the loss
can be reduced when fitting the penalized NPOM instead of the POM.

It should be noted that improvement in comparison to the proportional odds
model is of interest only if the non-proportional odds model cannot be fitted.

Therefore the consideration is restricted to these cases.

2.3 Test Statistics

The usual likelihood ratio test is restricted to cases where estimates exist. Thus
the test for the hypothesis Hg : v, = ... = ;,, j € S, which investigates if the

variables z;, j € S, may be considered as global variables, often fails.

An alternative which is based on penalized estimates uses the maximal penal-
ized log-likelihood for the NPOM 1, (’?0, {'Ayp,r}), r =1,...,q and the maximal
penalized log-likelihood 1/, ('?0, Y, {'?g’r}), r=1,...,q, for the PPOM(S). One
considers

LRP = —2{lp (:Yoa :757 {:YS‘,T}) - lp(;)/()? {;)/P,r}) }
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Let B denote the estimates of the more general model, which in this case is the

NPOM, and 3 denote the estimates of the reduced model. With the correspond-

ing fits 7, = (7, ...,7,)" and 7, = (7;,...,7;)" one obtains
n k P ~ .

LR =2 yirlog<~—">+7,3 —7(8).

=222 o) 7B —7(8)

When using LR, different smoothing may be used for the models which are fitted.
A closer look at the penalty suggests that the same smoothing should be used
for both models. With A; ¢ (A; p) denoting the smoothing parameters for the sub
model (general model) one has

q

T(B) - T(B) = Z )‘j,S Z(A’?jr)2 - Z )‘j,P Z(A;}Ijr)Z

je{oyus r=2 j=0 r=2
q q
= > > (Aj,s(A%‘r)Q - )‘j,P(A%r)Z) =) N e (A5,
je{0}us r=2 jes r=2

If \;g = A, p is chosen for j € {0} US, then the first term is very small since
Yjr & Y for v =1,...,¢. Thus the essential term comes from the smoothing
of parameters which are connected to the variables z;, j € S, for which it is
investigated if the effects are category-specific. If estimates are not penalized,
Le. Mg = A g=... = )‘|S|,s = XNp =Ap=-... = A, p =0, one obtains
T(B) = T(B) = 0 and LR, has the usual asymptotic x2-distribution. The same
asymptotic behaviour is obtained if the smoothing parameters converge to zero
at an appropriate rate. However, since in the finite sample case asymptotic quan-
tiles may not be trustworthy, Monte Carlo simulations are used for the penalized
likelihood ratio statistic LR,. The significance of the observed value [ of LR,
is thereby obtained by simulating N samples (171, o f’n) of independent multi-
nomially distributed random variables from a model with response probability

matrix [7; --- 7, ]. That proportion of the N corresponding values of LR, which

exceed [ will be taken as the p-value (Firth, Glosup & Hinkley, 1991).
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An alternative is the Wald test. Let C' denote the matrix C38 = 0 which cor-
responds to the linear hypothesis v;; = ... = v,, 7 € 5. With B denoting the
penalized estimate for the NPOM one considers the Wald type statistic

~ ~ 1 A

W, = BC(C () ') B,

p

where cov(B) = F,(B)"'F(B)F,(B)"" is the sandwich matrix given in the ap-

p

pendix.

In contrast to the Wald test the score type test uses the estimate 3 for the reduced

model by computing

where sp(,é) denotes the penalized score function evaluated at 3 (see appendix).

Simple derivation shows the equivalence of these two forms.

Two tests are of specific importance. The first is the global test where the NPOM
is compared to the proportional odds model PPOM(P). For the global test and
smoothing parameters set to zero one obtains the asymptotic y?-distribution
with p(¢ — 1) df. With smoothing parameters unequal to zero only smoothing
parameters for the general model NPOM have to be chosen. The second type
of test comsiders the parameters for one fixed variable j by investigating the

hypothesis Hy;y 2 v = ... =7,

The family of models PPOM(S), S C P, is a non-hierarchical family. Although
PPOM(S,) € PPOM(S,) holds if S, C S, the models are only partially ordered.
Thus when looking for an adequate model one has to consider all the hypotheses

H within a multiple test problem. Instead of a stepwise procedure we propose
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to use a simple strategy by testing all the hypotheses H{j}, J € P, with the full

model as the background model.

Thus the fit of model PPOM({j}) is compared to NPOM = PPOM(() by penal-

ized likelihood ratio statistics.

2.4 Comparison of power functions

Judging the quality of the introduced test statistics can effectively be done by
means of the corresponding power functions. In a simulation study the following

predictor specification was assumed to hold

my = —08+ (0.4+A). x,
Ny = —04+ 04-z,
where x;, t = 1,...,n, are drawn from an uniform distribution on (—1,1). De-

pending on the specified value of A > 0 the true model is a POM (A = 0)
or a NPOM (A > 0). The magnitude of A determines the “distance” between
the POM and the NPOM in the way that an increasing A causes an increasing
non-proportionality of the odds.

The power functions of the test statistics are obtained by estimating the probabil-
ity to reject the assumption of proportional odds for increasing A. Starting with
A = 0 we drew 160 samples of n = 250 independent repetitions of a multinomi-
ally distributed random variable according to the given predictor specification.
For each sample the test statistics LR,, W, and s, have been calculated. Their
significance was determined by Monte Carlo simulation drawing N = 200 data
sets respectively. Based on the obtained 160 p-values the rejection probability

was estimated by relative frequencies. The procedure was repeated for stepwise
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increased A with a maximum value of A = 0.4 to guarantee that the ordering

restriction 7;, < 1,y < 1,5 is fulfilled for all observations z;.

It should be noted that s, coincides with the usual score statistic s when test-
ing the POM against the NPOM. The obtained results can therefore be used to
compare the score statistic as the common test tool with our proposed alterna-
tives. Figure 2 shows the estimated power functions of LR, and s,. The vertical
lines indicate the proportion of failures when fitting the NPOM with and without
vertical penalization. Obviously the chosen smoothing parameter A, ,, = exp(4)

significantly reduces the proportion of samples where Fisher scoring failed.

In Figure 3 the estimated power functions of LR, and s, are superimposed. The
graphs of the power functions are almost identical. A significant difference is
hardly to verify so that LR, and s, are of comparable quality. Further simula-
tions showed that this statement can be generalized for any amount of vertical

penalization.

3 Application to retinopathy

In a 6-year follow up study on diabetes and retinopathy status reported by Ben-
der & Grouven (1998) the interesting question is how the retinopathy status is
associated with risk factors. The considered risk factor is smoking (SM = 1:
smoker, SM = 0: non-smoker) adjusted for the known risk factors diabetes
duration (DD) measured in years, glycosylated hemoglobin (GH) which is mea-
sured in percent and diastolic blood pressure (BP) measured in mmHg. The
response variable retinopathy status has three categories (1: no retinopathy, 2:
nonproliferative retinopathy, 3: advanced retinopathy or blind). Bender & Grou-
ven pointed out that an appropriate model should contain the linear (DD) and

the quadratic effect (DDQ) of diabetes duration. Therefore first we consider the
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non-proportional odds model
Nir = Yor +SM;Vspr + DD vpp, + DDQ; - Vppo, + GH; Yo, + BP; - Vpp,

for patients ¢+ = 1,...,n = 613 and categories r = 1,2. Without penalization
Fisher scoring fails when trying to fit this model. Even after rescaling of the
variables such that observations lie in the intervall [0, 1] the algorithm does not
converge. Fisher scoring always breaks off with an error after a few iterations,
caused by an ill-conditioned Fisher matrix. However, convergence of the algo-
rithm is obtained by imposing a small penalty A‘gigyp = /\IB%Q,P = 1 on the
parameters vy, and vy, 7 € {1,2}, respectively. Then no further penaliza-

tion is needed for the remaining parameters.

Submodels of the general model are investigated by testing PPOM({;j}) against
the NPOM for all variables j € P = {SM,{DD,DDQ},GH, BP}. Thereby
the linear and the quadratic effect of diabetes duration are considered simulta-
neously. Again Fisher scoring fails for these models, except for the PPOM with
DD and DD() having global effects. Imposing the penalty App ¢ = Appg g =1
ensures the existence of estimates even for the critical settings. The test statis-
tics LR,, W, and s, are calculated and the significance of their observed values

is determined by Monte Carlo simulation.

Figure 4 and Figure 5 give significance traces where the smoothing parameters are
plotted against p-values. Significance traces as proposed by Azzalini & Bowman
(1993) (see also Bowman & Azzalini (1997)) are a helpful tool to investigate
effects across a wide range of smoothing parameters. We take A\, ¢ = \; p = 311121
for j € S, whereas the smoothing parameter A; p for variable j, j € S, varies

in the range [AF3, exp(14)], with A3 = 0 except for diabetes duration where

min __
Afp = 1.

From Figures 4 and 5 it is seen that the p-values remain quite stable across

the range of the smoothing parameter. With p-values close to 0.5 the plots
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distinctly indicate proportional odds for glycosylated hemoglobin and diastolic
blood pressure. With p-values close to 0.05 for smoking and below 0.02 for
diabetes duration (linear and quadratic effect) there is some evidence that these

effects are category-specific.

In addition the lower panels in Figures 4 and 5 show the corresponding deviations
of the estimates 7, 1, ¥;,, j € S, from the assumption of global effects. Projection

of the vector (9;,7;2)" to the hyperplane defined by v, , = 7, , yields
||A||2 = V0.5 |%,1 - %’,2|
as a measure of discrepancy.

These additional plots are helpful to investigate if the considered range of smooth-
ing parameters covers the range of interest. It is seen that for smoothing param-
eters log(A) > 6 global effects are fitted. Thus the interesting area where the
models with category-specific and global effects are distinguished is the range
where log(A) < 6. But although there is some variation in this range the ques-
tions if effects are substantial or not are consistent across varying smoothing

parameters.

Based on the significance traces the model with predictor
Nir = Yor T GH; - Yoy + BP; - vpp + SM; - vspr + DD; - vpp, + DDQ; - Yppo.r s

with global effects for glycosylated hemoglobin and diastolic blood pressure is

considered as sufficiently complex.

Table 2 gives the estimates based on the smoothing parameters /\;{1}? for smoking
and diabetes duration. Tests for the significance of effects of variables may be
performed by using appropriate versions of the penalized test statistics in Section
2.3. The only modification is that the submodel is now defined by the omission of

effects of variables. Whether these effects are global or category-specific depends
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on the fitted model. If /\;{1}? = 0 or is close to it, the simple y?-approximation
may be used when performing the tests. Table 2 shows the results based on
Monte Carlo simulation. N = 1000 data sets were thereby simulated to obtain
the significance probabilities. For all tests smoking status shows a significant
negative effect for the first category, indicating that smokers bear a higher risk
to develop at least nonproliferative retinopathy. A significant effect of smoking
on the development of advanced retinopathy can not be derived. For all other
variables the penalized test statistics indicate high significance of their (global or

category-specific) effects.

It should be remarked that a simple analysis with the proportional odds model
shows no significant effect of smoking. Thus the straightforward analysis based
on an ill-fitting model yields very misleading results. This effect has already been
pointed out by Bender & Grouven (1998) who investigated dichotomized response

variables and noted that the proportional odds model is not appropriate.

4  Constrained models

The identification of variables with global effects is gainful since these effects
are easier to interpret. Thus one wants to find the most simple model, with
as many as possible global effects. In the literature alternative ways to find a
simply structured model have been proposed. Peterson & Harrell (1990) consider
constrained partial proportional odds models which have predictor
Nir = Yor + 33;7 + Z xz’j%djra
jeS
where 0., j € S.r=1,...,q, are prespecified scalars. That means the variables
from S have category-specific parameters V5 +’7j6jr with unknown parameters V>

;- For example the choice §;; =1, ;5 = 2,... means that the effect increases

16



in a known form across response categories. Thus simply structured models are

obtained, however at the cost of assuming rather arbitrary constants.

Within the framework of penalized estimates one may consider simple models
with the ”scores” 0, chosen by the data. Let us for simplicity consider the

NPOM with

T

p
Nir = Yor + Z LiiVjp
j=1
Instead of assuming v;, = 7; + 7,0;, with known 4,, the reduction of parameters
is obtained by fitting models with different degrees of differences. The underlying
concept is that strong penalization yields polynomial fits with the fit depending
on the order of the penalty. If one uses the penalty of order d

where A%y, = A(A% 'y, ) and A'= A, for A\; — oo the fitted parameters 7,,
follow a polynomial of degree d—1. For example if d = 2 the fitted parameters are
on a straight line, i.e. 4;, = a;+a;r. Thus the effective number of parameters is

reduced to two: intercept a;, and slope ;. The predictor for variable z; becomes

with the "scores” 4, = r. For differences of higher order the scores become
more complex but still involve only few parameters. If the order of difference d
yields a large amount of smoothing for variable z; then v, may be described by

a polynomial of degree d — 1.

4.1 Application to Severity of Nausea Data

A simple example which has also been considered by Peterson & Harrell (1990)
is based on a data set given by Farewell (1982). Farewell (1982) investigates the
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severity of nausea for patients receiving chemotherapy with and without cisplatin

on an ordinal scale with six categories (see Table 3).

Farewell (1982) rejects the assumption of proportional odds for the data set.
Peterson & Harrell (1990) fit a non-proportional odds model and conclude from

the fitting that the predictor
Nir = Yor T %Y + 2706,

with the scores 6, = ... =0, =0 and J; = 1 is appropriate. Then the hypothesis
Hy:6, =... =109, =0, 05 =1 is tested and the restricted model is fitted.
Although the testing of a hypothesis that has been generated from the data

seems not too informative, the method yields an appropriate simplification.

The alternative approach which is proposed here is to let the parameters J, un-
specified after the assumption of proportional odds is rejected. We fit the model
with penalties of varying degree. Figure 6 shows the AIC criterion for degrees
d=1,2,3. It is seen that for increasing amount of smoothing penalties of degree
1 and 2 show distinct minima whereas for d = 3 the AIC criterion decreases with
increasing amount of smoothing. The extreme amount of smoothing A = exp(8)
is equivalent to restricting the parameters to follow a polynomial of degree d — 1.
Thus for A = exp(8) and d = 1 one fits the proportional odds model, for d = 2
the fit is as measured by the AIC criterion even worse, but for d = 3 the AIC cri-
terion has strongly improved. Therefore the model with a polynomial of second
degree for the parameters yields a satisfying fit. The corresponding log-likelihood
is —371.54 which is slightly larger than the log-likelihood for the model with
9, = ... =9, = 0 and 65 = 1 which as reported by Peterson & Harrell (1990)
is —372.19.
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4.2 Application to injuries of the knee

In a clinical study focussing on the healing of sports related injuries of the knee
n = 123 patients have been treated. By random design one of two therapies were
chosen. In the treatment group an anti-inflammatory spray was used while in
the placebo group a spray without active ingredients was used. After ten days of
treatment with the spray, the mobility of the knee was investigated in a standard-
ized experiment during which the knee was actively moved by the patient. The
pain Y occuring during the movement was assessed on a five point scale ranging
from 1 for no pain to 5 giving severe pain. In addition to treatment (Treat) the
covariate age (Age) is given. From previous analysis it is known that Age should
be included as a quadratic function. Thus linear and quadratic effects of age are

considered.

Investigation of the data shows that Treat has category-specific effects whereas
Age and Age® can be considered as global variables. Figure 7 shows the AIC
criterion for the model where the effects of treatment are penalized with a penalty
of degree d € {1,2,3}. The value of AIC for all of the models is distinctly
smaller than AIC for the proportional odds model. But with increasing amount
of smoothing for d = 1 and d = 2 AIC increases whereas it obtains its smallest

value for d = 3. Thus the model with linear predictor
Nir = Yor + Age; - va + Age; - v 2 + Treat; - vy,

with 77, being determined by a polynomial of degree 2 yields the best fit. The

estimated parameters are given in Table 4.

5 Concluding remarks

This paper presents tools for the modelling of partial and non-proportional odds

models. Test statistics are used to evaluate if all or part of the covariates have
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global effects. If some of the variables are category-specific still estimates are
available based on the concept of penalization across response categories. This
may be seen as a way of finding estimates but also as a form of nonparametric

modelling by assuming smoothness of parameters across response categories.

Simple parametric models are obtained by fitting models with penalties of dif-
fering degrees together with strong smoothing. Considering the case of maximal
smoothing is equivalent to the fitting of parametric models where the effects are
determined by a polynomial degree. The approach avoids problems which arise
when one looks for simple models by using assigned scores. Usually the assigned
scores are rather arbitrary. If simple scores are found from the data, testing faces
the problem of using the same data twice, once for finding the hypotheses, then
for investigating them. Alternatively, we propose first to test which effects are
category-specific, but then to find a simple parametric model by use of the AIC

criterion.
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Appendix
We consider the PPOM(S), S C P with predictor
Nir = Yor + m;,S’YS + w;,S'YS,r'

It is helpful to restructure the design matrix such that the global variables come

first. One uses

1 0 zig x5
0 1 g T 5
and B' = (7,75, Y5, - -+ Vg,) to obtain 7, = Z;8.
The penalty of first order has the form
q
T(B) = Z A Z(AVJ'T)Q-
je{oyus r=2
This may be simplified by using the difference matrix
-1 1
- -1 1
D, = ,
-1 1

which is a (¢ — 1) x ¢ matrix. With D = f)q ® Diag()\i/;, . /\|1é|25) one obtains

for the penalty of order d = 1 in closed matrix form

7(B) =B'PB,

with P = Diag(Ao,sﬁ’qu,Ow\prD’D), where 0/g, g Is @ matrix with zeros
having dimension |S| x |S|. For penalties of general order d, 1 < d < ¢ — 1, the

matrix f)q has to be replaced by the product f)qﬂi+1 ..o D
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The corresponding penalized score function has the form

5,(8) =Y _ZID,Y Ny, — 1) — PB = s(B) — PP,
1=1

the penalized Fisher matrix is given by

o al _ - ! —1 7y _
F,(B8) = E (‘aga%’) = ;ZZDZ-EZ. D|Z,+P = F(8) + P.

The covariance matrix may be approximated by

cov(B) = F,(B)'F(B)F,(B) .

The latter expression may be derived by simple Taylor expansion. Corresponding
approximations have been used by Eilers & Marx (1996) for univariate generalized

linear models and by Tutz (2003).

Fisher scoring has the form
A )a(B

whete Z' = (Z},...., Z,), W(B) = Diag( (9h(Z:3)/0m')=,(8)" (oh(2,3)/om)
and 7(B) = ZB+3", (ah(ZiB)/an’) (v, —h(ZZ-,@)). At convergence one obtains

(k)

")z +P) “ow (B

= (zw (s )

B=(2W(B)Z+P) ZW(B)n(B)
which yields the hat matrix
H=2(ZW(B)Z+ P)"'Z'W(B) = ZF,(B) 'Z'W(B)
and
AIC = —2 (I(B) — trace(H)).
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MSEL MRSEL MEL
POM 0.0093 0.0542 0.0251
NPOM 0.0043 0.0208 0.0135
NPOM/POM 0.4336 0.3801 0.5277

TABLE 1: Mean loss functions and proportions averaged over all simulations

where Fisher scoring without penalization failed.

estimate standard p-values
error LRp Wp Sy
Yot 6.031 0.523
Yoz 7.642 0.587
Yen -9.932 0.627 0.000 0.000 0.000
Yap -3.685 0.605 0.000 0.000 0.000
Yona ~0.409 0.207 0.012 0.012 0.032
Yors 0.059 0.244 0.127 0.114 0.286
Yoo, -11.263 1.656 0.000 0.000 0.000
Yop2 ~11.880 1.701
D@1 8.265 1.837 0.000 0.000 0.000
Y2 7.319 1.822

TABLE 2: Estimated effects and standard errors for the PPOM({GH,BP}). On

the right p-values of the penalized test statistics are given.
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Severity of nausea Total

None Mild Moderate Severe
1 2 3 4 ) 6
No cisplatin 43 39 13 22 15 29 161
Cisplatin 7 7 3 12 15 14 58

TABLE 3: Data on severity of nausea for patients receiving chemotherapy.

no restriction (A = 0) smoothed (log(\) = 8)
with d =3
Yot 2.131 (2.063) 2.127 (2.063)
Yoz 2.609 (2.068) 2.703 (2.068)
Vo3 3.685 (2.080) 3.668 (2.078)
Yos 5.956 (2.141) 5.985 (2.138)
YA —0.256  (0.138) —0.256  (0.138)
V4o 0.004 (0.002) 0.004 (0.002)
Yoo 0.123 (0.419) 0.120 (0.418)
Y 1.412 (0.392) 1.390 (0.377)
Vs 1.541  (0.466) 1.580 (0.432)
Yra 0.773  (0.887) 0.698 (0.804)

TABLE 4: Fitted parameters for knee data (standard deviations in brackets).
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FiGURE 1: Loss functions of the POM plotted against the corresponding loss
function of the NPOM for the simulations where Fisher scoring without penal-
ization failed. Dashed lines have intercept zero and slope one.
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FIGURE 2: Estimated power functions of LR, (left) and s, (right). Lines are
local quadratic fits of the estimated points. Vertical lines indicate proportion of
failures (left: penalization with \p = exp(4), right: no penalization).

FIGURE 3: Superimposed power functions of LR, (solid line) and s, (dashed

line).
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Smoking Glycosylated hemoglobin
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FIGURE 4: Upper panel shows estimated p-values for testing PPOM({SM})
(left) and PPOM({GH}) (right) against the NPOM for the test statistics s,

(solid line), W,, (dashed line) and LR, (dotted line) and different amounts of

penalization. Lower panel shows deviations of penalized category-specific effects

of smoking (left) and glycosylated hemoglobin (right) from the corresponding
assumption of global effects.
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Diastolic blood pressure

Diabetes duration (linear + quadratic)
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FIGURE 5:

Upper panel shows estimated p-values for testing PPOM({BP})
(left) and PPOM({DD,DDQ}) (right) against the NPOM for the test statistics

s, (solid line), W, (dashed line) and LR, (dotted line) and different amounts of
penalization. Lower panel shows deviations of penalized category-specific effects

of diastolic blood pressure (left) and diabetes duration (linear + quadratic, right)
from the corresponding assumption of global effects.

30




763 :

762

O
< 761

760

759
-8
log(A)

FIGURE 6: AIC of the NPOM for varying smoothing parameter and different
degrees of vertical penalization (1: dotted, 2: dashed, 3: solid). Dash-Dot line
indicates the AIC of the corresponding POM.
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FIGURE 7: AIC of the PPOM({Age, Age?}) for varying smoothing parameter
and different degrees of vertical penalization (1: dotted, 2: dashed, 3: solid).
Dash-Dot line indicates the AIC of the corresponding POM.
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