Carotid Atherosclerotic Markers in CADASIL

Jérôme Mawet, Katayoun Vahedi, Mounir Aout, Eric Vicaut, Marco Duering, Pierre Jean Touboul, Martin Dichgans, Hugues Chabriat

Department of Neurology, Centre de Référence pour les maladies rares des Vaisseaux du Cerveau et de l’Oeil (CERVCO), Unité de Recherche Clinique, Groupe Hospitalier Lariboisière-Fernand Widal, APHP, Université Paris 7-Denis Diderot, and INSERM UMR 740, Faculté de Médecine Villemin, Université Paris 7, Paris, France; Institute for Stroke and Dementia Research, and Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany

Abstract

Purpose: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease caused by mutations of the NOTCH3 gene. Marked variations in disease severity have raised the hypothesis that non-genetic factors may modulate the expressivity of the phenotype. The aim of the current study was to evaluate whether atherosclerosis, assessed by carotid duplex ultrasonography, is associated with variations in the clinical and MRI phenotype of CADASIL. Methods: Data from 144 consecutive patients enrolled in an ongoing prospective cohort study were collected. Degree of disability was assessed by the modified Rankin Scale, that of cognitive impairment by the Mattis Dementia Rating Scale (MDRS). The total volume of the brain, of lacunar lesions and of white matter hyperintensities, the number of cerebral microhemorrhages, and parameters derived from histograms of apparent diffusion coefficient were measured on cerebral MRI. Atherosclerosis was evaluated by B-mode ultrasonography of carotid arteries. Both the carotid intima-media thickness (cIMT) and the presence of carotid plaques or stenosis were recorded. Results: Higher cIMT was found to be independently associated with lower MDRS scores when this score was less than the quartile limit (p = 0.02). Only a trend for a positive association was detected between cIMT and the Rankin score (p = 0.06). There was no significant association between carotid markers and the occurrence of stroke or MRI parameters except for diffusion data. The mean and peak values of MRI diffusion histograms were found positively associated with the presence of plaques (p < 0.01). Conclusion: The results suggest that the severity of atherosclerosis may relate to cognitive decline in CADASIL and that this effect is possibly related to the degree of microstructural cerebral tissue lesions. Longitudinal studies are needed to confirm these results.

Introduction

CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is a small vessel disease of the brain caused by mutations in the NOTCH3 gene [1]. The clinical hallmarks of CADASIL include attacks of migraine with aura, recurrent lacu-
nar stroke, mood disturbances and progressive subcorti-
cal dementia [2–4].

To date, with the exception of rare mutations in the
EGFR10-11 domain that may affect the clinical expression
of the disease, no obvious genotype/phenotype has been
demonstrated [5–7]. However, some data suggest that
classical vascular risk factors may influence the outcome
in CADASIL. In a previous series, Singhal et al. [5] found
that active smoking was associated with younger age at
first ischemic manifestation. In a cross-sectional study,
Viswanathan et al. [8] recently observed that higher levels
of HbA1c and systolic blood pressure were related to the
number of cerebral microhemorrhages on gradient-echo
imaging. Recently, Adib-Samii et al. [9] reported that hy-
pertension and smoking were associated with an in-
creased risk of stroke in 200 CADASIL patients.

In the general population, the carotid intima-media
thickness (cIMT) and the presence of carotid plaques
evaluated by duplex ultrasonography are considered as
early markers of atherosclerosis and have been associated
with the severity of systemic atherosclerosis [10, 11]. They
are also independent predictors of both cardiovascular
and cerebrovascular events [12, 13]. Moreover, cIMT has
been associated with white-matter hyperintensities on
T2-weighted MRI and with cognitive decline in elderly
people as were arterial stiffening and endothelial dys-
function [14]. Whether the severity of atherosclerosis can
modulate the expression of a specific small vessel disease
not related to the current vascular risk factors remains
unknown.

In the present study, we hypothesized that atheroscle-
rosis assessed by carotid duplex ultrasonography might
have an impact on the clinical or brain MRI phenotype
of CADASIL.

Subjects and Methods

Subjects

Subjects were drawn from an ongoing prospective cohort study
of consecutive patients with CADASIL in Lariboisière Hospital,
Paris, between June 2003 and November 2006. Complete study
design has been detailed elsewhere [8, 15]. In summary, in 144
genetically confirmed CADASIL patients, clinical and demographic
data were collected. They underwent a general and neurological
examination, including an evaluation of the degree of disability
based on the modified Rankin Scale (mRS) (poor outcome was
defined as mRS ≥3). Neuropsychological evaluation with the
Mattis Dementia Rating Scale (MDRS) [16] was also performed.
The educational level was assessed with a scale from 1 (illiterate)
to 7 (university diploma). Note that history of hypertension was
defined as previous diagnosis of hypertension (>140/90) or use of
antihypertensive treatment for control of blood pressure.

All patients had cerebral MRI and cervical ultrasound exami-
nation. All patients had blood drawn for laboratory screening in-
cluding: complete blood count, glucose, hemoglobin A1c (HbA1c),
cholesterol panel, triglycerides, homocysteine, fibrinogen and
CRP.

Informed consent was obtained from each subject or from a
relative if the patient was not able to give written consent. The
study was approved by an independent ethic committee.

Magnetic Resonance Imaging

Cerebral MRI scans were obtained by the use of a 1.5-T system
(Signa General Electric Medical Systems). 3D T1-weighted se-
quences, fluid-attenuated inversion recovery (FLAIR), T2*-weight-
ged gradient-echo planar and diffusion-weighted imaging
were performed. The methods used for MRI analysis and the val-
idation of the different measurements have been detailed else-
where [8, 15].

White matter hyperintensities (WMH) lesions were analyzed
on FLAIR images. The total volume of WMH was normalized to
the intracranial cavity (ICC) in each patient [normalized volume of
WMH or nWMH = (volume of WMH/volume ICC) × 100]. To as-
sess the total volume of lacunes, all hypointense lesions with both
a signal identical to that of cerebrospinal fluid and a diameter
>2 mm were selected. The total volume of lacunes in each patient
was normalized to the ICC [normalized lacunar volume or nLV =
(volume of lacunes/volume ICC) × 100]. Microhemorrhages were
defined as rounded foci ≤5 mm in diameter hypointense on
gradient-echo sequences and distinct from vascular flow voids,
leptomeningeal hemosiderosis, or non-hemorrhagic subcortical
mineralization. The number of microhemorrhages was recorded in
each patient. Histograms of apparent diffusion coefficient (ADC)
values from ADC maps were generated for each patient using a
bin width equal to 0.1 × 10^-4 mm² s^-1. Voxels containing cerebro-
spinal fluid were excluded in all patients before calculation using a
superior threshold value at 27 × 10^-4 mm² s^-1. To correct for cross-
subject differences in brain volume, each histogram was normal-
ized to the total number of brain tissue voxels. Both the mean ADC
diffusion value at the peak (peak value) derived from each his-
togram were used for analysis. Due to small changes in diffusion
values after the upgrade of the MR device and coils that occurred
during the study, the analysis of diffusion data was restricted to the
104 patients who had their examination before the upgrade. Deter-
mination of global brain volumes from 3D T1 sequences was per-
formed using the BrainVISA software (CEA, Orsay, France; http://
brainvisa.info) as previously detailed [17]. Brain parenchymal frac-
tion (BPF) was defined as the ratio of brain tissue volume to total
intracranial cavity volume (BPF = brain tissue volume/ICC).

Ultrasonography

Participants had a cervical ultrasound B-mode examination
(Acuson, 7-MHz probe) performed at inclusion. All examinations
were performed by trained physicians. Longitudinal and cross-
sectional ultrasound images were taken bilaterally throughout
the extracranial portion of the common carotid artery (CCA) and
of the bifurcation and origin of the internal carotid artery bilat-
erally. Plaque was defined as a focal structure encroaching into the
lumen of at least 0.5 mm or a thickening ≥1.5 mm (distance be-
tween media-adventitia interface to the intima-lumen interface)
and stenosis was defined as a plaque of more than 20% of the lu-
men axe in cross section [18]. Carotid atherosclerosis lesions were
classified as either no plaque or presence of plaque or stenosis. As recommended, the near and far walls of the middle parts of the right and left CCA were scanned longitudinally to assess the best angle of incidence for cIMT measurements. Then an average cIMT measurement was performed on a 10-mm segment at the far wall of each CCA using dedicated software (M’Ath-Std). The average of right and left CCA IMT measurements was used for analysis. The inter- and intrarater reliability was not calculated in the present study but was previously assessed in large studies and was found to be good\cite{19}.

Statistical Methods

Analyses were conducted using SAS® software v.9.1 (SAS Institute Inc., Cary, N.C., USA). Data are summarized as frequencies and percentages for categorical data and as mean and standard deviation for continuous variables. Odds ratios (OR) are reported with 95% confidence intervals (95% CIs).

First analysis was performed to identify factors associated with carotid plaques or stenosis and with cIMT among the following variables: age, sex, educational level, history of hypertension, history of hypercholesterolemia, history of diabetes, smoking status, systolic blood pressure, diastolic blood pressure, body mass index, HDL, LDL, total cholesterol, triglycerides, HbA1C, blood glucose, homocysteine, CRP, and fibrinogen level.

The second analysis used the same procedure to identify correlations between clinical and radiological markers of CADASIL by adding either carotid plaque or stenosis to the evaluated factors.

For binary endpoints (presence of carotid plaques or stenosis, presence of stroke, disability, cognitive impairment and microhemorrhages), univariate logistic regressions were first performed. Variables statistically significant at a 15% threshold in the univariate analysis were then introduced into a multivariable stepwise logistic regression to identify independent correlates of these endpoints. Validity of all models was evaluated by the bootstrapping procedure (n = 1,000 bootstrap samples).

For the continuous measures (cIMT, extent of white matter lesions, total volume of lacunes, BPF and mean ADC), Pearson correlation coefficients were obtained, and multivariable stepwise linear regressions were used to find the linear models that best predict continuous measures. Resampling procedures were used for validation of these models. The significance level was fixed at 5%.

Results

Main Cohort Characteristics

The mean age in the cohort was 52.6 ± 11.9 years (median 52.8, range 24.1–77.5) and 72 men (50%) were included. Ninety-three subjects (64.6%) had at least one ischemic stroke before inclusion and 32 (22.2%) had a mRS ≥3. The median MDRS score was 140 and its lower quartile limit was 127. The frequency of vascular risk factors was as follows: history of hypertension (n = 24/144 subjects, 16.7%),

![Table 1. Logistic regression according to the presence of carotid plaques or stenosis and linear regression with cIMT](image-url)
Vascular Risk Factors and Carotid Atherosclerosis (table 1)

Carotid plaques or stenosis were found in 48 out of 144 patients (33.3%). In univariate analysis, carotid plaques or stenosis were found associated with age, male sex and systolic blood pressure (table 1), in multivariate analysis the association was found significant only with age and male sex.

134 out of 144 patients had cIMT measurement available. The mean cIMT was 0.63 ± 0.1 mm (median 0.61, range 0.47–0.91). cIMT was found associated with age, educational level, and fibrinogen in univariate analysis, only with age and educational level in multivariate analysis (see table 1).

Table 2. Logistic regression using MDRS score at 140 or at 127 as cutoff values for the presence of cognitive impairment

<table>
<thead>
<tr>
<th>Variable</th>
<th>MDRS ≤140 (n = 68/130 patients)</th>
<th>MDRS ≤127 (n = 35/130 patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>univariate analysis</td>
<td>multivariate analysis</td>
</tr>
<tr>
<td></td>
<td>OR [95% CI] p value</td>
<td>OR [95% CI] p value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cIMT (0.05-mm increase)</td>
<td>1.50 [1.20; 1.88] 0.0004</td>
<td>1.77 [1.39; 2.26] <0.0001</td>
</tr>
<tr>
<td>Plaques (yes vs. no)</td>
<td>1.16 [0.55; 2.42] 0.6988</td>
<td>2.64 [1.18; 5.91] 0.0179</td>
</tr>
<tr>
<td>Age (10-year increase)</td>
<td>2.17 [1.52; 3.10] <0.0001</td>
<td>2.10 [1.46; 3.06] 0.0001</td>
</tr>
<tr>
<td>Sex (male vs. female)</td>
<td>1.98 [0.98; 3.98] 0.0556</td>
<td>1.96 [0.89; 4.35] 0.0969</td>
</tr>
<tr>
<td>Educational level</td>
<td>0.63 [0.49; 0.81] 0.0003</td>
<td>0.64 [0.49; 0.84] 0.0011</td>
</tr>
<tr>
<td>History of high blood pressure (yes vs. no)</td>
<td>2.69 [0.97; 7.46] 0.0568</td>
<td>0.85 [0.29; 2.53] 0.7723</td>
</tr>
<tr>
<td>History of hypercholesterolemia (yes vs. no)</td>
<td>2.56 [1.25; 5.23] 0.01</td>
<td>2.42 [1.08; 5.42] 0.0310</td>
</tr>
<tr>
<td>History of diabetes (yes vs. no)</td>
<td>1.88 [0.17; 21.23] 0.611</td>
<td>1.41 [0.12; 16.06] 0.7823</td>
</tr>
<tr>
<td>Current or ex-smoker (yes vs. no)</td>
<td>0.91 [0.46; 1.82] 0.7889</td>
<td>0.71 [0.32; 1.56] 0.3951</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>1.01 [0.99; 1.03] 0.4442</td>
<td>1.01 [0.99; 1.04] 0.3783</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>1 [0.97; 1.03] 0.8926</td>
<td>1 [0.96; 1.04] 0.9789</td>
</tr>
<tr>
<td>BMI</td>
<td>1.06 [0.97; 1.17] 0.1974</td>
<td>1.15 [0.97; 1.36] 0.8613</td>
</tr>
<tr>
<td>HDL, mmol/l</td>
<td>0.61 [0.26; 1.46] 0.2686</td>
<td>0.4 [0.14; 1.13] 0.0841</td>
</tr>
<tr>
<td>LDL, mmol/l</td>
<td>0.92 [0.64; 1.3] 0.6225</td>
<td>0.75 [0.51; 1.12] 0.1581</td>
</tr>
<tr>
<td>Total cholesterol, mmol/l</td>
<td>0.95 [0.72; 1.24] 0.7057</td>
<td>0.79 [0.58; 1.07] 0.1261</td>
</tr>
<tr>
<td>Triglycerides, mmol/l</td>
<td>1.54 [0.85; 2.79] 0.1538</td>
<td>1.35 [0.75; 2.43] 0.3144</td>
</tr>
<tr>
<td>Glycated hemoglobin</td>
<td>1.32 [0.62; 2.8] 0.4765</td>
<td>1.52 [0.64; 3.63] 0.2418</td>
</tr>
<tr>
<td>Blood glucose, mmol/l</td>
<td>0.95 [0.68; 1.33] 0.7667</td>
<td>1.07 [0.72; 1.61] 0.5208</td>
</tr>
<tr>
<td>Homocysteine, μmol/l</td>
<td>1.09 [1; 1.2] 0.0444</td>
<td>1.08 [0.99; 1.18] 0.0958</td>
</tr>
<tr>
<td>CRP, mg/l</td>
<td>1.01 [0.97; 1.06] 0.6327</td>
<td>1.04 [0.99; 1.09] 0.1335</td>
</tr>
<tr>
<td>Fibrinogen, g/l</td>
<td>1.4 [0.85; 2.29] 0.1876</td>
<td>1.97 [1.12; 3.48] 0.0186</td>
</tr>
</tbody>
</table>

hypercholesterolemia (n = 65, 45.5%), diabetes (n = 3, 2.1%), current or ex-smoking (n = 69, 48.3%).

Main Clinical Manifestations and Carotid Atherosclerosis (table 2)

Cognition

Using the median MDRS score of 140 as the cutoff value for the presence of moderate cognitive impairment, we found, in univariate analysis, that age, educational level, cIMT, the presence of plaques, a positive history of hypercholesterolemia and homocysteine level were significantly associated with MDRS <140. In multivariate analysis, only higher age and lower educational level were independently correlated with moderate cognitive impairment (AUC 0.777 [0.968; 0.857], optimism 0.77%).

When using the lower quartile limit of MDRS (127) as the cutoff value for the presence of severe cognitive impairment, while univariate analysis showed a significant association with cIMT, the presence of plaques, age, male sex, educational level, hypercholesterolemia and fibrinogen level, multivariate analysis showed that only higher cIMT and older age were the only factors independently associated with lower cognitive performances (AUC 0.833 [0.761; 0.905], optimism 0.75%).

Disability and Stroke

Thirty-two out of 144 (22.2%) patients were disabled (mRS ≥3). In table 3, the factors associated with mRS ≥3 and stroke in multivariate analysis are presented. When the inclusion of the variable ‘age’ was forced in the model, we found higher age and lower level of HbA1c independently associated with disability and a trend for an association between higher cIMT and disability.
Ninety-three out of 144 patients had a history of symptomatic stroke. The multivariate analysis revealed only higher age and male sex to be independently associated with stroke in the cohort but not the markers of atherosclerosis (cIMT and plaques).

Brain MRI Markers and Atherosclerosis

The significant associations observed in multivariate analysis are presented in table 3; the extent of white matter lesions in the 144 CADASIL patients was only associated with age but not with the other parameters (table 3).

For the total volume of lacunes, we found a significant association with increasing age and with lower HDL level. The mean ADC was independently associated with the presence of plaques or stenosis, higher age and higher LDL. The same significant association was obtained between peak value of diffusion histograms and both higher LDL and the presence of plaques. The presence of two or more microhemorrhages was associated with increasing age and with higher systolic blood pressure. BPF was inversely correlated with age and was significantly lower in men compared to women.

Discussion

In this large prospective cohort of CADASIL patients, we found that atherosclerosis has an impact, although small, on the clinical phenotype of this genetic non-atherosclerotic vascular disease of the brain. Indeed, in patients with the lowest cognitive performances, cIMT and age were found to be independently and inversely correlated with the MDRS. Interestingly, this association was not detected in patients with moderate cognitive impairment in whom age and education level were the only predictors of cognitive performances. These results first confirm the major role of aging in the course of CADASIL and second suggest that educational level may have a positive impact on cognitive function in CADASIL during its early stages, while atherosclerosis may play a negative role at more advanced stage of the disease when cognitive decline has already occurred. However, the identified link between atherosclerosis and cognitive decline in this cohort of CADASIL patients does not mean necessarily a causal relationship. First, cognitive impairment may magnify vascular risk factors through a reduction of self-care. Second, atherosclerosis and dementia may share...
common unknown risk factors including potential genetic factors. Interestingly, cIMT has also been associated with more severe cognitive alterations in cohort studies of Alzheimer's disease [20–22]. Our data suggest that atherosclerosis may also have an impact on the course of non-atherosclerotic small vessel disease of the brain.

In the present study, we were unable to demonstrate any strong association between atherosclerosis and disability assessed by mRS, which is a score more correlated to motor than cognitive impairment. We also failed to show any significant association between atherosclerosis and the occurrence of stroke in CADASIL. It is, however, known that the frequency of stroke is not a major determinant of clinical severity in CADASIL, which at its advanced stages has a more progressive course [15].

Since cognitive impairment is strongly related to brain MRI lesions in CADASIL, we searched for an association between the most important MRI markers of the disease and carotid markers of atherosclerosis. The presence of carotid plaques or stenosis was found to be significantly associated with both the mean and peak values of cerebral diffusion histograms. These findings suggest that atherosclerosis may interact with the severity of microstructural cerebral tissue lesions in CADASIL. In contrast, in multivariate analysis, no significant association was detected between cIMT or carotid plaques or stenosis and the total load of lacunar infarctions, extent of WMH, number of microhemorrhages, or BPF. As expected, age was found to be strongly associated with all studied brain MRI parameters of the disease [2].

This study has several limitations. First, we did not use quantitative data such as the surface or volume of carotid plaques, which may be more specific for the evaluation of the severity of atherosclerosis than the degree of carotid stenosis [23]. Second, we did not consider in the multivariate analysis the impact of the underlying Notch3 mutations nor studied other genotypes like ApoE. However, although ApoE genotype is strongly related to cognitive impairment in the general population, it has not been found to be associated with the clinical severity of CADASIL [5]. In addition, there is no data to support a genotype phenotype correlation in CADASIL [9], except rare mutations within the ligand-binding domain of Notch3 that may influence the phenotype of the disease [7]. Furthermore, when the analyses were performed after exclusion of the 8 patients harboring this mutation in EGFR10-11 in the cohort, the overall results remained unchanged (data not shown). Finally, there are also different biases related to this cohort of a rare disorder that may also preclude to observe stronger effects of atherosclerosis and a significant association between cIMT and the usual vascular risk factors such as the relatively young age of participants, their selection based on the presence of MRI lesions not explained by vascular risk factors, their high education level, active prevention of vascular risk factors and strong medical follow-up.

In conclusion, the results of this study suggest that atherosclerosis may influence, although subtly, the cognitive decline in CADASIL, which may occur through an increase in microstructural cerebral tissue loss. Longitudinal studies in larger population of patients are needed to confirm the impact of atherosclerosis on the phenotype of the disease and to determine whether treating classical vascular risk factors of atherosclerosis may improve the course of the disease.

Acknowledgements

This work was supported by PHRC grant AOR 02-001 and AOM 08-076 (DRC/APHP) and performed with the help of ARNEVA (Association de Recherche en Neurologie Vasculaire), Hopital Lariboisière, France, and under the corporate patronage of Bouygues Co. J.M. was supported by a grant from the Servier Institute. The authors are grateful to V. Adrai, R. Cumurciuc, M. Sarov and R. Sciascia for their help in ultrasonic acquisitions.

References

6 Opherk C, Peters N, Holtmannspotted M, Gschwendtner A, Muller-Myhsok B, Dichi-
7 Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, Tourni-
er-Lasserve E, Cohen-Tannoudji M, Chabri-
at H, Joutel A: Distinct phenotypic and func-
8 Viswanathan A, Guichard JP, Gschwendt-
9 Adib-Samii P, Brice G, Martin RJ, Markus HS: Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phen-
totype: study in 200 consecutively recruited individuals. Stroke 2010;41:630–634.
10 Bots ML, Hofman A, Grobbee DE: Common carotid intima-media thickness and lower extremity arterial atherosclerosis. The Ros-
11 Allan PL, Mowbray Pl, Lee AJ, Fowkes FG: Relationship between carotid intima-media thickness and symptomatic and asymptom-
atic peripheral arterial disease. The Edin-
12 Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M: Prediction of clinical cardio-
vascular events with carotid intima-media thickness. A systematic review and meta-
14 Kearney-Schwartz A, Rossignol P, Bracard S, Felblinger J, Fay R, Boivin JM, Lecompte T, Lacolley P, Benetos A, Zannad F: Vascular structure and function is correlated to cogni-
tive performance and white matter hyperin-
gans M, Chabriat H: Impact of MRI markers in subcortical vascular dementia: a multi-
18 Touboul PJ, Hennerici MG, Mearis S, Adams H, Amarenco P, Bornstein N, Csiba L, Des-
reik M: Mannheim Carotid Intima-Media Thickness Consensus (2004–2006). An up-
19 O’Leary DH, Polak JF, Kronmal RA, Mano-
llo TA, Burke GL, Wolfsong SK Jr: Carotid-
21 Silvestrini M, Gobbi B, Pasqualetti P, Barto-
lini M, Baruffaldi R, Lanciotti C, Cerqua R, Altamura C, Provinciali L, Vernieri F: Car-
22 Iadecola C, Gorelick PB: Converging patho-
genetic mechanisms in vascular and neurode-
gerative dementia. Stroke 2003;34:335– 337.