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Abstract

We propose a full model-based framework for a statistical analysis of
incidence or mortality count data stratified by age, period and space, with
specific inclusion of additional cohort effects. The setup will be fully
Bayesian based on a series of Gaussian Markov random field priors for
each of the components. Additional space-time interactions will be either
modelled as space-period or space-cohort effects. Statistical inference is
based on efficient algorithms to block update Gaussian Markov random
fields, which have recently been proposed in the literature. We illustrate

our approach in an analysis of stomach cancer data in West Germany.

Key words: Block updating; disease mapping; hierarchical models; Markov
chain Monte Carlo; Markov random field models; age-period-cohort model;

space-time interaction

“formerly Knorr-Held. Address for correspondence: Leonhard Held, Department of Statis-
tics, Ludwig-Maximilians-Universitdt Miinchen, 80539 Munich, Ludwigstr. 33, Germany.
Email: leo@stat.uni-muenchen.de



1 Introduction

Model-based statistical analyses of vital rates on the Lexis diagram has received
much interest over the last two decades. Much of the early work has been done
within a likelihood framework, see Holford (1983) and Clayton and Schifflers
(1987a, b). The most general of the approaches proposed in these papers is
the so-called age-period-cohort model. Later Bayesian approaches have been
suggested within a hierarchical model, which has the advantage that they can
incorporate additional parameters for unstructured variation, in order to ac-
count for overdispersion. Also they can impose a temporal structure on the
age, period and cohort parameters which improves estimation properties and
facilitates prediction of future rates (Berzuini, Clayton and Bernardinelli, 1993,
Besag et al., 1995, Knorr-Held and Rainer, 2001).

For purely spatial data, vital rates are typically analysed within the Bayesian
framework assuming so-called Markov random field priors, see Besag et al. (1991)
and Clayton and Bernardinelli (1992). Such models overcome problems with
heterogeneity in the underlying population counts and provide a spatially smoothed
version of the crude rates, if there is evidence for a spatial pattern. Alterna-
tively or additionally, unstructured (spatial) variation can be incorporated as
well.

For a full model-based space-time analysis of vital rates only preliminary
suggestions have been made so far. Bernardinelli et al. (1995) suggest a model
which already incorporates space-time interaction, assuming linear time trends.
They work with age-standardized rates, which allows to ignore age- and cohort
effects in the analysis. However, the uncertainty in the corresponding estimates
is neglected in such a two-step analysis; a further practical problem is the
choice of the reference rates for standardization. Assuncao et al. (2001) recently
suggested an extension of the Bernardinelli et al. formulation with quadratic
instead of linear time trends.

Knorr-Held (2000) suggested four different types of interaction for space-
time data, which allow for a nonparametric estimation of the temporal trends,
not only of the spatial pattern. However, again, the model does not incorporate
any age or cohort effects. A different route has been taken by Knorr-Held
and Besag (1998) who incorporate (time-changing) age effects, which allows in
principle for estimation of any age-period interaction, including cohort effects.

However, their model assumes that space and time are separable, hence does



not include any space-time interaction.

Recently the proposal made in Knorr-Held (2000) has been used by Lagazio
et al. (2001) in an analysis of lung cancer rates in Tuscany. They found the
importance of modelling interactions of cohort parameters with space, which
gave a better fit to the data considered than interactions of period with space.
Again, not a full model was presented but the data analysed was standardized
by age in advance.

The goal of this paper is to provide a framework for a full model-based
analysis of data stratified by age, period and space, with specific inclusion of
cohort effects. The setup will be fully Bayesian based on Gaussian Markov
random field priors, which has the random walk priors used for the temporal
parameters as a special case (Knorr-Held, 2000, Fahrmeir and Lang, 2001). The
models we are proposing involve a large number of parameters, so it is vital to
use efficient algorithms for inference via MCMC.

A full model-based analyis was also presented by Lagazio et al. (2003) again
for an analysis of lung cancer rates in Tuscany. However, they used a single-
site MCMC algorithm, which may be disadvantgeous. First, in the case of slow
mixing the parameter estimates may be misleading (Knorr-Held and Rue, 2002).
Second, sum-to-zero constraints can only be incorporated through ad-hoc re-
centering approaches (i.e. sample each parameter from the full conditional
without the constraint and re-center the parameters subsequently to have mean
zero). In contrast, we use algorithms proposed by Rue (2001) for block updating
of each Markov random field. This will lead in better mixing of the algorithms.
Furthermore, these algorithms have the additional advantage that identifiability
constraints on the latent paramter can be explicitly incorporated in the prior.

For comparison of several models we use the deviance information criteria
proposed by Spiegelhalter et al. (2002) to assess model fit and complexity. We
illustrate our modelling framework in an analysis of stomach cancer rates for
males in West Germany.

The data were given by the ” Deutsches Krebsforschungsinstitut”, see Becker
and Wahrendorf (1997). A descriptive analysis shows decreasing mortality rates
from 1976 to 1990. The rates are especially high in Bavaria (south-eastern part
of Germany), but with a strong downward trend. Boeing et al. (1991) found
several risk factors for this mortality pattern as the preservation of meats and
sausages by smoking, a high consumption of processed meat products and a

large number of private wells unconnected to the public water supply in this



area. Most of these factors were present in Bavaria in earlier days, but they
became less important now. It is therefore of particular interest to investigate
if there is evidence for space-time interactions in these data. Furthermore we
will determine if a period-space or a cohort-space interaction model is more
appropriate for these data. Finally we will show, how the models can be used
to predict future mortality rates.

The paper is organized as follows. Section 2 outlines the general modelling
framework and also gives details about implementation issues, Section 3 then
describes an application to the dataset mentioned above. We end with some

final comments.

2 Model

Let y;;; and n;; denote the number of disease cases and the number of persons
under risk respectively in age group ¢« = 1,...,I, period 5 = 1,...,J and
area l = 1,...,L. The cohort index £ = 1,..., K can be derived from ¢ and
j, depending on the resolution of the age and period effects (Knorr-Held and
Rainer, 2001). For example, for data stratified by the same grid, k = I —i + j.
In the application considered in Section 3, I = 13, J = 15, K = 75 and L = 30.

We assume a binomial observation model for y;;; given n;; with an unknown
disease probability 7;;. We decompose the log-odds 7;; = log(m;;i/(1 — ;1))
of these probabilities additively into (a) main effects for age, period, cohort
and space, (b) interaction between period and space, or cohort and space, and
(c) parameters, describing additional unstructured heterogeneity in each cell
(1,7,1).

More specifically we assume in the most complex formulation that

(5]'1

Nijl=p+0i+oj+vp+ &+ + zj1 (1)

kl

where p is an intercept term, 6; is the age, ¢; the period, ; the cohort and
& the spatial effect. Parameters for space-time interaction are denoted by d;
or dg; (either period or cohort with space; the brackets in equation (1) indicate
that only one of the two options enter in the formulation) and z;; denotes
parameters for additional unstructured heterogeneity. These parameters will
adjust for residual overdispersion after adjusting for the main and interaction

effects.



To achieve identifiability of the parameters, we have to include sum to zero

restrictions on all main effects:
D0;i=> ¢i=> =) &=0.
1 i k l

However, the age, the period and the cohort effect are still not identifiable,

because any linear transformation of the type
0; > 0itci, ¢j—>¢j—cj Yp—Yptck, pop—cI (2

with arbitrary ¢ € R leaves the log-odds 7;j unchanged (e.g. Clayton and
Schifflers, 1987b). We will comment later on this issue.

2.1 Prior assumptions

For the intercept term p we use a flat prior, that is:
p(p) o const.

The age, period and cohort effects are modeled with Gaussian random walk

priors. For example a random walk of first order (RW1) for 6 is:
p(61) x const.,

0;10; 1,5 ~N(;_1,671)  for2<i<I

where k is a precision parameter. This prior can also be written for the vector
0= (0,...,00)":

p(0|r) ox KTIK/2 exp (—gOTK90>



where the structure matriz (Clayton, 1996) Ky has the form

1 -1
1 2 -1
-1 2 -1
Ky =
-1 2 -1
-1 2 -1
11

for a random walk of first order and

for a random walk of second order (RW2).

Similarly, the priors for the period and cohort effects have the form

p(¢|>\) x )\TQ(K¢)/2 exp (_%¢TK¢¢> and

p(ply) o vIED Zexp (—%dJTKW)-

In general, the precision matrix K has a rank-deficiency of 1 (or 2) for the RW1
(or RW2) model. Thus, for example, for the age effects 6, the rank of Ky is
I —1 and I — 2 respectively. Hence all these priors are improper.

As pointed out by Knorr-Held and Rainer (2001, page 112), a RW1 model
order imposes a further stochastic constraint on the age, period and cohort pa-
rameters; such a model will prefer a priori, among all possible values for ¢ € R
in (2) the one where the quadratic first differences (weighted with the corre-
sponding precision parameters) are minimal. This allows us to visually examine

the (non-linear) trends present in age, period and cohort parameters.



For the spatial effect we use a Markov random field prior (e.g. Besag

et al., 1991). Indeed this prior is similar to a random walk prior:

p(€lw) oc w9 exp <—%§TK£§)

where K¢ is now determined through the neighbouring structure of the districts.
With K¢ = (kim)imeq1,...,z} the off-diagonal elements &y, are —1 for geographi-
cally contiguous districts [ ~ m and zero for all other non-diagonal entries. The
diagonal elements kj; are equal to the number of districts contiguous to district
I. Usually the districts cannot be split up into two or even more completely
separated pieces, the matrix K¢ has then rank rg(K¢) = L — 1.

The priors for the interaction term were specified following a rationale orig-
inally proposed in Clayton (1996). The idea is to use the direct product of the
precision matrices of the main effects as the precision matrix for the interaction
effect. Here we will only consider interaction priors which include some form
of temporal dependence. Using the terminology used in Knorr-Held (2000),
these are called Type II and Type IV interaction. We will further distinguish
if the interaction is between period and space or between cohort and space
parameters.

The Type II model can be seen as independent district specific random

walks. Let &; denote the vector (8y,...,07)7 for space-period interaction or
8, = (815,...,0x;)" for space-cohort interaction. Then the prior can be written
as:
s Ky
p(lo) xexp (25781 | 0 |81
2 I=1 Ky

As above the brackets indicate, that only one option enters in the formulation.
The matrices K4 and K, are the same as above and can be specified for a
random walk of first or second order.

The Type II interaction model intrinsically assumes that é;, I = 1,...,L
are independent across districts. In the Type IV interaction model, temporal
trends are assumed to be similar in neighbouring districts.

In Knorr-Held (2000) the Type IV interaction model for & is given for the
random walk of first order. The formulation can easily be modified to a random
walk of second order by replacing first by second differences. This corresponds
to a modified precision matrix for K.

For space-period interaction, with § = (d11,...,d11,d21,...,07)", the prior



can be written as

P(6|p) x p(L—l)(T—Z)/Q

(3)

J
X exp —g Z Z(((Sﬂ — 2(51'71,[ + 5j72,l) — (5jm — 25j—1,m + 6j—2,m))2

l~m j=3

o p(Lfl)(T72)/2 exp <—g ((ST(KQ; ® K§)6)> .

This prior is a Gaussian Markov random field prior, where not only the spatial
neighbours and the first and second temporal neighbours, but also the temporal
neighbours of the spatial neighbours enter in the conditional distribution of §;;.

The density (4) is invariant to the addition of any arbitrary constants at
any time j or at any district m. We therefore have to introduce J + L — 1

additional restrictions, to make & identifiable. For example, we may use
L J
> 6=0 for1<j<J and > §;=0 forl<I<L-L
=1 J=1

It can easily be seen that this implies

J
> 6L =0.
7=1

Thus the row sums are all zero, that is the interaction is centred at zero at each
period and the column sums are all zero, too, so the interaction is centred at zero
in each district. A similar model with restrictions can be used for space-cohort
interaction.

For the term z;; we use a white noise prior: zj; ~ N(0,e"!). For the
hyperparameters \, k,v,w,p and € we assume proper gamma priors G(a,b),
with ¢ = 1 and b = 0.05.

2.2 MCMC simulation

Following Besag et al. (1995) we do not directly update z;;; but reparametrize
the model and use the linear predictor 7;; as an unknown parameter rather
than z;j;, see equation (1). This has the advantage that the full conditionals
of all effects mentioned above are Gaussian and hence Gibbs steps can be used
for updating. The linear predictor can be sampled by independent Metropolis-
Hastings steps.

(4)



The full conditional of the main effects have all a similar form, for example

for the age effect 6 we get
Ao € (pT T
p(0]..) o exp 5 (6"Ky0) ) - exp (—5 (0'10) +¢ (B 0)) (5)
1
o exp (567 408) + (676)) )
where 8 = (B1,...01)" is a I x 1 vector with

Bi=> (mjz—ﬂ—¢j—¢k—§z— [ & ])
gyl 5]‘

and Ag = AKg+el. The full conditional p(|..) is therefore multivariate normal
with mean A, 13 and precision matrix Ag. One can easily see that Ag is a band
matrix of the same band-width as the prior precision Ky. Similary, the full
conditionals for the period, cohort and space parameters are also multivariate
normal with a band width of the precision matrix equal to the band width of
the corresponding prior precision matrix.

For the spatial effect we use a clever trick described in Rue (2001) and
reorder the indices of the districts, so that K¢ and consequently the precision
matrix of the full conditional is a band matrix with minimal band-width m (see
Rue, 2001 for details). In our application m = 10.

Using the band structure of the precision matrix, we can efficently sample
from (6) using the algorithms described Rue (2001). The idea of these algo-
rithms is to use Cholesky decomposition of the precision matrix, which is very
fast for band matrices of small band-width. As mentioned above we need to
sample conditional on the sum to zero restrictions. This imposes no further
complication, as also in this case we can use an algorithm based on an efficient
Cholesky decomposition of the precision matrix, see Rue (2001) for further
details.

Turning to the interaction models, the full conditional precision of the Type
IT model is only 1 and 2 depending on the chosen model. In Type IV models,
the band width is usually larger. Using the reordered districts, the band-width
of Ky ® K¢ is L +m for a random walk of first order and 2- L +m for a random
walk of second order. Typically the band-width of the precision matrix can not
be further reduced by another reordering.

The full conditionals of the hyper parameters are all independent Gamma



distributed and can be sampled in Gibbs steps. Finally, the full conditional of

the linear predictors

2
exp (11Yijt) € 9j1

ijl|--) X —exp | —z | niji —p—0i —¢d; — Y — & — ;
p(mijil--) T+ exply) P | 72 (M =1 =0 b5 — Pk — & 5

is not a standard distribution. Using a Taylor approximation we approximate

this with a normal distribution, which can be used as a proposal in a Metropolis-

Hastings algorithm. With this approach we get acceptance rates of 90%-99%.

2.3 Predictions

An important aspect of our formulation is that it allows for the prediction of
future mortality rates while allowing for space-time interaction. Indeed, using
a random walk prior, we can easily extend our model (1) to predict future

incidence rates. The predicted log-odds of the mortality at period J + 1 is

041,

Nigi1l = i+ 0;i + o1+ +§ + + Zi,g41,0 (7)

Okl

The period effect ¢ ;41 can be sampled by extending the random walk prior to
the future, that is ¢ 11 ~ N(ps, A1) for first order and ;11 ~ N(2- ¢, —
©J-1, )\_1) for second order. The cohort effect /i1 can be generated similarly.
In the model with Type II interactions 0741, can be sampled the same way
by 841, ~ N(6,w™") in each period [ = 1,..., L and analogous for the model
with cohort interactions dg 1.
The Type IV interactions can only be generated by including the restriction
Zlel d;1 = 0 for each period j = J+1,J+2,... to be predicted. We propose a
sequential algorithm for this rather challenging task which is described in detail

in Appendix A.

3 Application

3.1 Model selection

In order to measure the goodness of fit of our models, we use the posterior

deviance

D=-2. Z (Umije) — UTige))

ijl

10



where [(y;;) is the log likelihood. A low deviance indicates a good fit of the
estimated mortality rates to the data.

As the deviance decreases with the number of parameters, we use the de-
viance information criteria DIC introduced by Spiegelhalter et al. (2002) to
compare the different models. The DIC is defined as

DIC = (D) +pp

with pp the effective number of parameters. This effective number of param-
eters penalizes the model complexity so that the models can be compared by
the DIC. It is calculated by

PpD = (D) - D (ﬁzjl) .

with
D (fijt) = =2+ Y [Umije) — UFigo)] -
ijl
Table 1 shows deviance, effective number of parameters and DIC of all

mentioned models.

‘ ‘ interaction H deviance ‘ PD ‘ DIC ‘

RW 1 none 5623.1 39.9 | 5663.0
Type Il  period 5374.0 | 196.4 | 5570.4
Type I cohort 5235.5 | 15673.5 | 6809.0
Type IV period 5424.9 | 269.5 | 5694.4
Type IV cohort 5289.5 | 1483.0 | 6772.5

RW 2 none 5656.8 194 | 5676.2
Type Il  period 5406.2 | 180.0 | 5586.2
Type I cohort 5309.7 | 1202.7 | 6512.4
Type IV period 5461.8 | 266.5 | 5728.3
Type IV cohort 5358.1 | 13124 | 6670.5

Table 1: deviance, effective number of parameters and DIC of all models

The results are very similar for both the RW1 and RW2 prior. The deviance
is the lowest for the Type II interactions and the highest for the no interaction
model. As mentioned above, a higher number of nominal parameters leads
naturally to a good fit. However, the fit of the Type IV interaction models is

not so good, because it imposes more dependence structure on the interaction

11



parameter than the Type II model.

Interestingly the estimated effective number of parameters for the Type IV
interaction models is higher than for the Type II interactions. This is because
in the latter models in many regions the median of the interaction parameter
is zero for mostly all periods whereas for the former, due to the underlying
Markov random field more parameters are estimated non-zero.

The models with cohort interactions have a much higher number of effective
parameters without decreasing the deviance. This leads to the conclusion, that

the model with period-district interactions is more appropriate for these data.

3.2 Results

We first show the estimated main effects of the best model in terms of the
DIC criterion, the model with Type II period-district interactions. As the age,
period and cohort effects are not identifiable in the RW2 model (see Knorr-Held
and Rainer, 2001), we only show the result for the model based on the random
walk of first order.

Figures 1 to 3 displays median and 90% credible intervals of the age, pe-
riod and cohort effects. One should keep in mind that the patterns can be
transformed through linear transformations of type (2) without any change in
the likelihood. Therefore only non-linear trends can be interpreted. While the
period effect appears to be roughly linear, the cohort effect has an interesting
change-point around birth cohort 1940. After 1940 the effect appear to be lin-
ear. However, these estimates are based on few data and should therefore not

be overinterpreted.

Figure 4 shows the spatial effect. The highest values are, as expected, in the
south east of Germany in the dictricts Upper Palatinate and Lower Bavaria.

Figures 5 displays the period-district interactions for the district of Lower
Bavaria. In all the models, the interactions show a decreasing trend. A similar
trend can be seen in the other districts in this area, which indicated that - after
adjusting for the overall period trend - there is a decreasing mortality rate in
the south-east of Germany.

The model based on cohort-district rather than period-district interaction-
sproduces very unstable estimates (Figure 6). It seems that the estimated global
variance of this interaction term is rather high. Consequently, the effects in the

last birth cohorts, which are based on only few cases, show high variability. As

12
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Figure 1: Posterior median within 90% credible intervals of the age effects.
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Figure 2: Posterior median within 90% credible intervals of the period effects.
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Figure 3: Posterior median within 90% credible intervals of the cohort effects.
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Figure 4: Posterior median of the spatial effects.

Type II RW 1 Type IT RW 2

Figure 5: Posterior median within 90% credible intervals of period-district in-
teractions in Lower Bavaria.
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Type II RW 1 Type II RW 2

Lower Bavaria

Type IV RW 1 Type IV RW 2

Lower Bavaria

Figure 6: Posterior median within 90% credible intervals of Cohort-district
interactions in Lower Bavaria.

one can expect, the effects in the RW2 model are smoother then in the RW1
model.

For a further analysis to investigate the predictive quality of the different
models, we fitted the models to the first ten observation years, obmitting the
last five years, and then made predictions for those last five years. As the
cohort-district interactions appear to be not appropriate for the data, we only
use the models with period-district interactions here. Figure 7 shows the pre-
dicted median number of cases within 90%-credible intervals (lines) and the
actually observed data (x) for Lower Bavaria. Note that we have aggregated

the counts in this district over all age groups.

The models without interactions produce very narrow credible intervals and
therefore do not make good predictions. The models with interactions seem to
produce more sensible prediction intervals. The median of the predicted cases
is closer to the actually data and the 90% credible intervals contain most of the
data points.

For are more detailed analysis, Table 2 gives the percentage of observed

values that lie within credibility intervals of a given level. Note that this table

15



is based on the original grid, i.e. predictions have been compared with the actual
observed data for each of the 13 x 15 x 30 = 5, 850 age group times period times
district combinations.

The first thing to note is that the model without interaction terms has poor
coverage percentages. The model with interaction come closer to the actual
credibility levels, in particular those based on the RW2 prior. But still they
are all smaller, with the only exception of Type IV interactions with the RW2
prior, where 62% of the data are contained in the 50% credible intervals. This
indicates that this model might overfit the data. Therefore it seems that the
Type IT RW2 model has the best prediction qualities: It comes closest to the

actual credible levels, while not overestimating them.

Credibility level | no interaction Type 11 Type IV
RW1 RW2 RW1 RW2 RW1 RW2

(%) ) ) () () () (%)

50 11 41 22 50 42 62

80 20 55 39 62 56 68

95 33 62 50 66 64 71

Table 2: The percentage of observed cases that lie within predictive credible
intervals

4 Discussion

The specification of model for space-time interaction, while adjusting for age,
period and cohort effects is a challenging task. In this paper we have proposed
various formulations which take into account interaction effects between period
and space or cohort and space. In our application, one of these models provide
a better fit to the data, even after adjusting for the additional complexity
of the formulations. Further confirmation of the superiority of this model was
obtained through a study of the empirical coverage percentages of out-of-sample
predictions.

The models have a very large nominal number of a priori dependent param-
eters. It is therefore advantageous to use block updating MCMC algorithms to
avoid slow mixing of the Markov chain. Furthermore, blocking also allows for
a proper incorporation of identifiability constraints, such as sum-to-zero con-

straints. However, further improvement is to be expected by joint updates of
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RW 2
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1980 198 1986 1989

Lower Bavaria

predicted cases without interaction

1980 1985 1986 1989 1977 1980 1983 1986 1989

predicted cases type 11

1980 198 1986 1989 277 1980 108 1986

Lower Bavaria

predicted cases type IV

Figure 7: Observed and predicted number of cases within pointwise 90% credi-
ble intervals for Lower Bavaria based on the RW1 (left) and RW2 (right) model.
Crosses represent the observed rates.
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hyperparameters and parameters (Knorr-Held and Rue, 2002).

The most complex formulation allows for a dependence of interaction pa-
rameters across space and time, with additional sum-to-zero constraints for
each area and time point. New methodological developments, as described in
the Appendix, have been made in order to predict this formulation into the

future.

A Prediction with Type IV interactions

The prior for the Type IV period-district interaction in the RW1 model is

J
p(d|p) x exp —g Z Z((%‘z —6j-10) = (Ojm — 5j—17m))2

l~m j=2
Thus a natural approach to predict future values of § is based on a algo-

rithm sequentially in time: We start by sampling d741|67,p where d741 =

(041,15 ---50741,L):

2

l~m

p(0s41|07,p) o exp <—£ Z(5J+1,z —dy41,m — 0 + 5Jm)2> . (8
1
o oxp (=50 KOS 1 + 980 10 )

withv =wvi,...,vyand v; = )7, (0if — 0 ). This is the density of a singular
Gaussian Markov random field. Thus we can not sample from the density with-
out further restrictions. As in Section 2.1 we will use a sum to zero restriction
> 10741, = 0. To obtain the restricted density, we use a Lemma by Box & Tiao
(1973, p.419):

Lemma. Let x,a and b be k x 1 vectors and A and B be two k X k positive
semidefinite symetric matrices. Suppose the rank of the matrix A+B is ¢(< k).
Then, subject to the constraints Gx = 0,

(x+a)A(x—a)+(x—b)/B(x—-b) = (x—-c)(A+B+M)(x—c) (10)
+ (a—b)A(A+B+M) 'B(a-Db)

18



where G is any (k — ¢) X k matrix of rank k£ — ¢ such that the rows of G are
linearly independent of the rows of A + B,M = G'G and

c=(A+B+M) '(Aa+ Bb).
With B =0 and b = 0 we can rewrite (10) as

(x—a)A(x—-a) = (x—c)(A+M)(x—c)
& xX’Ax —2x'Aa+a’Aa = xX'(A+M)x—2(x'(A+M)c) +c'(A+M)c

Applying this Lemma, we set A = pK¢,a = Kgu and G = 1’ and hence

the density of the restricted Markov random field is proportional to

1
p(8s+1]p,8) o< exp <—§53+1(PK§ +11)8 41 + ,0517+1V> : (11)

This is the density of a (proper!) multivariate normal distribution with mean
p(pK¢ +11")~'v and covariance matrix (pK¢ + 11')~'. We now use the algo-
rithm described in Rue (2001) to get a sample from this distribution.

For the interactions with random walk of second order, the density for
the distribution of 6,41 can be extended from (4). An analogous calcula-
tion leads to the same formulation of the restricted density as (11) but with
Vi =Y om (051 = 07m) = 2(85—10 — 07—1,m) + (0520 — 07—2.m))-

After we have sampled 4 711 we can use the same algorithms to sample § j9
and so on. The prediction for cohort-district interactions has been implemented

in a similar way.
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