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Summary

Human brain mapping, i.e., the detection of functional regions and their connections, has ex-
perienced enormous progress through the use of functional magnetic resonance imaging (fMRI).
The massive spatio–temporal data sets generated by this imaging technique impose challenging
problems for statistical analysis. Many approaches focus on adequate modeling of the temporal
component. Spatial aspects are often considered only in a separate postprocessing step, if at all,
or modeling is based on Gaussian random fields. A weakness of Gaussian spatial smoothing is
possible underestimation of activation peaks or blurring of sharp transitions between activated
and non–activated regions. In this paper we suggest Bayesian spatio–temporal models, where
spatial adaptivity is improved through inhomogeneous or compound Markov random field priors.
Inference is based on an approximate MCMC technique. Performance of our approach is inves-
tigated through a simulation study, including a comparison to models based on Gaussian as well
as more robust spatial priors in terms of pixelwise and global MSEs. Finally we demonstrate its
use by an application to fMRI data from a visual stimulation experiment for assessing activation
in visual cortical areas.

Some key words: Adaptive smoothing, Bayesian inference, human brain mapping, inhomogeneous Markov
random fields, MCMC, spatio–temporal modeling.

1. Introduction

Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain
mapping, i.e., the detection of regions activated by sensory, motor and cognitive functions. Com-
pared to older techniques, such as positron emission tomography, fMRI has improved spatial
and far better temporal resolution, and it is completely non–invasive. In fMRI experiments, a
subject is exposed to controlled external stimuli. Local increase of neural activity is indicated by
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a) b)

c) d)

Fig. 1. Visual fMRI : a) an 8 Hz flickering rectangular checkerboard (ON) is presented to the subject
alternating every 30 s with an uniformly dark background and a fixation point (OFF); an experiment
consists of 4 OFFs and 3 ONs; additionally, representative MR signal time courses from strongly (b),
weak (c) and non-activated (d) pixels.

a local increase of blood oxygenation in actived areas, and this BOLD (blood oxygenation level
dependent) effect can be visualized by fMRI. In classical experiments the stimulus is presented
in a boxcar paradigm, i.e., a sequence of OFF and ON periods. The scanner records images of
several slices of the brain. Each slice is about 5 mm thick and consists of 128×128 pixels. Slices
often have a distance of several millimeters, and their images are obtained sequentially in time.
Therefore, slices are usually analyzed separately. For each pixel of a slice, an fMRI experiment
with a boxcar stimulus generates an MR signal time series, with an increase during the ON pe-
riods compared to the control or rest condition OFF. Our application in Section 4 analyzes data
from a visual experiment. Figure 1 shows the boxcar stimulus and three MR time series of length
70, observed at three pixels, which are selected from the center of the actived region (b), near to
its boundary (c), and from a non–actived region (d), respectively. Obviously, the activation effect
of the stimulus on the MR signal is high in activated areas and is not present in non–activated
areas.

To assess brain activity, a regression model is applied at each pixel, with the MR signal as
response and a transformed version of the stimulus as the regressor of primary interest. The
value of the corresponding regression coefficient is considered as the ”intensity” or ”amplitude”
of activation at the pixel. Spatial correlation between pixels is often neglected or is taken into
account by Gaussian random fields in a post–processing step (Friston et al., 1995) or as part of
a Bayesian hierarchical model (Gössl, Auer and Fahrmeir, 2001).

A potential weakness of Gaussian random field priors is underestimation of peaks and smooth-
ing over edges, discontinuities or unsmooth parts of underlying functions. In this paper, we
therefore suggest semiparametric Bayesian spatio–temporal models which avoid underestimation
of peaks or blurring of sharp transitions between activated and non–activated regions in activation
surfaces. In our experience, time–variation of baseline trends and activation effects is relatively
smooth, so that we use simple parametric forms for temporal components as described above. In
contrast, activation effects are spatially inhomogeneous or unsmooth. Therefore, estimation of
activation surfaces should be based on robust spatial priors. We suggest the use of inhomogeneous
or compound Markov random field priors where the interaction weights, determining the degree
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of spatial variation between neighboring pixels, are allowed to vary stochastically. All model
parameters, including hyper– or tuning parameters are estimated in a fully Bayesian setting,
using MCMC techniques. For computational reasons, however, the exact MH updating step for
stochastic interaction weights is replaced by an approximating Gibbs step. The quality of this
ad hoc approximation is investigated in simulation studies and turns out to be satisfactory, but
a theoretical justification is still missing.

The rest of the paper is organized as follows. The next section introduces semiparametric
spatio–temporal models with compound MRF priors and outlines MCMC estimation. In Section
3, we investigate performance in simulation studies with artificial data generated from stylized
activation surfaces, and compare it to results obtained with the Laplace or the Geman–Reynolds
priors. An application to fMRI data from a visual stimulation experiment is presented in Section
4, and the concluding section discusses some possibilities for further development.

2. Semiparametric spatio–temporal inference for fMRI data

Conventional standard analyses of fMRI data comprise pixelwise correlation, regression or
time series analysis. Spatial correlation between neighboring pixels is considered only in a second
step, if at all. In a regression setup, the MR signal {yit, t = 1, . . . , T} at pixel i, i = 1, . . . , I, is
decomposed into the sum

yit = a′
iwt + bizit + εit, εit ∼ N(0, σ2

i ) (1)

of a parametric baseline trend ait = w′
tai, an activation profile zitbi and measurement errors.

The vector wt consists of a few simple functions of time, such as (piecewise) polynomials or the
first terms of a Fourier expansion, evaluated at t = 1, . . . , T . The activation profile is the product
of the activation effect bi at pixel i, and the covariate zit is a transformation of the original
ON–OFF–stimulus xt, t = 1, . . . , T .
This transformation takes into account that the cerebral blood flow, the source of the MR signal,
increases only approximately 6-8 s after the onset of the stimulus, and that flow responses do not
occur suddenly, but more continuously and delayed. We will use transformations obtained by a
delayed convolution with a so-called hemodynamic response function, i.e.,

zit =
t−di∑
s=0

h(s; θi)xt−di−s· (2)

Usually, Poisson (Po(λi)) or Gamma (GA(λi, ui)) densities are chosen for h. The parameters
θi = λi or θi = (λi, ui)′ and the time lag di are estimated in a pilot step.
More flexible pixelwise fitting of baseline trends by semiparametric extensions of the basic model
(1) has been suggested in Genovese (2000), using regression splines, and by Gössl, Auer and
Fahrmeir (2000), who apply state space models. In Gössl et al. (2001) a hierarchy of spatial and
spatio–temporal Bayesian models based on homogeneous Gaussian Markov random field smooth-
ness priors has been presented and applied to fMRI data. A drawback of Gaussian priors is that
they tend to over–smooth peaks and to blur edges or areas of high curvature between activated
and non–activated areas. To avoid this, we suggest a model with the following ingredients: Given
a fixed pixel, the observation model is a slight extension of model (1), allowing the activation
profile to vary over time during an fMRI experiment. In a second stage, regression parameters of
neighboring pixels are correlated through inhomogeneous Markov random field priors. Inference
using MCMC techniques is outlined in Section 2.2. An important issue is the trade–off between
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model complexity and computational feasibility. There are 64x59 voxels per slice, observed over
70 time points, resulting in a huge number of observations (264320).

2.1. Spatio–temporal models with inhomogeneous Markov random field priors

For each pixel i, the observation model is defined by slightly extending model (1) to

yit = w′
tαi + v′

tβizit + εit, εit ∼ N(0, σ2
i ), (3)

In addition to a time–varying baseline trend ait = w′
tαi, model (3) also admits the activation

effect bit = v′
tβi at pixel i to vary over time, or, in other words, a time–varying activation profile

bitzit. We assume here that the transformed stimulus zit is available from a pilot estimation
step, for example using the hemodynamic response model (2). As a special case, with vt ≡ 1,
we get back the conventional model (1). Some extensions of the parametric pixelwise model are
indicated in the discussion.

Spatially adaptive smoothing is based on Markov random fields in a second stage of the
hierarchy. We consider a family of priors for the space–varying coefficients βi, with the potential
to avoid blurring edges or oversmoothing of high curvatures between activated and non–activated
areas of the brain. Similar spatial priors could also be assigned to the baseline parameters αi.
Compared to the additional computational effort, however, there is no gain in the estimation of
activation effects, which is of primary substantive interest. Therefore, diffuse independent priors
p(αik) ∝ const, i = 1, . . . , I, k = 1, . . . ,dim(αi) are assigned to them.

In the following, we focus on a scalar component βi, i = 1, . . . , I, of the activation effect. Exten-
sions to vectors are possible by assuming independent priors for its components or by multivariate
versions of the following. The general form of the prior for the vector β = (β1, . . . , βi, . . . , βI)′ is
a pairwise interaction Markov random field (MRF)

p(β|τ,w) ∝ τ · exp{−
∑
i∼j

wijΦ(τ(βi − βj))},

where τ is a scale parameter, Φ is symmetric with Φ(u) = Φ(−u), the summation is over all pairs
of pixels i ∼ j that are neighbors, and the wij ’s are corresponding weights. It is assumed that
the conditional distributions

p(βi|β−i, τ,w) ∝ τ · exp{−
∑
j∈∂i

wijΦ(τ(βi − βj))}

are well defined, where ∂i = {j : j ∼ i}.
If the weights are specified deterministically, e.g. by setting them equal to one for regular

grids or by measuring the distance between neighboring sites in irregular lattices, these are the
well-known MRF priors described, e.g., in Besag et al. (1995). In the following we will also admit
the wij ’s to be random variables obeying a hyperprior. Then the prior p(β|τ) is a mixture of
pairwise interaction priors or a compound MRF prior. Such a prior gives additional flexibility
when pixel i is near the border of an activated area, where some neighbors j ∈ ∂i have similar
activation effects and others may be only weakly or not activated.

For Φ(u) = 1
2u2, this yields

βi|β−i, τ,w ∼ N(
∑
j∈∂i

wijβj

wi+
,

1
τ2wi+

)·
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Setting wij = 1 for regular grids, this reduces to the traditional Gaussian priors used in Gössl et
al. (2001).

A compound or inhomogeneous Gauss MRF is obtained when the weights wij are allowed to
vary stochastically in a further stage. Here, the wij ’s are specified to be i.i.d. random variables
following a Gamma hyperprior

wij ∼ GA(
ν

2
,
ν

2
)· (4)

The resulting compound distribution p(βi|β−i, τ
2) is a Student prior with ν degrees of freedom.

For ν = 1 this results in a Cauchy prior. However, MCMC simulation will make explicit use of
the latent Gamma prior (4).

For Φ(u) = |u|, we obtain

p(βi|β−i, τ,w) ∝ τ · exp{−τ
∑
j∈∂i

wij |βi − βj |}· (5)

For wij = 1, this is the traditional Laplace prior, considered to have improved edge-preserving
properties compared to the Gaussian prior (see Besag, York and Mollie (1991)). It can be inter-
preted as a stochastic version of the median filter. Assuming again a Gamma hyperprior (4) for
the wij ’s, we define a compound Laplace prior.

In general, members of this family are specified by appropriate choices of Φ and of the hy-
perprior for the weights. For tomographic images, Geman and Mc Clure (1987) and Geman and
Reynolds (1992) propose

Φ(u) = −λ/(1 + |u|p), (6)

with p = 2 or p = 1, and λ as a tuning parameter. Further, Green (1990) suggests Φ(u) =
λc1log cosh(c2u), where ci are chosen to match (6) closely. Künsch (1994) studies edge pre-
serving posterior mode smoothers using Φ–functions proposed in robust statistics, for example
truncated Gaussian or Huber priors. All these robust priors have been introduced in the related
but simpler context of image analysis on regular lattices, thus assuming wij = 1 for all weights. A
practical problem with these priors is the appropriate choice of hyperparameters by data driven
methods. The normalizing constant c(λ, p) is analytically intractable, making inclusion into a
fully Bayesian MCMC difficult. In the context of reconstruction in emission tomography, Higdon
et al. (1997) propose a simulation method for precomputing normalizing constants on a grid of
values. Conceptually, this approach might be adapted to our problem, but the computational
burden increases dramatically.

The Bayesian specification is completed by priors for the variances σ2
i and the precision pa-

rameter τ . We follow the common choice and assume (inverse) Gamma hyperpriors σ2
i ∼ IG(a, b)

for observation variances, and τ2 ∼ GA(c, d) for Gauss and Cauchy priors and τ ∼ GA(c, d) for
the Laplace prior. As a standard option, we set a = c = 1 and b = d = 0·005, yielding highly
dispersed hyperpriors.

In principle, the same spatial priors could be chosen for the baseline parameters αik. However,
because the focus is placed on the activation effect, we assign only separate, independent diffuse
priors p(αik) ∝ const or highly dispersed normal priors for each pixel i = 1, . . . , I and each
k = 1, . . . ,dim(αi).
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a) b) c)

Fig. 2. a) activation area used for simulation study, b) observations for t = 1, c) observations for t = 11

2.2. Bayesian inference via MCMC

Gathering parameters in vectors α = (α1, . . . ,αI), β = (β1, . . . , βI), σ2 = (σ2
1 , . . . , σ2

I ),
w = (wij , i ∼ j) and observations in Y = (yit, i = 1, . . . , I, t = 1, . . . , T ), fully Bayesian inference
is based on the posterior

p(α, β, σ2, τ,w|Y) ∝ L(Y|α, β, σ2) · p(α) · p(β|τ,w) · p(σ2) · p(τ) · p(w)·

The likelihood L(Y|α, β, σ2) is determined by the observation model, the other factors by the
priors, together with conditional independence assumptions.

Inference is performed by MCMC simulation through repeated drawings from univariate or
multivariate full conditionals. Focussing on the parametric observation model (3), the general
strategy is as follows: The parameters αik, βi, σ

2
i and τ are drawn from their corresponding

full conditionals separately for each pixel. Vectors can be sampled univariately or as blocks. For
Gaussian priors with known weights wij full conditionals are normals, Gamma or inverse Gamma
distributions so that Gibbs sampling is possible. For non–Gaussian priors computationally more
demanding Metropolis’ steps are necessary for updating spatially correlated parameters. For
compound Gaussian and Laplace priors with stochastic interaction weights wij , we replace the
exact MH updating step for the weights by an approximating Gibbs step. We provide some
details in the Appendix. These Gibbs steps are computationally much faster, and simulation
studies support satisfactory quality of the approximation. A theoretical analysis is missing,
however.

3. Simulation studies

A number of simulation experiments were carried out to compare different spatial smoothers
and to explore their properties.

In a first step, we investigated pure spatial smoothing using Gauss, Laplace, Cauchy (=com-
pound Gauss with ν = 1) and compound Laplace priors. Data were generated according to
Gaussian observation models yi = μi + εi, i = 1, . . . , I on regular two–dimensional lattices. For
the true surfaces {μi, i = 1, . . . , I} we chose two–dimensional step functions as in Künsch (1994),
cylinders over a plane, and more smooth structures such as quadratic surfaces or planes. For
unsmooth structures, and even for a quadratic surface, smoothing with the compound Laplace
prior had the smallest mean square error, followed by the compound Gauss, the Laplace and the
Gauss prior. For planes, the loss of efficiency when using compound priors instead of a Gaussian
was quite small. Details are described in Hennerfeind (2000).
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a) b) c)

Fig. 3. Estimated surfaces a) Gauss, b) Cauchy, c) compound Laplace

a) b) c)

Fig. 4. Gauss a) MSE, b) variance, c) absolute bias

a) b) c)

Fig. 5. Cauchy a) MSE, b) variance, c) absolute bias

a) b) c)

Fig. 6. compound Laplace a) MSE, b) variance, c) absolute bias
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a) b)

c) d)

Fig. 7. Estimated weights wij a),b) horizontal, c),d) vertical, a),c) Cauchy, b),d) compound Laplace

In the following simulation experiment, spatio–temporal data were generated according to a
stylized structure resembling fMRI data. The surface f(·) in Figure 2a stylizes an activation area
by a cylinder. Its height is the ”activation effect”. Outside of the cylinder, activation is zero. For
each pixel i, data were generated by

yit = f(i) · zit + εit, εit ∼ N(0, σ2
i ), t = 1, . . . , 70,

where zit is 0-1-stimulus, with zit = 0 for t = 1, . . . , 10, zit = 1 for t = 11, . . . , 20, etc. To
achieve a realistically low signal-to-noise ratio, we set σ2

i = 25 + 2 · N(0, 1). For the simulation
study, spatio–temporal data y

(s)
it where generated in this way for each simulation run s = 1, . . . , 50.

For a typical data set, Figures 2b and 2c display the observations for t = 1 (zit = 0) and t = 11
(zit = 1). It is more or less impossible to recover the surface by eye. Aim of the simulation study
was to compare the performance of spatial smoothers with Gauss, compound Gauss (=Cauchy),
compound Laplace and Geman–Reynolds priors (6). Figures 3a–c show the average of the pos-
terior mean estimates of the surface using a Gauss, Cauchy and compound Laplace prior with
the standard option a = c = 1, b = d = 0·005 for highly dispersed hyperpriors for observation
variances and smoothing parameters. Compared to the Gauss prior, the compound Gauss and
Laplace priors have improved edge preserving properties. This is also confirmed by Figures 4
a–c, 5 a–c and 6 a–c, which show the MSE, variance and absolute bias at each pixel, and by
corresponding values averaged over all pixels (see Table 1). It can be seen that improved MSE
performance is primarily caused by reducing bias and less by reducing variance. Moreover, for
the compound priors the variance is higher near the edges of the (stylized) activation surface.
This is a consequence of correspondingly decreased weights wij for neighbors near the border of
the activation surface. A smaller weight wij makes larger jumps of the surface between pixel i
and j more likely, but - as can be seen from full conditionals for variances - implies an increase
in variance. Figure 7 visualizes smaller values of weights by dark grey or black colored pixels, for
both compound priors and for weights between horizontal and vertical neighbors, respectively.
It is seen, that the jump in the surface is quite well reflected by a decrease of corresponding
weights. For the Geman–Reynolds prior, a straightforward fully data driven choice of the hyper-
parameters λ, τ and p is not possible. Therefore, surface estimation was carried out for various
combinations of λ and τ , separately for p = 1 and p = 2 (see Table 1 for some selected results).
It is shown that performance in terms of global MSE, variance and absolute bias is very sensitive
with respect to these hyperparameters. Figures 8a and 8b show average surface estimates for a
”good” and a ”bad” choice of λ and τ . Obviously, a ”good” choice is crucial and can be achieved
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a) b)

c) d)

Fig. 8. Estimated surfaces a) Geman-Reynolds with p = 2, λ = 1, τ = 1, b) Geman-Reynolds with p = 2,
λ = 3, τ = 2, c) Cauchy with c=100 d=10, d) compound Laplace with c=100 d=20

a) b) c)

Fig. 9. Geman-Reynolds with λ = 3, τ = 2 a) MSE, b) variance, c) absolute bias

when the ”true” scene is known. For a fair comparison, we also experimented with a number
of different more informative hyperpriors for the variance τ2 or scale τ of the compound priors.
Figures 8c and 8d show estimation results for c = 100, d = 10 and c = 100, d = 20, giving
additional improvements compared to Figures 3b and 3c. Figures 9a–c and Figures 10a–c display
MSE, variance and absolute bias at each pixel for the ”best” Geman–Reynolds prior and for the
compound Laplace prior.
The conclusion is as follows: If we know the ”true” scene or we have a good idea of it through
designed experiments, Geman–Reynolds priors with carefully selected parameters perform quite
well. Our results show that the compound Laplace prior with a carefully chosen hyperprior for
smoothing can lead to comparable performance in recovering the surface. In real applications to
individual human brain mapping however, there is no ”true” activation surface which is known,
at least approximately. In this situation, compound Gauss or Laplace priors (with highly dis-
persed hyperpriors) are preferable, because they make a straightforward fully Bayesian choice
of smoothness parameters and automatic surface smoothing possible. In applications, as in the
following, one may first apply spatial smoothing with compound Gauss or Laplace priors and,
in a second step, try to obtain improvements with a Geman–Reynolds or a more informative
compound Laplace prior.
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a) b) c)

Fig. 10. compound Laplace with c=100, d=20 a) MSE, b) variance, c) absolute bias

prior c d MSE variance |bias|
Gauß 1 0.005 0.199 (0.253) 0.112 (0.033) 0.148 (0.254)

Cauchy 1 0.005 0.145 (0.168) 0.102 (0.049) 0.109 (0.179)

compound Laplace 1 0.005 0.109 (0.130) 0.086 (0.065) 0.080 (0.129)

Gauß 100 10 0.334 (0.845) 0.019 (0.007) 0.300 (0.475)

Cauchy 100 10 0.104 (0.233) 0.036 (0.039) 0.133 (0.224)

compound Laplace 100 20 0.048 (0.129) 0.025 (0.056) 0.075 (0.131)

prior λ τ MSE variance |bias|
G-R, p=1 1 1 0.538 (0.135) 0.526 (0.133) 0.088 (0.068)

G-R, p=1 3 1 0.132 (0.117) 0.123 (0.095) 0.057 (0.077)

G-R, p=1 5 1 0.048 (0.111) 0.034 (0.062) 0.057 (0.106)

G-R, p=1 6 1 0.046 (0.127) 0.027 (0.064) 0.067 (0.119)

G-R, p=1 4 2 0.040 (0.098) 0.034 (0.076) 0.033 (0.067)

G-R, p=2 1 1 0.408 (0.132) 0.398 (0.128) 0.079 (0.062)

G-R, p=2 2 1 0.154 (0.121) 0.145 (0.101) 0.059 (0.073)

G-R, p=2 4 1 0.078 (0.158) 0.050 (0.069) 0.085 (0.148)

G-R, p=2 5 1 0.146 (0.351) 0.055 (0.093) 0.157 (0.258)

G-R, p=2 3 2 0.041 (0.096) 0.038 (0.083) 0.023 (0.051)

G-R, p=2 4 3.33 0.233 (0.665) 0.109 (0.300) 0.195 (0.294)

G-R, p=2 8 0.33 0.175 (0.283) 0.078 (0.025) 0.158 (0.270)

Table 1. global MSE, variance and absolute bias for different priors and dif-
ferent choices for the hyperparameters
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a) b)

c) d)

Fig. 11. estimated surfaces for the time-constant model: a) Gauss, b) Cauchy, c) compound Laplace, d)
Geman-Reynolds

4. Application

We illustrate our approach by application to an fMRI data set from a visual stimulation ex-
periment as described in the introduction. Visual paradigms are known to elicit great activation
amplitudes in the visual cortical areas, which are sharply separated from other functional areas.

In a first step we apply the parametric observation model (1) with time–constant activa-
tion effect βi, where the transformed stimulus zit was determined through a pilot estimate,
see Gössl (2001, p.33) for details. The baseline trend was modelled parametrically by ait =
αi0 + αi1 · t + αi2 · sin(π/16 · t) + αi3 · cos(π/25 · t) + αi4 · cos(π/40 · t). In a second step we
apply observation model (3) with a time–varying activation profile bitzit. We replace βi by
bit = βi0 + βi1 · t + βi2 · cos(π/25 · t) + βi3 · cos(π/40 · t). All frequencies were selected through
stepwise selection procedures.

For the time-constant model we estimated the activation surface {β̂i, i = 1, . . . , I} using the
Gauss, Cauchy and compound Laplace prior as well as the Geman-Reynolds prior with p = 2.
Parameters of the inverse Gamma prior were set to a = 1 and b = 0·005 and parameters of the
spatial priors were set to c = 1 and d = 0·005, λ = 3 and τ = 0·2, respectively. Every MCMC
algorithm consisted of 30000 iterations, with the first 10000 being discarded as burn-in and every
20th iteration included in the final sample. Convergence was checked visually by sampling paths.
For the neighborhoods in the spatial priors, the four nearest neighbors were chosen. Figures 11a-
11d show posterior mean estimates {β̂i, i = 1, . . . , I} for these four models. Obviously, the Gauss
prior oversmoothes the sharp peaks and ridges as well as steep slopes in the area of the central
visual cortex (on the left side of the activation surface), while it undersmoothes in non-activated
areas, resulting in a comparably rough estimated surface. The results for the Cauchy, compound
Laplace and Geman-Reynolds priors clearly illustrate improved smoothing and edge-preserving
properties. Although these three surfaces are very similar, we prefer the Cauchy and compound
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Laplace models, because they allow us to use non-informative priors without precomputation of
normalizing constants. As the result for the Geman-Reynolds prior is sensitive to the choice of
the parameters λ and τ , one has to be very careful when setting them and compare the results
for different choices.

This disadvantage becomes even more crucial when applying the time-varying model (3), be-
cause one would have to specify two hyperparameters for each of the components of the parame-
tervector βi. Due to the effort it would take to compare a sufficiently large number of estimated
activation surfaces, that result from different choices for the eight hyperparameters, we do not
consider the Geman-Reynolds prior with fixes hyperparameters to be appropriate for this model.
Besides the already mentioned necessity to precompute normalizing constants a fully Bayesian
estimation with the Geman–Reynolds prior would have the disadvantage that Metropolis steps
(instead of Gibbs steps) with eight appropriate proposals would be needed for updating the hy-
perparameters. Therefore we only use the Gauss, Cauchy and compound Laplace prior. With
τ = (τ0, . . . , τ3) we get for the conditional distribution

p(βik|β−ik, τ ,w) ∝ τk · exp{−
∑
j∈∂i

w
(k)
ij Φ(τk(βik − βjk))}, k = 0, . . . , 3·

With τk ∼ GA(c, d), c = 1, d = 0·005 and w
(k)
ij ∼ GA(1/2, 1/2) we are able to estimate all

parameters with the approximate MCMC technique outlined in Section 2.2 and in the appendix.
Figures 12a-12f show the estimated activation surfaces {b̂it, i = 1, . . . , I} for two different points of
time which refer to the first and third activation period, respectively. Comparing the smoothing
qualities of the different priors, it can again be clearly seen that the Cauchy and compound
Laplace prior lead to reduced oversmoothing of edges and peaks.

5. Conclusion

Detection of activation areas in the living human brain using fMRI data offers challenging prob-
lems in biostatistical modelling. Simulation results and real applications show that regression
models with compound Markov random field priors for activation effects have spatially adaptive
smoothing properties as needed in this situation, and, at the same, keep a reasonable balance
between model complexity and computational feasibility for analyzing massive fMRI data sets.
From a theoretical point of view, the approximate Gibbs updating step for interaction weights
has to be investigated analytically. As an alternative, the exact MH step might be implemented.
Further developments to be considered in future research are compound MRFs with spatial pri-
ors for the weights, as proposed by Aykroyd (1998) in the simpler context of conventional image
analysis, and the incorporation of substantive prior knowledge from human brain templates.

Acknowledgement: We thank Dorothee Auer (Max-Planck-Instiute of Psychiatry) for many
discussions, motivating and guiding our work, and the German National Science Foundation for
financial support through grants from the Sonderforschungsbereich 386 ”Statistical Analysis of
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a) d)

b) e)

c) f)

Fig. 12. Estimated activation effects at t = 18 (a-c) and t = 58 (d-f) for Gauss (a,d), Cauchy (b,e), and
compound Laplace (c,f)
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Appendix

In the following we provide some details on the estimation of the parameters when using the
compound Laplace prior. To simplify the notation we only write down the posterior distributions
for αi0 and βi0 (the posterior distributions of the other parameters are calculated analogously)
and rewrite the observation model (3) as follows:

yit = αi0 + ait + βi0zit + bitzit + εit·

In our application ait = αi1 · t + αi2 · sin(π/16 · t) + αi3 · cos(π/25 · t) + αi4 · cos(π/40 · t) and
bit = βi1 · t + βi2 · cos(π/25 · t) + βi3 · cos(π/40 · t).
With a diffuse prior p(αi0) ∝ const the full conditional distributions of the parameters αik, i =
1, . . . , I, k = 0, . . . , 4 are normal. Therefore these parameters can be estimated via Gibbs sam-
pling. For αi0 we get:

p(αi0|·) ∝
∏

t

p(yit|·) · p(αi0)

⇒ αi0|· ∼ N
(
μαi0 , σ

2
αi0

)

μαi0 =

∑
t

(yit − (ait + βi0zit + bitzit))∑
t

1

σ2
αi0

=
σ2

i∑
t

1

The parameters βik, i = 1, . . . , I, k = 1, . . . , 3 are estimated via a single–move Metropolis–
Hastings algorithm using random walk proposals. For the posterior distribution of βi0 we get:

p (βi0|·) ∝
∏

t

p(yit|·) · p
(
βi0|τ0, β−i0, w

(0)
)

∝ exp

(
− 1

2σ2
i

(∑
t

(yit − (αi0 + ait + βi0zit + bitzit))
2

))
·

exp

⎛
⎝− 1

τ0

∑
j∈δi

w
(0)
ij |βi0 − βj0|

⎞
⎠

∝ exp

(
− 1

2σ2
i

(∑
t

(−2yitβi0zit + β2
i0z

2
it + 2βi0zit (αi0 + ait + bitzit)

)))

·exp

⎛
⎝− 1

τ0

∑
j∈δi

w
(0)
ij |βi0 − βj0|

⎞
⎠
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The hyperparameters σ2
i and τk are updated via Gibbs sampling. The posterior distributions are

as follows:

σ2
i |· ∼ IG (ai, bi)

ai = a +
T

2

bi = b +
1
2

∑
t

(yit − (αi0 + ait + βi0zit + bitzit))
2

τk|· ∼ IG (ck, dk)

ck = c + (I − 1)

dk = d +
∑
i∼j

w
(k)
ij |βik − βjk|

The full conditional for the weight w
(k)
ij is

p(w(k)
ij |β, τ) ∝ p(βik|β−ik, τk, w(k))p(w(k)) ∝ p(βik|βlk, l ∈ δi, τk, w(k))p(w(k))·

The conditional p(βik|βlk, l ∈ δi, τk, w(k)) is a multivariate Laplace distribution, and the normal-
izing constant is a (complicated) function of the weights. As an approximation, we condition
only on the neighbor j of i. Then

p(w(k)
ij |β, τ) ∝ p(βik|βjk, τk, w

(k)
ij )p(w(k)

ij )

and therefore

w
(k)
ij |·

app·
∼ GA (ν1k, ν2k)

ν1k =
1
2

+ 1

ν2k =
1
2

+
1
τk

|βik − βjk|

We can view this Gibbs step as an approximate MH step, with p(βik|βjk, τk, w
(k)
ij )p(w(k)

ij ) as
a proposal density, where we accept each proposal. An exact analytical investigation of this
approximation would be desirable.
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