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Summary. Additive models of the type y = fi(z1)+...+ fp(zp)+e where f;,j =1,...,p,
have unspecified functional form, are flexible statistical regression models which can be
used to characterize nonlinear regression effects. The basic tools used for fitting the additive
model are the expansion in B-splines and penalization which prevents the problem of
overfitting. This penalized B-spline (called P-spline) approach strongly depends on the
choice of the amount of smoothing used for components f;. In this paper we treat the
problem of choosing the smoothing parameters by genetic algorithms. In several simulation
studies our approach of automatically calculation of the smoothing parameters is compared
to alternative methods given in literature. In particular functions with different spatial
variability are considered and the effect of constant respectively local adaptive smoothing
parameters is evaluated.
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1 Introduction

Traditionally, there have been two basic approaches to address the problem of choos-
ing basis functions. One technique places knots (and their corresponding basis func-
tions) adaptively, i.e. the function is estimated by only a small set of basis functions
which are adaptively chosen by a selection procedure. Some known examples for
this technique are MARS (Friedman (1991)), forward selection, backward elemina-
tion and stepwise regression (Rawlings, Pantula & Dickey (1998)). In a broad sense
we also can add the Support Vector Machines (Chapelle & Vapnik (1999), Vapnik
(1995), Vapnik (1998)) and its extension to Relevance Vector Machines (Tipping
(2000), Tipping (2001)) to this group.

The alternative approach (which we apply in this paper) avoids the problem of
knot selection problems by using a large number of basis functions in combination
with penalization of the coefficients. The danger of overfitting resulting in wiggly
estimated curves is avoided by introducing a penalty term. There exists a large
number of proposals for specifying an accurate penalty term (see e.g. Eilers & Marx
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(1996), Hastie, Tibshirani & Friedman (2001)). All proposals have in common that
each penalty term is characterized by a smoothing parameter A. This smoothing
parameter controls the influence of the penalty term and hence the smoothness of the
estimation function. A large parameter value tends to result in smooth estimators
(e.g. A = oo leads to a linear estimator). In contrast, a small parameter value yields
wiggly estimated curves (the extreme case is an interpolation of data for A = 0). To
prevent over- respectively underfitting of data (Bishop (1995)) accurate choice of
the smoothing parameter is essential. For simple problems a grid search is sufficient
for choosing a suitable smoothing parameter (Eilers & Marx (1996)). However, for
more complex problems this approach is not any longer efficient.

A solution of this problem we propose the application of genetic algorithms (Holland
(1975), Goldberg (1989)). Based on randomly stochastical search, genetic algorithms
also yield accurate results for complex problems in many dimensions.

In this paper we mainly apply the new approach to the choice of smoothing parame-
ters in simulated data, which are modelled by additive models (Hastie & Tibshirani
(1990)). The paper is structured as follows: in the next section we generally de-
scribe the class of additive models and the flexible representation of functions by
expansions in B-spline basis functions. Section 3 presents the penalization concept
of Eilers & Marx (1996) and adapts it to our problem. In section 4 we introduce
the genetic algorithm for the choice of the smoothing parameters. Finally section
6 compares our approach with other methods proposed in literature (and shortly
sketched in 5) by several simulation studies.

2 Additive Model and B-splines

A very popular and flexible approach which assumes some structure in the predictor
space is the additive model discussed in detail by Hastie & Tibshirani (1990). Sup-
pose that we have observations (y;,x;),% = 1,...,n, where each x; is now a vector
of p components x; = (zi1,...,%;p). Then it is assumed that the response variable
y; depends on x; by

i = Po+ fr(za) + ...+ fp(zip) + €

= ﬂ0+2fj($z‘j) + € (1)

=1

where ¢; ~ N(0,0?). It is obvious that the additive model replaces the problem
of estimating a function f of a p-dimensional variable x; by one of estimating p
separate one-dimensional functions f;(z;;). The advantage of (1) is its potential as
a data analytic tool: since each variable is represented separately one can plot the p
coordinate functions separately and thus evaluate the roles of the single predictors.

An approach which allows flexible representations of the functions f;(z;;) is the
expansion in basis functions. Hence for example the function f;(x;;) is represented
as

K;
fi(wij) = Z Bjv $jv(@is) (2)
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Figure 1. Here B-splines of degree 1, 2 and 8 are shown. In each figure the different
polynomials of one B-spline are ezemplarily plotted.

where the 3;, are unknown coeflicents and {®;,(z;;),v = 1,...,K;} is a set of
basis functions. Each basis function ®;,(z;;) is characterized by a knot &;, which
is from the range of the jth covariate. There are several popular basis functions,
e.g. the truncated power series basis (Ruppert & Carroll (1997), Wand (2002)),

the numerically more stable B(asic)-spline basis (Marx & Eilers (1998)), thin-plate
spline basis (Wood (2002)), Demmler-Reinsch basis or radial basis functions.

The focus in this paper is on B-splines which are shortly sketched in the following.
A more detailed presentation is given in de Boor (1978) or de Boor (1993) and
Dierckx (1995). Figure 1(a) shows B-splines of degree 1, respectively order 2. Here
at each knot §,,v =1,..., K}, a B-spline is generated by joining of two polynomi-
als of degree 1 (piecewise linear functions). Figure 1(b) shows B-splines of degree 2
and order 3 (quadratic B-splines). At the inner knots (for example £,+; and £,12)
we join together three polynomials of degree 2. For this kind of B-splines the first
derivatives are equal at the joining points. This does not hold for the second deriva-
tives. In this paper we mainly use B-splines of degree 3 respectively order 4 (cubic
B-splines) which are generated by four polynomials of degree 3 (Figure 1(c)). Again

these polynomials are joint at the inner knots. In this case the first and the second
derivatives are equal at the joining points.

B-splines of degree d have the following general properties:

e B-splines consist of d + 1 polynomial pieces, each of degree d;

e they have d inner knots where the polynomial pieces become joined;

B-splines have an overlap by 2d neighboring B-splines. Of course the leftmost
and the rightmost B-splines have less overlap;

at the joining points, derivatives up to order d — 1 are continuous;
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e B-splines are positive on a domain spanned by d+2 knots; outside of this domain
the B-spline is zero.

Note that each interval between two adjacent knots is covered by d + 1 B-splines
of degree d. The basis functions ¢;, depend on one knot only. When using one
knot to identify a specific B-spline we take the leftmost knot at which the spline
becomes non-zero. For computation of B-splines the formulae of de Boor (1978),
are very helpful. A B-spline B, , (for degree d > 1), which starts at knot &,, may
be computed by

— & L By () + MBd—l,u-&-l('r) ) (3)

By
4.v(@) = §u+d -& Eovarr — &g

For equidistant knots which are used here (3) simplifies to

(x — &)Ba—1,v(x) + (§vta+1 — ) Ba—1, v41(x)]

1
By, ,(z) = 4 [

because &,4q — & = &vtat1 — Evr1 = d - d€ where d€ is the distance between two
adjacent knots.

3 Estimation with Penalized Shrinkage

For the additive model (1) parameters are estimated by minimizing the penalized
residual sum of squares (pRSS)

n p K;
min § 30— fo = DD Bindiu())® + ({20 ) (4)
=1 j=1lv=1
where
p K
(b =3 Z w(A* ) (5)
j=1 v=k+

denoting the penalty term and A;, >0, j=1,...,p, v=k+1,... , K;,k=1,2,...,
are local smoothing parameters that control the amount of shrinkage: the larger the
values of \;,, the larger the amount of shrinkage (Hastie, Tibshirani & Friedman
(2001)). If Aj g1 = ... = Aj,k; = Aj we have a global smoothing parameter for the
jth explanatory variable. Although global parameters are more easily to handle, it
has been demonstrated by Ruppert & Carroll (2000), that local smoothing param-
eters yield better performance. For global smoothing parameters the penalization
is the same as in Eilers & Marx (1996). They suggested to penalize the difference
of adjacent coefficients. Hence in (4) the expression A¥3;,,k = 1,2,..., denotes the
kth difference, e.g. the 2th difference has the form

X85 = A (Bjy — Bjv—1)
= (Bjv = Bjv-1) = (Bjv—1 — Bju—2)
= (ﬁjl/ - 2ﬁj1/71 + ﬁjV72)-

It can be shown (Appendix(A)) that the estimator B(A) which minimizes (4) has
the form

B(A) = (B'B + DTAD)'BTy. (6)
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where B is a design matrix of dimension n x [(K; — 1)+ ...+ (K, —1)]+ 1, Dis
al[(Ki—k)+...+ (K, —k)]+1x[(Ky —1)+...+ (K, — 1)] + 1- penalization
matrix and A = diag(0, A1 k11, .-, A1,K,, A2, k415 - - -5 Ap,K,) 18 @ smoothing matrix
of dimension [(Ky — k) + ...+ (K, — k)] + 1 x (K1 —k)+...+ (K, — k)] + 1. The
structure of matrices B and D are given in detail in Appendix(A).

The performance of the penalized estimate strongly depends on the choice of the
smoothing parameters A, . A criterion with favourable properties has been proposed
by Hurvich & Simonoff (1998), which is given by

1 — .
- ;(yz’ — §i)*

where H = B(BTB + DTAD) !B is the hat matrix. The smoothing parameters
have to be chosen such that the criterion becomes minimal. In the simulation study
(see section (6)) also alternative selection criteria have been used, e.g. generalized
cross validation (GCV) as used by Ruppert & Carroll (2000). However, the results
with different selection criteria do not differ very much from each other. Thus, in
the representation we restrict ourselves to criterion (7).

[tr(H) + 1]

AIC;m, =1 _—
Cimp = log n—tr(H) — 2

+14+2- (7)

4 Choice of Smoothing Parameters by Real-coded Genetic
Algorithms

The real limit in the choice of smoothing parameters is the dimensionality of the
problem. Even if global smoothing parameters are used p smoothing parameters
have to be chosen. For local smoothing the number of parameters increases to
K + ...+ K, which for 30 knots in each dimension results in 30p smoothing pa-
rameters. A grid search which has been used for simpler problems by Eilers & Marx
(1996), cannot be recommended. Ruppert & Carroll (2000) give an iterative method
based on a linear interpolation algorithm. In the present paper the use of genetic
algorithms is proposed.

Genetic Algorithms (Holland (1975), Goldberg (1989)) are originally based on Dar-
win’s evolution theory (Darwin (1859)) which refers to the principle that better
adapted (fitter) individuals win against their competitors under equal external
conditions. Like their biological standard, genetic algorithms use biological com-
ponents (or operators) like selection, crossover, or mutation to model the natural
phenomenon of genetic inheritance and Darwinin strife of survival. For some back-
ground on the biological processes of genetics and the origin of the terminology see
Haupt & Haupt (1998) and Mitchell (1996). In this article we only describe some
selected concepts which are important for real-coded genetic algorithms.

The function to be optimized is denoted as fitness-function (short: fitness). The
optimization problem can be treated as a minimization- or a maximization prob-
lem. We consider maximization problems only, because minimizing a function f is
equivalent to maximizing the function — f.

The smallest units linked to relevant information of a genetic algorithm are called
genes. The genes are either single units or short blocks of adjacent units and the
information is coded in form of numbers, characters, or other symbols. In real-
coded genetic algorithms every gene is a single unit which is coded by a real value.
Usually several genes are arranged in a linear succession which is called string (also
chromosome, individual). In the context of smoothing parameter selection a string is
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a vector of the form (A1 gy1,..., A1,k A2 k41, - -, Ap,K,) and thus a local smoothing
parameter \j, correspond to one gene. In the case of global smoothing parameters
a string reduces to (A1, ..., Ap). Without loss of generality in this section we assume
one covariate (j = 1), only.

Before starting the iterative genetic algorithm the user needs to construct an initial
population of several strings. This population usually consists of genes chosen ran-
domly from a uniform distribution on a given interval. The population size (noted
as popsize) is usually chosen freely. A rating of the quality of the used smoothing
paramater combination is given by the improved AIC-criterion (Hurvich & Simonoff
(1998)). Here, the smoothing parameters have to be chosen such that the criterion
becomes minimal. For use of the genetic algorithm it is more suitable to work with a
criterion which has to be maximized. This is easily achieved by simple mathematical
transformations which are constant during across iterations of the genetic algorithm.
For that purpose we subtract a sufficiently large constant from all AIC-values of a
population such that all the AIC-values become negative. The simulations (section
6) show that the largeness of the chosen constant has no influence on the results.
Following multiplication with (—1) yields a criterion which has to be maximized.
We denote the values which characterize the quality of the strings as fitness values
(short fitness).

For the design of powerful genetic algorithms operators like crossover, mutation
or selection are important. The genetic algorithm always yields several strings as a
potential solution of an optimization problem. This collection of strings is called pop-
ulation. If we apply operators to strings we generate a population with new different
strings. This new population of strings is called offspring. We denote the particular
populations as generations, or more precisely as parent- respectively offspring gen-
eration. Several authors (Herrera, Lozano & Verdegay (1998), Michalewicz (1996))
show that operators have to meet with various purposes during the application of
a genetic algorithm. In general there are two conflicting objectives (exploitation-
exploration-dilemma):

(i) The initial population very rarely includes strings with solutions at (or at least
close to) the global optimum. Thus it is helpful to generate offspring which are
scattered over the whole search space thereby hoping that at least one of the
strings is located near the global optimum. The objective to explore the search
space with strings and acquire information about the nature of the space is
described as exploration.

(ii) After some iteration steps the genetic algorithm may have generated new strings
with solutions which are located closer to the global optimum. In this case we
are primarily interested in obtaining information near the optimum by utilizing
the local possibilities of upgrade close to the parents and by generating fitter
offspring there. This stepwise improvement of the stings’ fitness by use of local
information is called ezploitation.

The relevance of these two conflicting objectives is differs for particular steps of
the algorithm. At the beginning (where we have no idea about the location of the
global optimum) exploration is more relevant compared to exploitation and vice
versa. Hence a suitable balance between exploration and exploitation is needed
during the whole iteration process. To adequately solve these conflicting objectives
we require operators which change during the genetic algorithm (adaptive or non-
uniform operators). In the following section the operators, which will be used, are
described in brief.
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Figure 2. With a; and b; representing the parents the IAC operator generates the ap-
propriate genes c;, d; and e; of the children. The first offspring c; is located within the
parents’ interval [a;,b;]. The other children are randomly positioned left and right outside
the interval [a;, bi]. Every string only takes values within the range between li, and lyp.

4.1 Improved arithmetical crossover (IAC)

In the last decade numerous different types of crossover operators have been sug-
gested (see e.g. Eshelman & Schaffer (1993), Michalewicz (1996), Radcliffe (1991),
Wright (1991)). An overview with several simulations can be found in Herrera,
Lozano & Verdegay (1998). Here we present a new crossover operator called im-
proved arithmetical crossover, short IAC.

Suppose we have two real-coded strings (each has m genes) for crossover with values
in an intervall [l;,, lyp] with lower limit {;, and upper limit I,

String 1 (a1-..a;-.-Gm)
String 2 (by...bi...by).

The IAC operator is defined by (compare also Figure 2)
c¢i =va; + (1 —v)by,
di bz + 61 (lup - b2)7 (8)

ei = a; — 02(a; — o),

with ¢ = 1,...m, and thus the offspring have the form

Offspring 1 (va; + (1 —v)by...va; + (1 —v)b;...vam + (1 — v)by,)
Offspring 2 (b1 + 01 (lup — bl) b+ 6 (lup — bl) cobm + 61 (lup — bm))
Offspring 3 (a1 — da(ar — lio) - .- a; — da(a; — lio) - - - am — d2(am — o))

where v € [0,1] can be chosen constant or variable over the number of iterations.
The parameters d§; € [0,1],4 = 1,2, are uniformly distributed random numbers.
Every string takes values in the default interval [l;o, lyp]-

A freely chosen crossover probability p. determines which strings of the parent pop-
ulation are selected for crossover. Therefore we generate a random (float) number
r; € [0,1],4 = 1,...,popsize for every string of the population. A string is used
for crossover operation if r; < p, holds. In the crossover process we need couple of
strings and thus it is necessary to select an even number of parent strings.

The IAC operator generates three new offspring and we select the two best strings,
which will replace the parents. Interestingly, the TAC operator yields children which
improve exploration and exploitation simultaneously. Figure 2 shows that two off-
spring (d; and e;) are located outside the parents’ interval [a;, b;] and thus regions
further apart in the search space can be explored. In addition, one child (here ¢;) is
located within the parents’ interval and is primarily responsible for an improvement
of exploitation.
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In section 6 we compare the quality of TAC operator with that of the arithmetical
crossover operator (Michalewicz (1996)). Thereby the arithmetical crossover oper-
ator is defined by a weighted linear combination of two parents, i.e.

ci =va; + (1 —v)b;, i=1,....,m )
di =vb; + (1 —v)a, i=1,....,m
where v € [0, 1] can be chosen constant (uniform arithmetical crossover) or variable
over the number of iterations (non-uniform arithemical crossover). The arithmetical
crossover operator generates two children. Depending on the choice of parameter v,
they only take values in the parents’ interval [a;, b;]. Since the childrens’ position is
relatively close to their parents, it enhances exploitation. The consequence is missing
exploration and thus large parts of the search space remain unconsidered.

4.2 Non-uniform mutation

The purpose of the mutation operator is to introduce some extra variability into
the population. Several types of mutation operators have been developed (see e.g.
Davis (1991), Michalewicz (1996), Miihlenbein & Schlierkamp-Voosen (1993), Voigt
& Anheyer (1994)). An overview with various examples of simulations can be found
in Herrera, Lozano & Verdegay (1998), and Michalewicz (1996). In our genetic algo-
rithm we use the non-uniform mutation operator presented by Michalewicz (1996).

For every gene of a string we generate a random number 7gepe € [0,1] and compare
Tgene With a default probability py,. If rgene < pm, the gene mutates, i.e. it changes
its value. Suppose we have a string (a; ... a; .. .a,,) of length m and randomly select
the gene a; for the application of the non-uniform mutation operator. Then we get

a vector (aj ...a}...a,) where
o= Jait (i —a)(@=r0=57) if =0 (10)
T la- (@)= i =1

Here 7 is a random number which may have a value of zero or one, r € [0,1] is
an uniform random number, 7' is the maximum number of generations and b is a
user-dependent system parameter which determines the degree of non-uniformity.
The function

b

g(t) = (1—r 1)) (11)
yields values in the intervall [0, 1].

We can distinguish between two extreme cases (compare also Figure (3)): If the gen-
eration number ¢ is small, the exponent in (11) yields a value close to one and thus
g(t) is primary influenced by a suitable choice of the random number r. Because the
random number 7 is uniformly distributed each value g(t) can be (approximatively)
accepted with the same probability. Hence each a} in (10) has nearly the same prob-
ability to be taken. On the other side, if the generation number ¢ becomes large,
g(t) in (11) obtains values close to zero for a wide range of random numbers. Thus
there is a tendency that the offspring @} in (10) is close to its parent a;. In summary
the genetic algorithm initially explores the whole search space right of the parents’
interval uniformly for an accurate ). However at a later stage of the algorithm, we
primarily prefer those a} which are close to their parent a;.
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Figure 3. Here is shown the function g(t) in subject to a uniform distributed random
number r for three sizes of the generation number t. For each generation number t we have
plotted two curves with different parameters b. The larger parameter b, the lower is the
degree of non-uniformity.

4.3 Sampling methods

Two important issues exist in genetic search: on the one hand we need several dis-
tinguishable strings (that means a large population diversity) to search successfully
for a global optimum in the search space (exploration). On the other hand a suitable
selection of promising strings (we denote this as increase of selective pressure) yields
a faster convergence of the genetic search (exploitation). These factors are linked
closely because an increase of selective pressure decreases the diversity of population
and vice versa. Hence strong selective pressure supports premature convergence in
a local optimum while a weak selective pressure can make the search ineffective. For
a suitable balance we need sampling methods which try to select accurate strings
of a population at each iteration step of the algorithm.

In the literature there are many suggestions of sampling methods. The most famous
methods are probably stochastic universal sampling (Baker, 1987), rank-based tech-
niques (Baker (1985), Whitley (1989)) and tournament selection (Goldberg, Deb
& Korb (1991)). Here we introduce a new modification of the stochastic universal
sampling (Baker (1985)). Our modified selection procedure (modSP), which includes
crossover- and mutation operators, consists of six steps and is illustrated in Figure
4:

Step 1: Suppose that a population P(t) is generated in iteration step t. Then
delete the worst u percent strings of P(t).

Step 2: From the remaining strings of step 1 randomly select r strings, which
do not necessarily have to be distinct.

Step 3: From the remaining strings of step 1 randomly select s parent strings.
These have not to be distinct from the r selected strings in step 2.

Step 4: If strings are equal the copies will be mutated. How many genes of a
string are randomly selected and mutated is controlled by the prob-
ability p,, > 0 (at least one gene is mutated). After mutation, there
are r different strings. This operation will also be executed for the s
parent strings.
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| Population P(t) |

Step 1

Deletion
of the worst u percent

strings of P(t)

St)eV W 3

Selection of Selection of
r Strings s Strings
Step 4 Step 4
Mutation of Mutation of
identical strings identical strings

Step 5

| Crossover Step 6
Step 6

Population P(t + 1)
has r offspring and s parents

Figure 4. Structure of the modified selection procedure (modSP) given as a flowchart.
Details in the test.

Step 5: Controlled by the crossover probability p., apply a crossover operator
to the set of the r (distinct) strings and generate 2 < i < new strings.

Step 6: Let r offspring and s parent strings form the new population P(t+1).
The selection in step 2,3 and 5 is implemented with respect to a probability distri-

bution based on the strings’ fitness. The probability for every string to be selected
is calculated as follows:

(i) Calculate the fitness value fit(s;) for every string s;, i = 1,...,popsize. The
fitness values are calculated by the improved AIC-criterion (section 3). Fitness
and AIC-criterion are connected by the mathematical transformations described
above.

(ii) Determine the total fitness of the population

pop_size

F = Z fit(s) .

(iii) Calculate the probability p; and the cumulative probability ¢; of a selection for
each string s;, 1 = 1,..., popsize by

Fit(ss) !
bi = F s qi = ;Pj .

To select a single string for the new population, the user first needs to gener-
ate popsize random (float) numbers r; € [0,1] and then check for every r;, ¢ =
1,...,popsize:
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o If r; < g then select the first string s;.

o If r; > ¢; then select the j-th string s; such that ¢;_; < r; < ¢; where j =
2,...,popsize.

Hence more fit strings have a larger probability to be chosen compared to the less
fit strings.

Figure 4 presents the genetic algorithm, used in the simulation studies (section
6). Therefore our genetic algorithm has several build-in steps, which increase the
effectiveness compared with many other conventional genetic algorithms:

e Deletion of a default number of worse strings in population P(t) limits the
available group of strings for future iterations and thus the selective preassure
is high.

e Strings of a population P(t) which have high fitness will enter the new population
P(t + 1) either as offspring (step 2) or as parent (step 3) with high probability.
With step 3 the best solutions of the old population are not forgotten.

e Exact copies of strings are not allowed. Hence there is no danger that a few
strings (we call them super-individuals) generate many equal copies and thus re-
press other less fit strings. Mutation of some genes yields new strings of different
genotype. The size of a string which will be mutated (and hence the size of lost
original information) is controlled by the probability py,.

Prevention of several equal strings improves the diversity of a population. There
will be only a slight increase of selective pressure if we change the genotype of
a string by controlled mutation (because most strings maintain their original
information).

e The classical mutation-step (Michalewicz (1996)) is canceled. Instead, only step
4 will prevent equal strings.

For termination condition we calculate the average of the num € {2,..., popsize}
fittest strings of each population. If the fitness does not change during a default
number, term € {2, ..., T} of successive iterations (I' = maximal iteration number)
the genetic algorithm is terminated. All simulations in section 6 have num = 10
and term = 20.

5 Alternative Approaches

This section briefly describes alternative approaches to estimate functions and to
select smoothing parameters which are compared to the present approach. The basis
of all approaches is the expansion in basis functions with the predictor term

p Kj
(@) = Bo+ Y Y Biwdjw(es). (12)

j=1lv=1

5.1 Mixed models

An approach based on the methodology of mixed models has been used by Parise,
Wand, Ruppert & Ryan (2001). The basic concept is to treat the parameters in
(12) as random effects. With respect to that strategy and in the context of additive
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models with truncated power series ¢, (¢) = (¢ — ;. )+ as basis functions one can
assume that

ﬁjy"\-’N(0,0’?), v=1,...,Kj,

with 81,..., 8k, are independent. The 0? express the variability of the param-

J
eters: 012- = oo corresponds to the unrestricted case whereas 012- — 0 implies high
restrictions on the parameters. The estimation of structural and smoothing param-
eters is based on solving the generalized mixed models equation. In the simulation
study we assume that adjacent weights of the used truncated power series basis are
correlated with a first order autoregressive (AR(1)) structure whose parameter are

automatically estimated by the used software package SAS.

5.2 Bayesian P-splines

A fully Bayesian approach has been used by Lang & Brezger (2003). In a similar
way as in the mixed model approach, the parameters are considered as random.
In context of basis functions as B-splines one assumes prior distribution on the
parameters. This may be considered as the stochastic analogue to the use of a
penalty term in the estimation procedure. For the first order differences one assumes
diffuse priors for 3;; and a first order random walk 3;, = 3; ,—1 +u;, with Gaussian
errors u;, ~ N(0, 0']2-). For full Bayesian inference, hyperpriors are assigned to the
parameters o3, using highly dispersed inverse Gamma priors, p(c3) ~ ZG(aj,b;)
with a;,b; fixed. Lang & Brezger (2003) use a; = 1,b; = 0.005. Inference is based
on Markov Chain Mote Carlo (MCMC) simulation techniques.

If one uses B-splines which may be constructed from the truncated power series the
assumption of independent random effects is replaced by assuming that differences of
parameters are normally distributed. In the simpler case one assumes ;11— Bj, ~

N(0,03).

5.3 Relevance Vector Machine

The relevance vector machine (Tipping (2000), Tipping (2001)) has been devel-
oped in the machine learning community as an improvement of the support vector
machine. Tipping also uses a Bayesian framework. Starting with one basis func-
tion at each observation the weights (3;,, are independent and normally distributed,
Bijv ~ N(O,ai_l) where the hyperpriors for a; and o2 are gamma distributions
which are optimized by a marginal likelihood approach. The essential difference
between Tipping’s algorithm and Bayesian approaches is that the number of basis
functions initially is equal to the number of observations. Then it reduces to only
few remaining basis functions. For the rest the weights become zero. In our simula-
tion study (section 6.1) we use 40 respectively 80 Gaussian kernels as basis functions
with different o, in detail o, = 0.15/+/2 (function with j = 3) and o, = 0.06/+/2
(function with j = 6). The hyperpriors are automatically estimated by the software
program SAS.

5.4 Adaptive Regression

Friedman (1991) proposed multivariate adaptive regression splines (MARS). MARS
uses the expansion in basis functions of the form
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n(wi) = Bo+ Y Bidj(wi)

j=1

in a stepwise way where basis functions are constructed successively from products
of linear splines (x; — &)+ , (& — @)+ where x; is one component of the vector
x and §;, are knots which are chosen from the observation of the corresponding
component of x. By stepwise inclusion of linear splines a large model (we use a
maximum number of 150 basis functions) is obtained for which a backward deletion
procedure is often applied. For details see Friedman (1991).

An alternative Bayesian procedure applying adaptive regression splines has been
proposed by Biller & Fahrmeir (2002). Like other Bayesian approaches this proce-
dure is not a stepwise approach and is based on a large set of basis functions like
B-splines, which are characterized by candidate knots for each variable. In addition
to the parameters, the number of knots as well as the specific choice of knots are
specified by prior distributions. For estimations, the number of knots are Poisson
distributed with a mean number of knots = 20.

5.5 Smoothing parameter selection with S-Plus-software

The software package S-Plus offers a restricted possibility of smoothing parameter
selection. First one calculates the AIC-criterion for an initial model. Then one has
to specify a list with other modelling alternatives. Each covariate can be dropped
or integrated in a model as a linear term respectively as a B-spline with a default
penalty term. Therefor Eilers & Marx (1996) published a S-Plus-function which
allows the expansion of each function f;,j = 1,2,... in B-splines with penalty
term. Starting with the initial model the implemented function step successively
calculates the AIC-criterion for all alternative models. If a current model yields a
better AIC-value we replace the previous model. Because of its implementation S-
Plus can only run a relatively small number of different models. In the simulation
study of section 6.2 it has been shown, that for an additive model with 5 functions
fj,3 = 1,...,5, where each one is expanded in 20 B-splines, we can select a list
from about 17 models (i.e. each covariate can be modelled linearly or as a B-spline
with one of 16 different smoothing parameters). However, to present results of the
popular statistical software tool we had to make assumptions concerning the choice
of smoothing parameters. Hence a grid of 16 smoothing parameters was log-spaced
between 102 and 102, i.e. their base-10 logarithms were equally spaced between —2
and 2. It is obvious that this discrete and restricted smoothing parameter selection
yields inexcact solutions and that the optimal choice of smoothing parameters is
very rare. Furthermore, we usually do not know the function’s true structure and
hence the above restrictions are in common not supportable.

5.6 Smoothing parameter selection with R-software

The statistic software package mgev (Wood (2001)) running in R yields an automatic
smoothing parameter selection, which is based on a method first proposed by Gu
& Wahba (1991). The idea is to re-write the multiple smoothing parameter model
fitting problem with an extra “overall” smoothing parameter controlling the tradeoff
between model fit and overall smoothness. The retained smoothing parameters now
control only the relative weights given to the different penalty terms. Then, the
approach is to alternate the following steps:
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Simulated data of function f with low degree of spatial variability (j=3)

Simulated data of function f with high degree of spatial variability (j=6)
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Figure 5. The panels at the top show the true functions with different spatial variability
(solid line) for a randomly chosen data set with o = 0.2. The panels below show bozplots
of logio(V M SE) for various estimators for j = 3 (left) and j = 6 (right). The dotted line
represents the median of the genetic algorithm with 40 knots.

e Estimation of the overall smoothing parameters using one-dimensional direct
search methods.

e Update the relative smoothing parameters simultanously by using the Newton
method.

The approach bases on minimizing the Generalized Cross Validation (GCV) as
model selection criterion. In the simulation studies we use cubic B-splines whereby
the number of knots can be adjusted by hand. For further details see Wood (2000)
and Wood (2001).

6 Simulations

In the following simulation study the performance of the approach for estimating
the smoothing parameters with a genetic algorithm is compared with other related
methods in literature. Program packages for the methods in section 5 often do not
use the additive structure. Thus these packages are compared in section 6.1 for
the single covariate case with functions of rather different spatial variability. The
simulations used in this section also show once more the quality of the imposed
arithmetical crossover operator (IAC) as described in chapter 4. Section 6.2 com-
pares our approach with other methods in literature by means of simulated additive
model.
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Figure 6. The figures show bozplots of logio(VMSE) of the genetic algorithm and
Bayesian P-splines with local smoothing parameters for j = 3 (left) and 5 = 6 (right).
The dotted line represents the median of genetic algorithm with 40 knots.

6.1 Estimation of different oscillating functions

In our first simulation study we consider the function

2m(1 + 2<94J>/5)>

flz) = z + 200 4)/5

2(1—2)sin (

The spatial variability of f(z) can be changed by the parameter j = 1,2,... (see
Ruppert & Carroll (2000)). We simulate 250 data sets for low spatial variability
(j = 3) or for high spatial variability (j = 6), respectively. Each data set consists of
400 independent and uniformly distributed data with o = 0.2 (see Figure 5).

For estimating the function, f(z) is expanded in 40 (respectively 80) cubic B-spline
basis functions. As penalty we use the third order differences of adjacent coefficients
and the smoothing parameter chosen from the interval [10~%,10%]. The default pa-
rameters of the used genetic algorithm are: population size (popsize) = 48 strings,
crossover probability p. = 0.5, mutation probability p,, = 0.25, deletion of u = 60
percent of the worst strings, selection of 7 = 30 and s = 18 strings, v = 0.5,7 = 1000
and b =1.

To compare our approach with other methods we computed logio(vV M SE) with

empirical mean squared error given by MSE(f) = Ly () - f(z))2. For
both specifications of spatial variability (j = 3,6) Figure 5 shows boxplots of
log10(VMSE) for various estimators. Here only one global smoothing parameter
is used. From left to right the boxplots refer to genetic algorithm (40 and 80 knots),
Relevance Vector Machine (RVM, 40 and 80 knots), mixed model (40 and 80 knots),
Bayesian adaptive regression splines and MARS. For better comparison the dotted

line represents the median of genetic algorithm with 40 knots.
From Figure 5 we can draw the following conclusions:

e For j = 3 most approaches yield similar results. The MARS approach leads to
substantial poorer results than all the other methods. For j = 6 the performance
strongly depends on the method. While mixed models approximately yield the
same results as the genetic algorithm, RVM, Bayesian P-splines and MARS show
poorer results. Only Bayesian adaptive regression splines lead to better results
compared to the genetic algorithm.

e For j = 3 doubling the number of basis functions from 40 to 80 knots there
are scarcely improves the performance of the estimators if we double. In case
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Figure 7. Results for the genetic algorithm with global smoothing parameters but different
degrees of B-spline and penalty order for the functions j =3 (left) and j = 6 (right).

of Bayesian P-splines even show a slight deterioration. For j = 6 an increasing
number of basis functions yields better estimators on average. But the magnitude
of the improvements depends on the type of the approache.

For both specifications (j = 3,6) Figure 6 shows the boxplots logio(vV M SE) of the
simulation used above (i.e. equal data sets and default parameters of the genetic
algorithm). But now we use local smoothing parameters in the interval [10~%, 10%].

For direct comparison we present the results of our approach and Bayesian P-splines:

Both specifications (j = 3,6) yield comparably good estimators.

e The use of genetic algorithms with local smoothing parameters shows no im-

provements compared to genetic algorithms with global smoothing parameters.

To gain better insight into the estimation by means of genetic algorithms with global
and local smoothing parameters, we have a look at Figure 7. For both specifications
of spatial variability, the simulation was run with 40 B-splines for quadratic (degree
= 2) and cubic (degree = 3) B-splines and different penalty (order = 1,2,3). The
dotted line represents the median of cubic B-splines with penalty order 3 which we
used in simulations above.

e For j = 3 an increasing penalty order improves the quality of the estimator.

Apart from penalty order 1, the degree of B-splines has little influence.

For ;7 = 6 the cubic boxplots show more accurate estimators compared with
the quadratic boxplots. In contrast to j = 3 the estimators become worse with
increasing penalty order.

These results confirm, that B-spline degree and penalty order affect the quality of
an estimator. For different oscillating functions, however, choosing a suitable degree
of B-splines and penalty order becomes more difficult. For example, our choice of
cubic B-splines with penalty order 3 is suitable for low spatial functions. But a lower
penalty order seems to be more accurate for highly oscillating functions. Comparable
simulations with local smoothing parameters yield similar results as described in
Figure 7.

In general, the underlying functions (e.g. in an additive model) are completely
unknown and thus we have no idea about the degree of spatial variability. The
choice of cubic B-splines with penalty order 2 or 3 should be an adequate solution
for all kinds of functions.
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Figure 8. The left figure shows bozplots of logio(V M SE) of the genetic algorithm with im-
proved arithmetical crossover and arithmetical crossover. We used 100 data sets of the high
oscillating function (j = 6) and a global smoothing parameter. The right figure presents
the mean logio(VMSE) of the data sets for both crossover operators.

Again we briefly refer to the improved arithmetical crossover (IAC)-operator pre-
sented in section 4.1. For the simulations above we compare our new operator with
the arithmetical crossover operator (section 4.1).

Figure 8 (left) shows boxplots of logio(vV M SE) with high spatial variability and
global smoothing parameters for the simulation described above. The IAC-operator
yields estimators which are significantly better than the arithmetical crossover.
Moreover, the TAC-operator has faster speed of convergence (see Figure 8 (right)).
Here, the mean log1o(v M SE) of all data sets for both crossover operators is shown.
They were chosen by the genetic algorithm up to iteration ¢ = 200. In each data
set, the current population P(s = t) of iteration t yields the logio(vV M SE)-value
only in the case where all former populations P(s < t) have worse fitness. Other-
wise, the log1o(V M S E)-value of the former population P(s = ¢ — 1) is retained. For
the curves in Figure 8 we average across the logio(v/ M SE)-values of the 100 data
sets and realize a convergence to a minimal value after a few iterations, if using
the TAC-operator. However, in general the arithmetical crossover operator does not
obtain this minimal value even if we have a larger iteration number.

6.2 Estimation for additive models

In this simulation study we choose an additive model, consisting of 5 functions
fi(zi;),7 = 1,...,5 (Figure 9). We simulate 250 data sets, where each data set
consists of 500 independently and uniformly distributed data with o; = 0.3 and
oo = 0.6. To estimate the single functions f;(z;;) we expand each function in 20
cubic B-spline basis functions. For penalty we use the third difference of adjacent
coefficients. The five global smoothing parameters can be chosen in the interval
[107%,10%). The default parameters of the genetic algorithm are the same as in
section 6.1.

To compare the results of our approach with other methods we computed log(M SE).
Figures 10 and 11 show boxplots for both cases, 01 = 0.3 and o2 = 0.6. The
comparison of the estimation performance between the approaches is presented
for each single function f; in an own subplot. The last subplot shows the esti-
mation performance for the total function fi¢q consisting of the 5 components
fi,j = 1,...,5. Each subplot comprises boxplots of the following methods (from
left to right): genetic algorithm, R (respectively the R-package “mgcv”), S-Plus,
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Figure 9. Here the five original functions of the used additive model are shown.

BayesX and Bayesian adaptive regression splines. For better comparison, the dot-
ted line represents the median of the genetic algorithm.

Figure 10 and 11 show:
e In both cases the linear function f; is estimated best by S-Plus.

e Function f> is significantly better estimated for ;1 = 0.3 and o2 = 0.6 by the
genetic algorithm than all other approaches.

e Apart from S-Plus, in case of o1 = 0.3 function f3 is similarly estimated by all
approaches. But in the case g5 = 0.6, the genetic algorithm yields better results
compared with the other approaches.

e Bayesian adaptive regression splines significantly yields the best results in esti-
mation of function f4. For o1 = 0.3 the fit of function f4 by the genetic algorithm
is worse than that of all other approaches. But for oo = 0.6 the approaches (ex-
cept Bayesian adaptive regression splines) yield compareable results.

e Together with S-Plus, the genetic algorithm has the best estimators of function
f5 for both specifications (o7 = 0.3 and oo = 0.6).

e For 07 = 0.3 only S-Plus and Bayesian adaptive regression splines outperform
the genetic algorithm in estimation of the total function fiyq;- But if we choose
oo = 0.6, the genetic algorithm better estimates f;ytq; compared with all other
approaches.

The simulation study shows that the results for the estimation of function fiotq; by
Bayesian adaptive regression splines are closely connected to the fit of function fy.
Although this approach yields average results for all other functions, the excellent
estimation of f; strongly influences the quality of the total function fiytq;- The
reason is that variable knot selection of Bayesian adaptive regression splines adapt
to the different spatial variability of function f;. We notice again that only strict
constraints of the smoothing parameter choice (section 5.5) lead to the results of
the S-Plus approach. Furthermore, the results of function f; show the advantage of
S-Plus to estimate the function f; by linear terms.
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Figure 10. Here bozplots of log(MSE) for the functions fj,j = 1,...,5 and the total

function fiotar of several estimation approaches with o1 = 0.3 are shown. Details in the
text.

Table 1 shows the average running times per data set of the used programs in the

| Program ||Running time in seconds|
Genetic algorithm 337
R-package mgcv 3
S-Plus 468
BayesX 49
Adaptive Bayes 394

Table 1. Here average running times for estimation of one data set in the simulation
study of an additive model with o1 = 0.3 are shown.

simulation study (additive model with o1=0.3). S-Plus, BayesX and the R-package
mgcv are commercial software and hence optimized with respect to running time.
The genetic algorithm and the adaptive Bayesian algorithm are primarily research
tools, programmed for comparison of results and thus not optimized for running
time. Hence a direct comparison is difficult. But Table 1 shows one obvious fact:
the commercial software S-Plus uses much more running time to yield accurate
results than all other programs.

7 Conclusions

We have presented a new automatic procedure for smoothing parameter choice
based on genetic algorithms. In various simulation studies we compared the perfor-
mance of our approach to other parametric and nonparametric methods given in
the literature. The main focus was on estimation of functions with additive mod-
els. The simulation studies show that the results between our approach and the
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Figure 11. Here bozplots of log(MSE) for the functions fj,j = 1,...,5 and the total
function fiotar of several estimation approaches with o2 = 0.6 are shown. Details in the
text.

other methods are comparable in most cases. Furthermore the genetic algorithm
outperforms the other methods in some simulations of section 6.

This paper only refers to models with one-dimensional- or additive structure and
uniformly distributed data. Thus it was possible to use several software programs
from literature to rank the quality of the new approach. In future we will analyze
the genetic algorithm for smoothing parameter choice in models with interactions
and other distributions of the reponse.

Finally the question arises whether a genetic algorithm with adaptive choice of knots
may further improve Bayesian adaptive regression splines which already yielded
promising results in several simulation studies.
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Appendix

A Penalized regression splines with constraints

For a detailed derivation of (6) we again start with the penalized residual sum of
squares criterion (pRSS)

n p K; p Kj
mgn Z(yz — /3’0 — Z Zﬁju(gju(wij))z + Z Z /\ju(AkBjV)z (13)

i=1 j=1lv=1 j=1v=k+1

where A\;, >0, j=1,...,p, v=k+1,...,K;,k=1,2,..., are local smoothing pa-

rameters, 3;, are unknown coefficients and Akﬁj,,, k=1,2,...is the kth difference
of adjacent coefficients. Writing (13) in matrix form we obtain

pRSS(A) = (y - BB)"(y - BB) + 8 DTADS. (14)

Calculation of the first derivative and set the expression to zero yields an estimator

for B

~

B(A) = (B'B + DYAD) 'BTy. (15)
and thus an estimator for y is given by

y =BA(A) (16)

Here Bis an x (K; + ...+ K, + 1)-design matrix

1 dui(w11) -+ bk, (211) dor(w12) -+ by, (w1p)
B:[lv(z)h&)%"'ﬂ&’p]:
L (wn1) -+ dir, (Tn1) G21(@n2) - dprc, (Tnp)

and D = diag(0,D,,...,D,)isa [(K; —k)+...+ (K, — k)] +1x [K1 +...,K,]+1-
penalization matrix of difference order k, where each matrix f)j is of dimension
(K;—k) x K;. The components in an additive model (1) are not identifiable without
further restrictions. A restriction which makes the components unique yields the
expression

Zﬁjuzoy ]:1771) (17)
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and thus without loss of generality the last coefficient Bj k; can be represented by
a linear combination of the other coefficients, i.e.

BjKjZ—le—/;jz—n-—ﬁj,f(fl, J=1...p
With regard to this condition we receive from (16) for y;,i =1,...,n,

o Ki—1

= fo + Z Brodu (@in) + B, i (wa) + .. +

2~

Kp_l 2 .
ﬁ Vqspu(xzp) +/6;DK ¢pK (mlp)
1

2 Kil oo 1121:71 P
= fo + Brvd1v(Tir) — Bk, (Ta) + ... +
- I(’/__ll 2 ~ - 2 ~
Bov bpw (Tip) Z By v, (zip)
2 Kl ~ Ui )
= fo + By (¢1u($¢1) - ¢k, (:Uu)) +... 4+

S
Il
-

'e

= d1u(win)
K,—1 N R ~
+ 3 B (Bow i) = i, ) )
v=1

~

~~

= dpu(Tip)
Writing the last expression in matrix notation we obtain
y =BAA)
where B is a n x [(K1 — 1) + ... + (K, — 1)] 4+ 1-design matrix and B(A) is a
[(K1—1)+...4+(Kp—1)]+1x 1-coefficient matrix. Because of the different coefficient

vector ﬁj = (le, ... ,Bj,Kj,l, — Zfz’l_l Bj,,)T, j=1,...,p, it is necessary to adapt
the penalization matrix D. The new blockmatrix D = diag(0,Dy,...,D;) has
dimension [(Ky — k) + ...+ (Kp — k)] +1 x [(K1 — 1) + ...+ (K, — 1)] + 1. The

elements Dj,j =1,...,p, are computed in the following way:
[~ . le
s [k =k)=1x (K 1)) * Of(x; —k) —1x1] :
L 5
j K —1
Ot (K —k)—1] — 1 1 R
_Zuil ﬂjl’
_ Dj,:[(Kjfk)flx(Igf_ll)}:'ﬁj _ {]3]-7 [(K;—k)—1x(K;—1)] _Bj =D, _Bj
—Bjk;—1— i1 Biv ~Li(r;-2)) — 2

In the cases we have differences of first (k = 1, left matrix below ) or second (k = 2,
right matrix below) order the matrices D; have the structure

-1 10 - 0 1-2 1.0 - 0
0-1 1 - 0 0 1-2 1 - 0

Dj=| i .o Dj=| : ... (s
0...... -1 1 0...... 1 -2 1
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