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Abstract

In this paper we present a nonparametric Bayesian approach for
fitting unsmooth or highly oscillating functions in regression models
with binary responses. The approach extends previous work by Lang et
al. (2002) for Gaussian responses. Nonlinear functions are modelled by
first or second order random walk priors with locally varying variances
or smoothing parameters. Estimation is fully Bayesian and uses latent
utility representations of binary regression models for efficient block
sampling from the full conditionals of nonlinear functions.

Keywords: adaptive smoothing, forest health data, highly oscillating
functions, MCMC, random walk priors, unsmooth functions, variable
smoothing parameter.

1 Introduction

Nonparametric methods for fitting smooth curves, such as kernel, local or
spline regression, are now widely available and accepted. However, these
methods can have bad performance when estimating unsmooth functions
which have jumps, edges, or which are highly oscillating. Two prominent
approaches in nonparametric regression with Gaussian responses that adapt
to such spatial heterogeneity are local regression with variable bandwidth
(Fan and Gijbels, 1995) or wavelet shrinkage regression (Donoho and John-
stone, 1994). Currently, these methods are restricted to metrical responses
and there is a clear lack of methodology and experience for non-Gaussian
responses.

In this paper we present a nonparametric fully Bayesian method for fit-
ting unsmooth and highly oscillating functions in regression models with
binary responses. The approach extends recent work by Lang et al. (2002)
for Gaussian responses. Our approach uses a two-stage prior for the un-
known regression function. The first stage are first or second order random

1



walk models as proposed in Fahrmeir and Lang (2001a) and Fahrmeir and
Lang (2001b). The second stage consists of analogous smoothness priors for
varying variances of the random walk model errors used in the first stage
leading to locally adaptive dependent variances. The varying variances in
our method correspond to variable smoothness parameters and make the
prior more flexible for modelling functions with differing curvature. We
compare our approach with random walk priors with a global variance as
well as locally adaptive independent variances. The latter has been already
used e.g. by Knorr-Held (1999) in the context of dynamic models.

Bayesian inference is based on latent utility representations of binary
regression models, see Albert and Chib (1993) for probit models and Holmes
and Knorr-Held (2003) for logit models. The advantage of augmenting the
data by latent utilities is that the full conditionals of unknown parameters
are Gaussian and efficient MCMC sampling schemes developed for Gaussian
responses can be exploited.

The rest of this paper is organized as follows: Section 2 describes our
Bayesian model for locally adaptive function estimation and gives details
about Bayesian inference. Section 3 illustrates the performance of our ap-
proach by selected results from an extensive simulation study. In Section 4
the practicability is demonstrated by a complex application on forest health
data. The final section 5 summarizes the paper and highlights directions for
future research.

2 Model specification and Bayesian inference

2.1 Binary response models

Consider regression situations, where observations (yt, zt), t = 1, . . . , T , on a
binary response y and covariates z are given. The most widely used models
for binary data are logit or probit models. Given the covariates the responses
yt are binomially distributed, i.e. yt|zt ∼ B(1, πi) with the probability of
success πt = P (yt = 1|zt) = E(yt|zt) being modeled as

πt =
exp(ηt)

1 + exp(ηt)

for logit models or
πt = Φ(ηt)

for probit models. Here, ηt is the predictor that models the influence of the
covariates. With a linear predictor

ηt = z′tβ (1)

one gets parametric models. In many practical situations, as in our applica-
tion on forest health data, the assumption of linear effects of the covariates
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on the predictor is too restrictive. Suppose the covariates zt are divided
into a vector of metrical covariates xt = (xt1, . . . , xtp)′ whose influence is
assumed to be possibly nonlinear, and a vector of categorical covariates
wt = (wt1, . . . , wtq)′. Then, we replace the simple linear predictor (1) by the
semiparametric additive predictor

ηt = f1(xt1) + · · · + fp(xtp) + w′
tγ,

were we assume possibly nonlinear effects f1, . . . , fp for the metrical co-
variates. In this paper, the primary focus is on modelling functions with
discontinuities and/or differing curvature. We will discuss appropriate prior
specifications for functions of this kind in the next section.

For Bayesian inference, it is quite useful to express binary regression
models in terms of latent utilities (e.g. Fahrmeir and Tutz (2001)). Intro-
ducing the latent utilities

Ut = ηt + εt (2)

with i.i.d. errors εt, we define yt = 1 if Ut > 0 and yt = 0 if Ut < 0. The as-
sumption εt ∼ N(0, 1) yields a probit model. A logit model is obtained by as-
suming εt ∼ N(0, λt) with λt = 4ψ2

i , where ψt follows a Kolmogorov-Smirnov
distribution (Devroye (1986)). Hence, εt is a scale mixture of normal form
with a marginal logistic distribution (Andrews and Mallows (1974)). Note,
that a logit model could be (well) approximated by assuming a t-distribution
for the εt’s with a certain degree ν of freedom. A t-distribution may again
be expressed as a scale mixture of normals with λt ∼ IG(ν/2, ν/2). An
approximative logit model is then obtained with ν = 8 (Albert and Chib
(1993)).

2.2 Prior models

For Bayesian inference, the unknown functions fj , j = 1, . . . , p, or more
exactly the corresponding vectors of function evaluations, are considered
as random and must be supplemented by appropriate prior distributions.
In the following, let f denote one of the unknown functions fj and x the
corresponding covariate. Let x(1) < x(2) < · · · < x(S) denote the ordered
sequence of observed covariate values. Define fs := f(x(s)), s = 1, . . . , S,
and let f = (f1, . . . , fS)′ be the vector of function evaluations.

Assuming equidistant covariate values, a common prior for a smooth
function f is a first or second order random walk model

fs = fs−1 + us (RW1) or fs = 2fs−1 − fs−2 + us (RW2)

with Gaussian errors us ∼ N(0, τ2) and diffuse priors f1 ∝ constant, or f1

and f2 ∝ constant, for initial values, respectively. Generalizations to situa-
tions with non-equally spaced observations are given in Fahrmeir and Lang
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(2001a). For instance, a second order random walk could be generalized to

fs =
(

1 +
δs

δs−1

)
fs−1 − δs

δs−1
fs−2 + us,

where u(t) ∼ N(0; wsτ
2), δs = x(s)−x(s−1) and ws is an appropriate weight,

e.g. ws = δs. To avoid notational confusions, in the following we restrict the
presentation to the case of equally spaced observations. A generalization to
the more general case is straightforward and supported by our software.

The amount of smoothness is controlled by the variance parameter τ2

which corresponds to the smoothing parameter in a classical approach. To
estimate the amount of smoothness simultaneously with the unknown func-
tion a highly dispersed inverse gamma prior τ2 ∼ IG(a, b) is assigned in a
further stage of the hierarchy.

For unsmooth or highly oscillating functions, as primarily considered in
this paper, the assumption of a global variance or smoothing parameter is
however not appropriate. We therefore replace the constant variance τ2 by
locally adaptive variances τ2

s . In the following we will discuss approaches
with both stochastic dependent and independent τ2

s .
We start with the stochastic dependent variant. Following Lang et al.

(2002) we set τ2
s = exp(hs). For the parameters hs we add a second

smoothness prior in the form of first or second order random walks for
h = (hd, . . . , hS), i.e.

hs = hs−1 + vs or hs = 2hs−1 − hs−2 + vs, vs ∼ N(0, σ2). (3)

The index d depends on the choice of the prior for f , for a RW(1) d = 2 and
for a RW(2) d = 3. Once again, a highly dispersed inverse gamma prior is
assigned to the variance parameter σ2.

Alternatively we may assume independent local variances τ2
s instead of

dependent variances, which may be particularly useful for functions with
discontinuities. Assuming i.i.d. inverse gamma priors

τ2
s ∼ IG(v/2, v/2) (4)

the marginal distribution of the errors is a Student distribution with v de-
grees of freedom. The case v = 1 of a Cauchy distribution is of special
interest as a robust prior and is used for the rest of this paper.

We conclude this section with a few additional prior assumptions:

1. For the fixed effects parameters β we assume independent diffuse pri-
ors, i.e. βj ∝ const, j = 1, . . . , q.

2. For given covariates and parameters observations yt are conditionally
independent.

3. Priors for the functions fj , j = 1, . . . , p, and fixed effects are mutually
independent.

4



2.3 Bayesian inference via MCMC

For binary regression models a useful and very efficient sampling scheme
can be developed on the basis of the latent variables representation with
Gaussian errors for probit models and a scale mixture of normal form for
logit models defined in (2). We start by describing inference for models with
locally dependent variances τ2

s = exp(hs) and random walk priors (3) for
hs. Let fj := (fj1, . . . , fjSj ) be the vector of function evaluations of the j-th
covariate xj . Define hj as the corresponding vector of variance parameters
and let σ2

j be the j-th variance parameters. Bayesian inference is based on
the posterior augmented by the latent variables Ut = (U1, . . . , UT )

p(. . . , fj , hj , τ
2
j , σ2

j , . . . , β, U |y) ∝ p(y|U)p(U |f1, . . . , fp, β)

p∏
j=1

{p(fj |hj)p(hj |σ2
j )p(σ2

j )},

with p(y|U) =
∏
t

p(yt|Ut). The conditional likelihood p(yt|Ut) is given by

p(yt|Ut) = I(Ut > 0)I(yt = 1) + I(Ut < 0)I(yt = 0), (5)

due to the fact that p(Yt|Ut) is one if Ut obeys the constraint imposed by the
observed value of Yt. MCMC sampling is based on successive drawings from
the full conditionals of Ut, t = 1, . . . , T , fj , j = 1, . . . , p, hj and σ2

j . It turns
out, that updating of the variance parameters vector hj in one step is not
feasible because of too small acceptance rates. As a remedy the parameter
vector hj must be further divided into smaller blocks (usually of size 10-20),
see Lang et al. (2002) for details on updating the variance parameters.

The full conditionals for the Ut’s are truncated normals. For yt = 1 we
obtain

Ut|· ∼ N(ηt, λt)I(Ut > 0)

and for yt = 0 we get

Ut|· ∼ N(ηt, λt)I(Ut < 0)

with λt = 1 for probit models. Drawing random numbers form a truncated
normal distribution poses no further problems, see e.g. Robert (1995). For
logit models additional drawings from the conditional distributions of λt are
necessary. Although the distribution has no standard form, sampling may
be obtained by Metropolis-Hastings steps with the prior distribution for λt

as a proposal (Holmes and Knorr-Held (2003)), i.e. draw a random number
ψt from a Kolmogorov Smirnov distribution and propose λprop

t = 4ψ2 as the
new state of the Markov chain. The proposed new value is then accepted
with probability

α =
(

λt

λprop
t

)0.5

exp
(

1
2
(Ut − ηt)2

(
1
λt

− 1
λprop

t

))
,
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where λt is the current state of the chain. If a t-distribution is assumed for
the errors, the full conditionals for λt are inverse Gamma distributions with
parameters ν/2+1/2 and ν/2+(Ut−ηt)2/2. From a computational point of
view we prefer probit models because updates of the full conditionals of the
latent utilities are (slightly) faster compared to logit models or the t-link.

The advantage of augmenting the posterior by the latent variables is that
the full conditionals for functions fj become Gaussian, allowing the usage of
the sampling schemes developed for Gaussian responses in Lang et al. (2002)
with only minor changes. Updating of fj , hj and σ2

j , j = 1, . . . , p, can be
done exactly as described in Lang et al. (2002) using the current values of
the latent utilities as (pseudo) responses.

If we assume locally independent variances τ2
j = (τ2

j1, . . . , τ
2
jSj

) with
priors (4), the sampling scheme facilitates considerably. Updating of the
variance parameters is straightforward because the full conditionals for τ2

js,
s = 1, . . . , Sj are inverse Gamma distributions with parameters ν/2 + 1/2
and ν/2 + (fs − fs−1)2/2 if a first order random walk is assumed for fj . In
the case of a second order random walk for fj , the parameters are ν/2+1/2
and ν/2 + (fs − 2fs−1 + fs−2)2/2. Updating of the remaining parameters is
exactly the same as described above for locally dependent variances.

3 Simulation studies

To illustrate the performance of our locally adaptive approaches we carried
out two simulation studies for binomial probit models with different settings
for the true regression function. Binomial response vectors y = (y1, . . . , yT )
were generated by setting ηt = f(xt) and drawing B(n, Φ(ηt)) distributed
random variables yt, t = 1, . . . , T . To assess the dependence of results
on the number of observations we used both n = 1 and n = 3. For the
true regression function f we considered the two cases depicted in Figure
1. In the first case (T = 250) a discontinuous step function for f and in
the second case (T = 400) a regression function characterized by differing
curvature and medium spatial variability taken from Ruppert and Carroll
(2000) was used. For each of the two cases we generated 250 replications
and applied the three approaches with global variances, locally dependent
and independent variances decsribed in Section 2 to each replication.

A similar simulation study based on logit models rather than probit
models shows virtually identical results. Therefore, and to keep the paper
in reasonable length, results for logit models are not presented.

3.1 Regression function with discontinuities

Facing a regression function with discontinuities, the best results for all
approaches were usually obtained by using a RW1 prior for the regression
function f and, in case of the approach with locally dependent variances, a
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RW1 prior for the variance function h. We therefore restrict the presentation
to these cases and denote them in the following with RW1 (global approach),
TRW1 (locally independent variances) and RW1VRW1 (locally dependent
variances).

Figures 2 and 3 display for n = 1 and n = 3 boxplots of ln(MSE) =
ln(1/T

∑T
t=1(f(xt) − f̂t(xt))2) and regression function estimates averaged

over the 250 replications for the various estimators. The respective pan-
els (a) in Figures 4 and 5 show variance function estimates, again aver-
aged over the 250 replications. Panels (b) show the coverage probabilities
of pointwise credible intervals for a nominal level of 95%. In a Bayesian
approach based on MCMC simulations, pointwise credible intervals are sim-
ply obtained by computing the respective quantiles of the sampled function
evaluations. From Figures 2 - 5 we can draw the following conclusions:

• For n = 1 the three approaches show similar performance in terms of
MSE and bias. Inspection of individual estimates reveals that only one
observation per covariate value is not enough to recover the underlying
step function satisfactorily.

• With n = 3 observations, the true curve can be recovered satisfactorily.
As expected, the best results in terms of MSE and bias are obtained
with TRW1, i.e. locally adaptive independent variances.

• The jumps in the regression function are best reflected in the vari-
ance functions for TRW1. For the approach with locally dependent
variances RW1VRW1 the variance functions show only for n = 3 ob-
servations a significant increase of variances at all jumps. The increase
of variances is, of course, less pronounced for RW1VRW1 as for TRW1.

• Even for n = 1, for both approaches with adaptive variances the cov-
erage rates are closer to the nominal level than for the approach with a
global variance. The approach TRW1 reveals a dramatic improvement
of coverage rates at the jumps compared to RW1 and RW1VRW1.

3.2 Regression function with differing curvature

In contrast to a regression function with discontinuities, the best results
for all approaches were usually obtained by using a RW(2) prior for the
regression function f and, in case of the approach with locally dependent
variances, a RW(1) prior for the variance function h. We therefore restrict
the presentation to these cases and denote them in the following with RW2
(global approach), TRW2 (locally independent variances) and RW2VRW1
(locally dependent variances).

Figures 6 and 7 display boxplots of ln(MSE) and regression function
estimates averaged over the 250 replications. The average variance function
estimates are depicted in panel (a) of Figures 8 and 9. The coverage rates
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of pointwise credible intervals are shown in panels (b). The results shown
in Figures 6 - 9 can be interpreted as follows:

• In contrast to functions with discontinuities, satisfactory results are
now obtained even for n = 1.

• Not surprisingly, the approach RW2VRW1 with locally dependent
variances clearly outperforms the global approach RW2 and the lo-
cally independent approach TRW2. Most striking is the severe bias
for n = 1 obtained with TRW2 at the local minima and maxima of
the curve. A possible explanation might be that the approach with
local independent variances is too flexible in situations where the true
probabilities of success are close to one or zero (as is the case at the
minima and maxima of the curve).

• The decrease of spatial variability in the regression function is accu-
rately reflected by the variance functions obtained from RW2VRW1
while for TRW2 the variances stay more or less constant at the level
of the approach with global variance RW2.

• The coverage rates for all three estimators are generally close to the
nominal level. For TRW2 and n = 1, however, the coverage is clearly
below the nominal level near the minima and maxima of the true curve.
The main reason is the strong bias in this area.

4 Application to forest health data

In this section we demonstrate the practicability of our methods by an ap-
plication to forest health data. We analyse the influence of calendar time,
age, canopy density CP and location L on the health state of trees (y=1
for a damaged tree and y=0 otherwise). Data have been collected in yearly
forest damage inventories carried out in the forest district of Rothenbuch in
northern Bavaria from 1983 to 2001. There are 80 observation points with
occurence of beeches spread over an area extending about 15 km from east
to west and 10 km from north to south, see Figure 12. A detailed data
description can be found in Göttlein and Pruscha (1996).

We used a binary probit model with predictor

yit = f1(t) + f2(agei) + fspat(Li) + β · CPi

for tree i, i = 1, . . . , 80 and year t, t = 1983, . . . , 2001. Here, agei is the
age of the tree in years at the beginning of the observation period, Li is the
location of tree i, and CPi is the canopy density at the stand in percent
(0%,10%,20%,. . . ,100%). Preliminary examination of the data reveal that
the effect of canopy density is linear. Therefore CP is included as a usual
fixed effect with a diffuse prior for the regression coefficient.
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Although this is only a demonstrating example, it is important to con-
sider possible spatial heterogeneity of the data for a realistic modelling ap-
proach which captures the most important features of the data. For that
reason we included a spatial effect fspat. We assigned a Markov random
field prior (Besag et al. (1991)), with the neighbourhood ∂L of trees includ-
ing all trees L′ with euclidian distance d(L, L′) ≤ 1.2 km, see also Fahrmeir
and Lang (2001b). Our model is an example for a regression model with
geoadditive predictor (Kammann and Wand (2003)) and demonstrates one
of the main advantages of Bayesian inference for semiparametric regression
based on MCMC simulation: models can be easily extended to more complex
formulations.

Figure 10 (a) and (b) shows estimated functions f1 and f2 based on a
first order random walk with a global variance. The respective results based
on a second order random walk are depicted in Figure 11. The estimated
spatial effects can be found in Figure 12. We see that trees recover after the
bad years around 1986, but after 1992 health status declines to a lower level
again. As we might have expected, younger trees are in healthier state than
the older ones. Note also, that the incorporation of the spatial effect into
the model is quite important since the estimated effect suggests considerable
spatial heterogeneity.

Starting from these two models, experiments with our spatially adaptive
random walk priors gave evidence for a jump of the age effect around age 20
and hints for a smoothly varying variance of the time trend. We therefore
replaced the global variance of the age effect by locally independent variances
(4) and the global variance of the time trend by locally dependent variances
(3) with a first order random walk for hs. Figure 10 (c) and (d) show results
based on first order random walks for f1 and f2 and Figure 11 (c) and (d)
results based on second order random walks for f1 and f2. The respective
figures (e) and (f) display the estimated locally varying variance functions.
Results for the spatial effect remain almost unchanged compared to our basis
models and are therefore not replicated.

In terms of the DIC (Spiegelhalter et al. (2002)) both estimates with
varying variances are clearly superior to the models with global variances.
As could have been expected, the estimated jump for the age effect is more
pronounced with a first order random walk rather than a second order ran-
dom walk for f2. The smallest DIC is however obtained by the model based
on second order random walks for f1 and f2 although the differences are
rather small.

5 Conclusions

This paper presents a practical approach for fitting highly oscillating or
unsmooth functions in binary regression models. The simulation study in
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Section 3 suggests that for highly oscillating functions the approach with
locally dependent variances performs superior to locally independent vari-
ances and simple random walk models with a global variance. For jump
functions results are superior with locally independent variances.

For probit models, our approach can be extended to models mit multi-
categorical responses by using similar latent utility respresentations as for
binary responses, see e.g. Fahrmeir and Lang (2001b). For multinomial logit
models, such representations can not be used for facilitating MCMC infer-
ence. In this case, the development of a direct sampling scheme which is not
based on latent utilities is necessary. A possible approach could be based on
iteratively weighted least squares proposals for the nonlinear functions fj as
proposed for generalized linear models by Gamerman (1997). We consider
to extend our models to the multicategorical case in future research.

Another aspect for future research concerns model choice. The introduc-
tion of locally adaptive function estimates complicates model choice consid-
erably, because one has to decide not only whether a covariate should be
included into the model or not, but also how the covariate effect should be
modeled. In our application we used the DIC as a goodness of fit measure.
The drawback of model choice via the DIC is that only a limited number
of models can be tested. For the future, we plan to develop Bayesian in-
ference techniques that allow estimation and model choice (to some extent)
simultaneously.

References

Albert, J. and Chib, S., 1993: Bayesian analysis of binary and polychoto-
mous response data. Journal of the American Statistical Association,
88, 669-679.

Andrews, D.F. and Mallows, C.L., 1974: Scale mixtures of normal distribu-
tions. Journal of the Royal Statistical Society B, 36, 99-102.

Besag, J., York, J. and Mollie, A., 1991: Bayesian image restoration with
two applications in spatial statistics (with discussion). Annals of the
Institute of Statistical Mathematics, 43, 1-59.

Devroye, L., 1986: Non-Uniform Random Variate Generation. Springer-
Verlag, New York.

Donoho, D. L. and Johnstone, I. M., 1993: Ideal spatial adaption by wavelet
shrinkage. Biometrika, 81, 425-455.

Fahrmeir, L. and Lang, S., 2001: Bayesian Inference for Generalized Addi-
tive Mixed Models Based on Markov Random Field Priors. Journal of
the Royal Statistical Society C (Applied Statistics), 50, 201-220.

10



Fahrmeir, L. and Lang, S., 2001: Bayesian Semiparametric Regression Anal-
ysis of Multicategorical Time-Space Data. Annals of the Institute of
Statistical Mathematics, 53, 10-30

Fahrmeir, L. and Tutz, G., 2001: Multivariate Statistical Modelling based on
Generalized Linear Models, Springer–Verlag, New York.

Fan, J. and Gijbels, I., 1995: Data-driven bandwidth selection in local poly-
nomial fitting: variable bandwidth and spatial adaption. Journal of the
Royal Statistical Society B, 57, 371-394.

Gamerman, D., 1997: Efficient Sampling from the Posterior Distribution in
Generalized Linear Models. Statistics and Computing, 7, 57–68.
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(a) Regression Function with Discontinuities
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Figure 1: True regression functions used in simulation studies.
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Figure 2: Simulation results for regression function with discontinuities and
one observation on each design point. (a) Boxplots of ln(MSE). (b)-(d)
Averaged posterior mean estimates (—) together with true function (· · ·).
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Figure 3: Simulation results for regression function with discontinuities and
three observations on each design point. (a) Boxplots of ln(MSE). (b)-(d)
Averaged posterior mean estimates (—) together with true function (· · ·).
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Figure 4: Simulation results for regression function with discontinuities and
one observation on each design point in the approach with global variance
(—), locally dependent variances (- -) and locally independent variances
(· · ·). (a) Averaged posterior median estimates for variance functions. (b)
Coverage of pointwise 95 % credible intervals.

16



0 50 100 150 200 250

0.
0

0.
05

0.
10

0.
15

0.
20

(a) Variance functions

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Coverage

Figure 5: Simulation results for regression function with discontinuities and
three observations on each design point in approach with global variance
(—), locally dependent variances (- -) and locally independent variances
(· · ·). (a) Averaged posterior median estimates for variance functions. (b)
Coverage of pointwise 95 % credible intervals.
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Figure 6: Simulation results for regression function with differing curvature
and one observation on each design point. (a) Boxplots of ln(MSE). (b)-(d)
Averaged posterior mean estimates (—) together with true function (· · ·).
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(a) Boxplots of ln(MSE) (b) RW2
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Figure 7: Simulation results for regression function with differing curvature
and three observations on each design point. (a) Boxplots of ln(MSE). (b)-
(d) Averaged posterior mean estimates (—) together with true function (···).
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Figure 8: Simulation results for regression function with differing curvature
and one observation on each design point in approach with global variance
(—), locally dependent variances (- -) and locally independent variances
(· · ·). (a) Averaged posterior median estimates for variance functions. (b)
Coverage of pointwise 95 % credible intervals.
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Figure 9: Simulation results for regression function with differing curvature
and three observations on each design point in approach with global variance
(—), locally dependent variances (- -) and locally independent variances
(· · ·). (a) Averaged posterior median estimates for variance functions. (b)
Coverage of pointwise 95 % credible intervals.
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Figure 10: Results for forest health data. (a)-(b) Posterior mean estimates
(—) and 80 % credible intervals (· · ·) in global approach with RW1 for both
calendar year and age effect. (c)-(d) Posterior mean estimates (—) and 80 %
credible intervals (· · ·) in local approach with RW1VRW1 for calendar year
and TRW1 for age effect. (e)-(f) Posterior median estimates for variance
functions in local approach.
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Figure 11: Results for forest health data. (a)-(b) Posterior mean estimates
(—) and 80 % credible intervals (· · ·) in global approach with RW2 for both
calendar year and age effect. (c)-(d) Posterior mean estimates (—) and 80 %
credible intervals (· · ·) in local approach with RW2VRW1 for calendar year
and TRW2 for age effect. (e)-(f) Posterior median estimates for variance
functions in local approach.
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Figure 12: Results for forest health data. Posterior probabilities (based on
a nominal level of 80%) for spatial effects of the two models with global
variances. The top panel corresponds to the model with first order random
walks and the bottom panel to the model with second order random walks
for f1 and f2. Black spots indicate a positive, white spots a negative and
grey spots a non-significant effect.

24


