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Abstract
Pluripotent embryonic stem (ES) cells are undifferen-

tiated cell lines derived from early embryos and are

capable of unlimited undifferentiated proliferation in

vitro. They retain the ability to differentiate into all cell

types including germ cells in chimeric animals in vivo,

and can be induced to form derivatives of all three germ

layers in vitro. Mouse ES cells represent one of the most

important tools in genetic research. Major applications

include the targeted mutation of specific genes by ho-

mologous recombination and the discovery of new

genes by gene trap strategies. These applications would

be of high interest for other model organisms and also

for livestock species. However, in spite of tremendous

research activities, no proven ES cells colonizing the

germ line have been established for vertebrate species

other than mouse and chicken thus far. This review sum-

marizes the current status of deriving pluripotent em-

bryonic stem cell lines from vertebrates and recent de-

velopments in nuclear transfer technology, which may

provide an alternative tool for genetic modification of

livestock animals.
Copyright © 1999 S. Karger AG, Basel

Abbreviations used in this paper

AP alkaline phosphatase
bFGF basic fibroblast growth factor
BRL Buffalo rat liver
EG embryonic germ cells
ES embryonic stem cells
ICM inner cell mass
IL interleukin
LIF leukemia inhibitory factor
neo neomycin
PGC primordial germ cells
SCF stem cell factor
SSEA stage-specific embryonic antigen
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Table 1. Toti-/pluripotency of cells and nuclei [according to Campbell and Wilmut, 1997]

Cells

totipotency pluripotency

Nuclei

totipotency pluripotency

Ability to form a whole
organism

Ability to differentiate into
many or all tissues including
the germ line of chimeric
animals

Ability to support full-term
development of an embryo
reconstructed by nuclear
transfer

Ability to partially support
the development of nuclear
transfer embryos

Examples Blastomeres of early
cleavage
stage embryos1

ICM cells, EC cells, ES cells,
EG cells

Sheep: cultured embryonic
disc cells, fetal fibroblasts,
mammary gland cells
Cattle: fetal fibroblasts,
germ cells, postnatal skin
fibroblasts, uterine cells
Mouse: cumulus cells
[reviewed in Wolf et al., 1998]

Cattle: oogonia,
trophoblastic cells
Mouse: Sertoli cells, neurons
[reviewed in Wolf et al., 1998]

Technology Embryo splitting,
blastomere separation

Aggregation with morulae,
injection into blastocysts

Nuclear transfer Nuclear transfer

EC = Embryonic carcinoma cells.
1 Germ line-competent ES and EG cells were also classified as totipotent by some authors.

Pluripotent Cell Lines in Mouse

Cells capable of forming a whole conceptus are termed
‘totipotent’, whereas ‘pluripotent’ cells have the ability to
contribute to several tissues of the fetus and in some cases
to the extraembryonic membranes when used for chimera
formation [reviewed in Campbell and Wilmut, 1997].
The developmental potential of cells has to be separated
from that of nuclei, which may be derived from differen-
tiated cells but reprogrammed by nuclear transfer and
thus give rise to a whole organism (table 1).

In mice, pluripotent embryonic cells were first isolated
from teratocarcinomas, which comprise a mixture of dif-
ferentiated cell types including derivatives of all germ
layers and remaining undifferentiated (malignant) stem
cells [Martin and Evans, 1975]. These embryonic carcino-
ma cells show several disadvantages, like overt karyotypic
abnormalities and low germ line colonization due to the
deregulated environment within teratocarcinomas.

Embryonic stem (ES) cells may be derived from 8-cell
embryos [Wobus et al., 1991; Delhaise et al., 1996] or dis-
sociated blastomeres of morulae [Eistetter, 1989], but are
most frequently established from the inner cell mass
(ICM) of blastocysts [Evans and Kaufman, 1981; Martin,
1981] or the pluripotent cell population of the primitive

ectoderm of delayed implanting blastocysts [Brook and
Gardner, 1997]. Most ES cell lines were isolated accord-
ing to standard protocols [Robertson, 1997] from em-
bryos of the inbred strain 129Sv, although selection strate-
gies have been developed to allow isolation of ES cells
from embryos with a normally nonpermissive genetic
background [McWhir et al., 1996]. Undifferentiated pro-
liferation of ES cells in culture was initially achieved by
using feeder cells [primary mouse embryonic fibroblasts,
Wobus et al., 1984; STO cells, Evans and Kaufman, 1981;
Robertson, 1987] or media conditioned by Buffalo rat liv-
er (BRL) cells [Smith and Hooper, 1987]. The differentia-
tion-inhibiting activity in both systems has been identi-
fied as leukemia inhibitory factor (LIF) [Smith et al.,
1988]. The recombinant protein maintains pluripotency
of ES cells in the absence of feeder cells [Nichols et al.,
1990]. Alternatively, other cytokines acting through the
gp130 signal transduction pathway, including interleukin-
6 (IL-6), oncostatin M and ciliary neurotrophic factor
[Conover et al., 1993; Nichols et al., 1994; Rose and
Bruce, 1994; Wolf et al., 1994; reviewed in Wolf et al.,
1996], have successfully been used to sustain undifferen-
tiated murine ES cells capable of differentiating in vitro
and in vivo.
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A third class of pluripotent cells in mice is derived
from primordial germ cells (PGCs) which migrate from
the base of the allantois through the hindgut epithelium
and the dorsal mesentery into the gonadal anlage [Eddy
et al., 1981]. After a period of intragonadal mitotic pro-
liferation the male germ cells enter a quiescent period of
mitotic arrest in the testis, while the female PGCs under-
go rapid mitotic divisions before entering the meiotic
arrest in the ovary [reviewed in Wylie, 1993]. Embryonic
germ (EG) cells can be derived from pre- and postmigra-
tory PGCs by using a combination of LIF, basic fibro-
blast growth factor (bFGF) and stem cell factor (SCF) in
the culture medium [Matsui et al., 1992; Resnick et al.,
1992; Stewart et al., 1994] and behave in a similar way
as ES cells when injected into host blastocysts [Matsui et
al., 1992] and upon induced differentiation in vitro
[Rohwedel et al., 1996]. PGCs are available in larger
numbers per fetus, but the extent of methylation of spe-
cific genes may differ compared to ICM cells [Solter,
1998].

Characteristics of Pluripotent Embryonic Cell
Lines in Mouse

Pluripotent cells exhibit morphological characteristics,
i.e. a high nuclear:cytoplasm ratio and growth in compact,
multilayered colonies. They show alkaline phosphatase
(AP) activity [Resnick et al., 1992] and express highly
conserved epitope markers, like stage-specific embryonic
antigen-1 (SSEA-1) [Solter and Knowles, 1978] or ECMA-
7 [Pease et al., 1990], and the germ line-specific transcrip-
tion factor Oct-4 [Schöler et al., 1989]. In addition, a short
G1 cell cycle phase [Rohwedel et al., 1996] and high levels
of telomerase activity [Thomson et al., 1998] are highly
correlated with the undifferentiated state of ES cells.

Pluripotent cells can be stimulated to differentiate in
vitro into various cell types by removing feeder cells and
differentiation-inhibiting cytokines [reviewed in Peder-
sen, 1994], or by adding specific differentiation-inducing
substances [e.g. retinoic acid, Wobus et al., 1994, 1997a;
see Rohwedel et al., 1999]. Maintained in suspension cul-
ture or ‘hanging drops’ [Wobus et al., 1984], pluripotent
cells form embryo-like aggregates, so-called ‘embryoid
bodies’, consisting of derivatives of the three embryonic
germ layers [Doetschman et al., 1985; Rohwedel et al.,
1996, reviewed in Wobus and Guan, 1998].

In vivo differentiation of pluripotent cells occurs after
transplantation to syngenic or immunodeficient mice,
where they form teratocarcinomas or teratomas [Evans

and Kaufman, 1981]. When combined with normal em-
bryos via blastocyst injection [Bradley et al., 1984] or
morula aggregation [Wood et al., 1993], these cells con-
tribute to all tissues and organs including the germ line of
a chimeric individual, giving rise to functional gametes
[Labosky et al., 1994]. When ‘target’ ES cells were aggre-
gated with ‘carrier’ tetraploid embryos [Nagy et al., 1990],
the pluripotent cells formed the adult organism without
any participation of tetraploid host embryo cells [Wang et
al., 1997].

Pluripotent Embryonic Cell Lines in Other
Vertebrate Species

Murine pluripotent embryo-derived cell lines offer a
suitable model system for investigating cellular differenti-
ation of the vertebrate organism [Wobus et al., 1997b]
and provide an important system for site-specific intro-
duction of genetic alterations by gene targeting technology
[Thomas and Capecchi, 1987] as well as for screening
developmental genes by gene trap experiments [reviewed
in Evans et al., 1997]. Because of these powerful applica-
tions, many attempts have been made to establish ES and
EG cell technology in other species. Although many of
these embryo-derived cell lines resemble – at least in part
– mouse ES cell morphology and epitope profiles [Van
Stekelenburg-Hamers et al., 1995; Etches et al., 1996] and
have the ability to differentiate in vitro, there is no pub-
lished data reporting liveborn, fertile germ line chimeras
in mammalian species other than mouse (table 2). Estab-
lishment of pluripotent cell lines especially from mam-
mals other than mice would have a great impact on stud-
ies of early developmental processes, such as cell lineage
commitment [Beddington and Robertson, 1989] and ge-
nomic imprinting [Mann et al., 1990], and especially on
genetic modification [Wheeler and Choi, 1997] and nu-
clear transfer in livestock species [Modlinski et al.,
1996].

Fish
Fish are excellent vertebrate model systems, especially

for research fields of developmental biology, i.e. the mo-
lecular analysis of normal and disturbed development.

In zebrafish, blastula-derived embryonic cell lines
have been maintained undifferentiated for more than 40
passages using trout embryo extract and serum added to
BRL cell-conditioned medium [Collodi et al., 1992].
When using neomycin (neo)-transfected cells, the foreign
neo-specific DNA sequences were detected in juvenile
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Table 2. Establishment of pluripotent embryonic cell lines from vertebrate species (except mouse)

Species Cell source ES-like characteristics In vivo differentiation References

Midblastulae AP activity, EB formation Transgenic chimeric fry Hong et al. [1998]
Zebrafish Midblastulae AP activity, in vitro Transgenic chimeric Sun et al. [1995]

differentiation juveniles

Chicken Stage X blastoderm AP activity, SSEA-1, SSEA-3
and ECMA-7 expression

Germ line chimeras Pain et al. [1996]

5-day genital ridges Morphology Germ line chimeric chicken Chang et al. [1997]

Rabbit 5-day intact embryos EB formation Coat color chimeras Schoonjans et al. [1996]
18- to 22-day genital
ridges

SSEA-1 expression, AP activity Coat color chimeras Moens et al. [1997]

Rat (?) Blastocysts AP activity, SSEA-1 expression,
EB formation

Coat color chimeras (not
proven in independent
repeated experiments)

Iannaccone et al. [1994]

Syrian hamster 3-day blastocysts EB formation n.d. Doetschman et al. [1988]

Mink 7-day blastocysts EB formation, teratoma
formation

n.d. Sukoyan et al. [1993]

Pig Blastocysts EB formation Coat color chimeras Wheeler [1994]
25- to 27-day genital
ridges

AP activity, EB formation Transgenic chimeric piglet Piedrahita et al. [1998]

Cattle Blastocysts derived by
fibroblast cloning

Morphology Transgenic chimeric calves Cibelli et al. [1998a]

45-day genital ridges Morphology, pseudopodia Cloned bull calf Strelchenko et al. [1998]

Sheep 8-day blastocysts Morphology Cloned lambs Wells et al. [1997]

Rhesus monkey 6-day blastocysts AP activity, SSEA-3 and
SSEA-4 expression, in vitro

n.d. Thomson et al. [1995]

Common marmoset 8-day blastocysts differentiation, EB and
teratoma formation

n.d. Thomson et al. [1996]

Human IVF blastocysts Morphology, telomerase
activity, AP activity,
SSEA-3 and SSEA-4 expression

n.d. Thomson et al. [1998]

5- to 9-week genital
ridges

AP activity, SSEA-1, SSEA-3
and SSEA-4 expression,
EB formation

n.d. Shamblott et al. [1998]

EB = Embryoid body; n.d. = not done.

fish 18 days following blastocyst injection of the ES-like
cells. For a detailed analysis embryonic cells from blastula
stage embryos were cultured on zebrafish embryonic
fibroblasts in medium supplemented with bovine insulin,
LIF, an extract of rainbow trout embryos, and trout serum
[Sun et al., 1995]. The cells possessed a diploid karyotype,
exhibited an ES-like morphology and high AP activity.
Induced in vitro differentiation resulted in neuronal cell
types. Genetically marked embryonic cells expressed the

neo gene in chimeric fish generated by blastocyst injec-
tion.

Blastomeres isolated from medakafish embryos at the
midblastula stage were cultured on homologous fibro-
blasts with addition of carp serum, LIF and bFGF, and
were maintained in culture for up to 11 passages. These
cells exhibited morphological features comparable to
mouse ES cells with high AP activity [Wakamatsu et al.,
1994]. Differentiated derivatives induced by retinoic acid
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included melanocytes, neuronal and skeletal muscle-like
cells.

Hong and Schartl [1996] set up conditions supporting
feeder cell-free cultivation of medakafish embryonic cells
isolated at the midblastula stage, which displayed features
resembling mouse ES cells when cultured in medium sup-
plemented with human bFGF and LIF, fish embryo
extract, and trout serum. Continuously cultured over 18
months (100 passages), the putative medakafish ES cells
formed densely packed, AP-positive colonies. In suspen-
sion culture they developed embryoid bodies and differ-
entiated into various cell types including neuron- and
fibroblast-like cells, pigment and muscle cells [Hong et al.,
1996]. These ES cells were competent to form chimeras
with a high contribution of the transplanted cells to
numerous organs [Hong et al., 1998].

Fig. 1. Establishment of pluripotent embryonic cells in culture from
rabbit, rat and pig. A Rabbit embryos (Zika® albino) as source of
pluripotent ES-like cells. A1 Blastocyst outgrowth with AP-positive
ICM counterstained with neutral red (ALP kit, Sigma) at the 1 day
after attachment. Bar = 50 Ìm. A2 ES-like colonies at passage 7 cul-
tured on rabbit embryonic fibroblasts in Dulbecco’s modified Eagle’s
medium (DMEM)/Ham’s F-12 (50:50, Sigma), supplemented with
15% fetal calf serum (FCS; Gibco BRL), 2 mM L-glutamine (Hy-
clone), 0.1 mM nonessential amino acids (NEAA; Sigma), penicillin/
streptomycin (100 IU/100 mg; Gibco BRL), 1% nucleoside stock
solution (Sigma) and 1,000 IU/ml murine LIF (ESGRO, Gibco
BRL). Bar = 100 Ìm. A3 AP-positive rabbit ES-like colonies on
embryonic fibroblasts after 17 passages. Bar = 100 Ìm. B Rat ES-like
cells established from 4.5-day blastocysts (F-344), cultured on mouse
embryonic fibroblasts in DMEM/Iscove’s medium (50:50; Gibco
BRL), supplemented with 15% FCS, NEAA (1% stock solution; Gib-
co BRL), 2 mM L-glutamine (Gibco BRL), 0.3 mM each of adeno-
sine, cytidine, guanosine and uridine (Sigma), 0.1 mM thymidine
(Sigma), human transferrin (15 Ìg/ml; Boehringer, Mannheim), pen-
icillin/streptomycin (50 IU/50 Ìg; Gibco BRL), 20 ng/ml human LIF
(prepared using plasmid pGEX2T.LIF-58), 450 ÌM monothioglyce-
rol (Sigma), and 20 ng/ml bFGF (Strathmann Biotech). B1 Compact
colonies at passage 6. Bar = 100 Ìm. B2 Histochemical staining for
AP activity (ALP kit, Sigma). Bar = 100 Ìm. B3 SSEA-1 immunola-
belling of rat ES-like cells (RES-6) at passage 6 after confocal laser
scanning microscopy. Bar = 10 Ìm. C Porcine PGCs isolated from
27-day-old fetuses, cultured on STO feeder cells in DMEM (Gibco
BRL), supplemented with 10% FCS (Boehringer, Mannheim), 1%
NEAA (Gibco BRL), 2 mM L-glutamine (Gibco BRL), penicillin/
streptomycin (10 IU/ 100 Ìg; Gibco BRL). C1 Multi-layered com-
pact colonies after 28 weeks (15 passages) in vitro. Bar = 50 Ìm.
C2 AP staining of undifferentiated porcine PGCs after 28 weeks (15
passages; ALP kit, Sigma). Bar = 50 Ìm. C3 SSEA-1 immunolabell-
ing of porcine EG cells after 30 days in culture by confocal laser scan-
ning microscopy. Bar = 25 Ìm.

Avian
In the chicken, embryos at the designated stage X are

composed of 40,000–80,000 morphologically undifferen-
tiated cells [Thorval et al., 1994]. These cells, when
injected into the subgerminal cavity of host embryos,
were incorporated into the germ line and could subse-
quently contribute to melanocytes and erythrocytes [Pe-
titte et al., 1990]. The somatic and germ line chimerism
was increased when the development of recipient em-
bryos was compromised by exposure to Á-irradiation
[Carsience et al., 1993]. To propagate these putative pluri-
potent blastodermal cells in vitro, they were cultured for a
short time (48 h) as explanted embryos, as a dispersed cell
monolayer or on a mouse fibroblast feeder layer in the
presence of LIF, bFGF and chicken SCF [Etches et al.,
1996]. Regardless of the culture conditions, the contribu-
tion to ectoderm-derived tissues and to the germ line of
chimeras produced by injection into the subgerminal cav-
ity was reduced as compared to freshly isolated blastoder-
mal cells. Putative avian ES cells could be maintained
long-term in vitro on STO cells in medium supplemented
with LIF, bFGF, SCF, oncostatin M, IL-11 and IL-6 [Pain
et al., 1996]. These cells exhibited features similar to
murine ES cells such as typical morphology, high AP
activity, and specific epitopes such as SSEA-1, SSEA-3,
ECMA-7 and EMA-1. They presented high capacities of
in vitro differentiation, and avian early passage ES cells
injected to host embryos were able to contribute exten-
sively to chimeric chickens, but showed low germ line
transmission [see Pain et al., 1999].

Avian PGCs segregate from the hypoblast of the germi-
nal crescent region and begin to circulate in the em-
bryonic bloodstream, from which they can be isolated
before leaving the capillaries near the germinal epithe-
lium to penetrate the developing gonads [Kuwana et al.,
1996]. PGCs isolated from 5.5-day-old chicken em-
bryonic germinal ridges were cultured for 5 days in
medium enriched with insulin-like growth factor-1, bFGF
and LIF, and contributed to the germ line of chimeric
chicken following transfer into the bloodstream of host
embryos [Chang et al., 1997].

Rabbit
Rabbits have several advantages over other model

organisms for studies of vascular diseases, cardiomyopa-
thy, central nervous system disorders, and abnormalities
of lipoprotein metabolism. Other criteria, such as ease in
housing, ability to superovulate, manipulation of em-
bryos, and litter size make the rabbit an attractive experi-
mental system [Graves and Moreadith, 1993]. Rabbit
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ICM cells were isolated from day 3 embryos by immuno-
surgery [Giles et al., 1993], or by mechanically disrupting
outgrowths of day 4 to 5 blastocysts [Graves and Morea-
dith, 1993]. As detected by isozyme analysis and eye pig-
mentation rabbit ICM cells cultured on STO cells contrib-
uted to chimeric fetuses following blastocyst injection
before they showed decreased mitotic activity resulting in
complete differentiation after 5 passages [Giles et al.,
1993]. Murine LIF preserved undifferentiated ES-like
features including AP activity (fig. 1, A3) and the ability
to form embryoid bodies [Graves and Moreadith, 1993;
Vasilieva et al., 1998]. Following injection into blasto-
cysts, putative rabbit ES cells contributed to fertile overt
coat color chimeras, but no germ line transmission was
shown [Schoonjans et al., 1996]. However, nuclear trans-
fer resulted in development to blastocysts at a similar rate
as obtained with embryonic blastomeres as nuclear do-
nors [Du et al., 1995].

Rabbit PGCs were isolated from gonadal cells of 18- to
22-day-old fetuses, and displayed similar characteristics
as mouse PGCs regarding morphology and ultrastructure,
SSEA-1 expression and AP activity [Moens et al., 1997].
Injection of rabbit PGCs after short-term culture with
human LIF and bFGF into embryos between the two-cell
and expanded blastocyst stage resulted in low chimerism
of the developing conceptuses and liveborn offspring.
When nuclei from freshly isolated male and female rabbit
PGCs were transferred into enucleated oocytes, blastocyst
formation of male PGC-derived embryos was higher, but
no implantation sites were detected following embryo
transfer to recipients [Moens et al., 1996].

Rat
The in vitro propagation and chimera production with

putative rat ES cells was first reported by Iannaccone et
al. [1994]. Cells derived from blastocysts and cultured on
rat embryonic fibroblasts with addition of LIF displayed
several characteristics of pluripotent cells, such as SSEA-
1 expression, AP activity, formation of embryoid bodies
in vitro and of teratocarcinomas after injection into nude
mice. However, the in vivo differentiation capacity of
these cells (contribution to coat color chimeras) could not
be confirmed by the same [Brenin et al., 1997] and other
laboratories. Some rat ES-like cells cultivated for only 4
passages on homologous uterine epithelial cells were pos-
itive for AP activity and in some cases for ECMA-7 [Ou-
hibi et al., 1995]. In our own experiments [Vasilieva et
al., unpubl. data] rat ES-like cell clones expressing AP
activity, SSEA-1 and Oct-4 were established (fig. 1, B2,
B3).

Syrian Hamster
Hamster putative ES cell lines were established from

day 3 blastocysts and maintained undifferentiated on
mouse primary embryonic fibroblast feeder layers for up
to 25 passages [Doetschman et al., 1988]. In suspension,
these cells formed embryoid bodies containing beating
heart tissue, visceral yolk sac, endoderm cells, skeletal
muscle cells and keratin swirls. However, contribution to
germ line chimeras has still to be proven.

Mink
Morulae, immunosurgically isolated ICMs, or intact

blastocysts have been used for the establishment of mink
putative ES cell lines [Sukoyan et al., 1992, 1993]. The
efficiency of suppressing differentiation and stimulating
proliferation was low on primary mouse embryonic fibro-
blasts and established mink fibroblast cell lines [Sukoyan
et al., 1992]. Morulae cultured on primary mink em-
bryonic fibroblasts in the presence of LIF gave rise to ES-
like cells capable of forming embryoid bodies in vitro and
teratocarcinomas following injection into athymic mice,
but these cells failed to contribute to chimeras after blas-
tocyst injection [Sukoyan et al., 1993]. Another approach
using mink blastocysts obtained after prolactin-induced
termination of diapause resulted in AP-positive ES-like
cells after 8 months in vitro [Polejaeva et al., 1997].

Pig
Since the pig is an excellent model for studying various

human diseases, there are numerous reports concerning
the culture and characterization of ICM- and PGC-
derived cell lines. Embryos were recovered at the desired
age ranging from day 6 to 9 [Evans et al., 1990; Notarian-
ni et al., 1990; Piedrahita et al., 1990a,b; Wheeler, 1994;
Gerfen and Wheeler, 1995; Ropeter-Scharfenstein et al.,
1996] and also at more advanced stages [Strojek et al.,
1990; Hochereau-de Reviers and Perreau, 1993; Ander-
son et al., 1994; Wianny et al., 1997]. Advanced day 10
and 11 embryos appear to provide the best initial out-
growths, but tend to differentiate in vitro, while ICMs
from earlier stages yield less ES cell-like colonies with a
reduced tendency to differentiate during prolonged cul-
ture. However, only freshly isolated ICM cells gave rise to
viable porcine chimeras after blastocyst injection [Ander-
son et al., 1994].

The difficulties in establishing porcine ES cells may be
due to differences in embryo development, notably in the
prolonged period between hatching and implantation
characterized by a marked elongation of the blastocyst
[Geisert et al., 1982]. During this period the ICM differ-
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entiates into the epithelial embryonic disc [Gerfen and
Wheeler, 1995] which does not substantially proliferate
until gastrulation, but delaminates an inner layer of prim-
itive endoderm just after hatching [Notarianni et al.,
1991] and forms vimentin expressing mesoderm-like cells
[Prelle et al., 1995b]. The rapidly outgrowing trophoblast
as well as the early onset of ICM differentiation require a
separation of the ICM from differentiation-inducing ef-
fects prior to in vitro culture using immunosurgery [Solter
and Knowles, 1975] or calcium ionophore [Prelle et al.,
1993].

Much effort has been spent to optimize culture condi-
tions supporting proliferation of undifferentiated porcine
embryonic cells [Vasiliev and Vasilieva, 1995]. While
homologous porcine uterine fibroblasts supported em-
bryonic attachment and colony formation for a short time
[Strojek et al., 1990], undifferentiated ICM-derived cells
could be maintained on STO feeder cells for more than 1
year. Injection of the ICM-derived cells into host blasto-
cysts resulted in the development of two chimeric porcine
fetuses which were retrieved at day 30 of pregnancy [No-
tarianni et al., 1997]. BRL cell-conditioned medium was
suitable for propagating limited undifferentiated prolifer-
ation of porcine ES-like cells [Wheeler, 1994]; however,
recombinant human LIF [Moore and Piedrahita, 1997]
which is highly homologous to the corresponding porcine
cytokine [Wianny et al., 1997], and other heterologous
cytokines were ineffective in maintaining cell lines for
extended periods of time [Prelle et al., 1994, 1995a] with-
out loosing the capability of germ line transmission
[Moore and Piedrahita, 1996].

Most of the porcine embryo-derived cell lines were
capable of differentiating in vitro to some extent [Evans et
al., 1990; Notarianni et al., 1990] and formed teratocarci-
nomas after injection into nude mice [Hochereau-de Re-
viers and Perreau, 1993]. Porcine ES-like cells showed AP
activity [Talbot et al., 1993], expressed SSEA-1 [Wianny
et al., 1997], but – in contrast to murine ES cells – dis-
played an epithelial phenotype characterized by cytokera-
tin expression [Piedrahita et al., 1990b]. Recently, puta-
tive porcine ES cells displaying a morphology similar to
mouse ES cells were maintained in culture for up to 44
passages and, after injection into blastocysts, contribute
to chimeric offspring as assessed by the pattern of coat
color and by using a genetic marker, while germ line trans-
mission still has to be proven [Wheeler, 1994]. In vitro
derived embryoid bodies originating from these cells dif-
ferentiated into fibroblasts, epithelium, neurons and mus-
cle cells [Gerfen and Wheeler, 1995].

Porcine PGCs were isolated from fetal genital ridges
between days 24 and 26 post conception [Takagi et al.,
1997; Piedrahita et al., 1998], but also earlier during their
migration across the dorsal mesentery. In this latter stage
PGCs are characterized by a higher proliferation rate and
by a reduced tendency to differentiate [Shim et al., 1997].
Porcine PGCs which express SSEA-1 in vivo [Takagi et
al., 1997] require STO feeder cells [Shim and Anderson,
1998], LIF, porcine SCF, but – in contrast to mouse – no
bFGF for initial culture [Durcova-Hills et al., 1998]. For
prolonged undifferentiated proliferation they are more
responsive to cell membrane-bound [Takagi et al., 1997;
Durcova-Hills et al., 1998] or homologous cytokines [Pie-
drahita et al., 1997].

Recently reported porcine EG cells morphologically
resemble murine ES cells and consistently express AP
activity [Shim et al., 1997]. These cells maintained a nor-
mal diploid karyotype, were capable of in vitro differenti-
ation, and contributed to tissues of a liveborn chimeric
piglet which, however, died after a few days. Blastocyst
injection of transfected PGCs carrying the green fluores-
cent protein gene resulted in the birth of a chimeric piglet
with contribution of transgenic cells [Piedrahita et al.,
1998]. Others established several porcine EG cell lines
expressing SSEA-1 and AP activity which contributed to
different tissues of healthy chimeric piglets born after
blastocyst injection of the transgenic EG cells [Müller et
al., 1999] (fig. 1C).

Cattle
In cattle, the establishment of ES cell lines is more fea-

sible than in the pig because large numbers of embryos
can be produced in vitro; however, in vivo-derived blasto-
cysts, especially early-hatching blastocysts, are a superior
source of pluripotent cells [Talbot et al., 1995].

In cattle as in most other species the time when nuclei
of embryonic cells become committed to a specific cell
fate and lose their ability to direct development of differ-
ent cell types limits the success of ES cell establishment
[Keefer et al., 1994]. Undifferentiated cells have been iso-
lated at any stage from 16-cell to hatched blastocyst [Strel-
chenko, 1996], from the latter stage mainly by immuno-
surgery [Sims and First, 1993; Prelle et al., 1996b]. The
critical issue of getting a tight contact between feeder and
embryonic cells was solved by placing the disaggregated
cells under the monolayer [Stice et al., 1996].

A number of different feeder cell types have been used,
including homologous granulosa cells [Strojek-Baunack et
al., 1991] or fetal fibroblasts [First et al., 1994], murine
fetal fibroblasts [Saito et al., 1992; Prelle et al., 1996a,
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1997] and STO cells [Talbot et al., 1995]; however, none
of these feeder cell types was suitable for stimulating pro-
liferation of embryonic cells without differentiation for an
extended period of time. Supplementation of the culture
medium with the heterologous human LIF did not show
an effect on bovine ICM cells [Saito et al., 1992], even
though bovine LIF is more similar to human than murine
LIF [First et al., 1994]. The embryonic cells differentiated
into a wide variety of cell types including trophectoderm
which – in contrast to other species – showed AP activity
[Talbot et al., 1995] while undifferentiated bovine ES
cells were AP-negative [Cibelli et al., 1998a].

Sims and First [1993] maintained dissociated ICM
cells in microdrop suspension culture preventing cell-to-
cell contact which is required for differentiation [First et
al., 1994]. Cells cultured in this system for less than 28
days resulted in the birth of live calves when used as
donors in nuclear transfer experiments. Stice et al. [1996]
reported several ES-like cell lines which were evaluated by
morphological criteria and by their ability to form em-
bryoid bodies after more than 50 passages. Nuclear trans-
fer embryos produced from these cells initiated pregnan-
cies, however, they were aborted before day 60 due to
incomplete placental development. This abnormality has
been interpreted as a consequence of erased imprinting
[Strelchenko, 1996] and could be prevented by aggrega-
tion of ES-like cells with tetraploid embryos which con-
tribute almost exclusively to the placental tissue [Stice et
al., 1996].

Cibelli et al. [1998a] established putative bovine ES-
like cells which proliferated for more than 12 months
without differentiation and displayed ES cell characteris-
tics (high nuclear:cytoplasmic ratio, defined colony mar-
gins). In one approach blastocyst outgrowth was cultured
and embryo-derived cells were transfected by DNA mi-
croinjection of a ß-galactosidase (ß-Gal)-neomycin (ß-
Geo) expression vector. The same authors transfected
bovine fetal fibroblasts with ß-Geo by DNA electropora-
tion and used these cells as nuclear donors to produce
transgenic blastocyst stage nuclear transfer embryos to
derive ES-like cells from their ICM. Morula injection of
either the embryo- or nuclear transfer-derived transgenic
ES-like cells resulted in the birth of nine chimaeric calves
carrying the ß-Gal transgene in at least one of the tissues
investigated.

In cattle, several attempts to establish pluripotent cell
lines from PGCs took advantage of the cross-species simi-
larity observed in the patterns of migration and prolifera-
tion [Leichthammer et al., 1990]. Genital ridges were
obtained from fetuses between days 29 and 70 post con-

ception [Cherny et al., 1994; Lavoir et al., 1994; Strel-
chenko, 1996; Lavoir et al., 1997] and around day 175 of
gestation [Delhaise et al., 1995]. The PGCs were isolated
either by enzymatic digestion or by mechanic disruption
of the recovered tissues and identified by size and other
morphological criteria such as large nucleus, intracyto-
plasmic vesicles, and occasional blebbing [Leichthammer
et al., 1990]. The cells were cultured either on primary
embryonic fibroblasts or on feeder layers expressing re-
combinant human LIF [Cherny et al., 1994], and the
medium was supplemented with a ‘cocktail’ of human
SCF, recombinant LIF and bovine bFGF [Strelchenko,
1996]. Pluripotency was evaluated by formation of em-
bryoid bodies in vitro [Cherny et al., 1994] and by injec-
tion into blastocysts, demonstrating that FITC-labelled
PGCs integrated into the ICM of a chimeric embryo
[Cherny et al., 1994]. After nuclear transfer of freshly iso-
lated bovine PGCs, developing embryos initiated preg-
nancies until day 40 [Delhaise et al., 1995] and 43 [Lavoir
et al., 1997], respectively. Recently, the birth of one
healthy calf after nuclear transfer of cultured PGCs and
recloning of the developing morulae was announced
[Strelchenko et al., 1998], however, another calf derived
directly from freshly isolated PGCs died soon after deliv-
ery [Zakhartchenko et al., 1999a].

Sheep
For the establishment of ovine ES cells, embryos were

collected between days 7 and 13 post conception [Handy-
side et al., 1987; Notarianni et al., 1991; Talbot et al.,
1993; Galli et al., 1994; Karasiewicz et al., 1996; Mei-
necke-Tillmann and Meinecke, 1996]; however, the pro-
portion of attachment to feeder cells increased when using
advanced embryonic stages [Meinecke-Tillmann and
Meinecke, 1996]. Isolated ICMs or embryonic discs [No-
tarianni et al., 1991] showed a more frequent and faster
occurring attachment than intact embryos [Piedrahita et
al., 1990b]. Ovine ES-like cells do not form multilayered
colonies, but grow as epithelioid monolayers [Notarianni
et al., 1991]. Pluripotency of the cells could be maintained
only for a few passages, as shown by their ability to differ-
entiate in vitro [Piedrahita et al., 1990b; Meinecke-Till-
mann and Meinecke, 1996] and by AP activity [Talbot et
al., 1993; Galli et al., 1994]. Ovine embryonic cells prolif-
erated and differentiated relatively independent of the
feeder cell type [Piedrahita et al., 1990a]. STO and BRL
cells [Handyside et al., 1987], a range of species-homolo-
gous and heterologous bovine fetal feeder cell types [Mei-
necke-Tillmann and Meinecke, 1996], and supplementa-
tion of the culture medium with LIF were not sufficient to
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prevent spontaneous differentiation into endoderm-like
[Handyside et al., 1987], mesenchymal [Karasiewicz et
al., 1996] or epithelial cells [Campbell et al., 1996a]. Nev-
ertheless the latter cells led to birth of live lambs after use
in nuclear transfer experiments [Campbell et al., 1996a;
Wells et al., 1997]. Attempts to prove the pluripotency of
ovine embryo-derived cell lines by in vivo differentiation
after injection into nude mice [Galli et al., 1994] or by
chimera formation and germ line transmission after blas-
tocyst injection [Handyside et al., 1987] failed.

Nonhuman Primates
Because of the differences between human and mouse

development, anatomy, and physiology, primate models
would increase the understanding of the pathogenesis of
specific human diseases, such as Alzheimer’s and Parkin-
son’s disease. The cultivation of immunosurgically iso-
lated ICMs of rhesus monkey blastocysts on a mouse
embryonic fibroblast feeder layer in LIF-supplemented
medium gave rise to ES-like cells which could be main-
tained in an undifferentiated state for more than 1 year
[Thomson et al., 1995]. These cells resembled human
embryonic carcinoma cells with respect to AP activity and
characteristic surface markers (SSEA-3 and SSEA-4). In
the absence of feeder cells, these cells differentiated into
multiple cell types, and injection into immunodeficient
mice resulted in teratocarcinoma formation. Eight pluri-
potent cell lines derived from day 8 embryos of the com-
mon marmoset [Thomson et al., 1996] were maintained
in culture for more than 12 months and displayed mor-
phological features similar to those of embryo-derived
cells of rhesus monkey. Each cell line had a normal karyo-
type, was able to differentiate in vitro into various cell
types, and formed embryoid bodies.

ES Cells and Genetic Modification

Originally, ES cells have been used for the study of ear-
ly developmental processes, e.g. the clonal analysis of cell
lineage in mammals, and the detection of stage- and cell-
specific gene expression [Anderson, 1992]. ES cell-me-
diated transgenesis has some distinct advantages over
other transgenic methods such as integration of (retro-)vi-
ral vectors into an early embryo or microinjection of
DNA into the pronucleus of a fertilized oocyte with the
difficulties of random integration of multiple copies of the
introduced DNA [reviewed in Stewart, 1991]. ES cell
technology might significantly increase the efficiency of
producing transgenic animals, as individual cell lines

derived from a single transfected cell can be screened in
vitro for integration and expression of the exogenous
DNA construct before creating germ line chimeric ani-
mals [Wheeler, 1994]. Because of the rapid proliferation
in vitro, ES cells provide an inexhaustible supply of cells
capable of homologous recombination [Capecchi, 1989].
This technique allows the precise modification of existing
genes, overcomes the problems of positional effects and
insertional inactivation, and mediates the inactivation of
specific endogenous genes [Osterrieder and Wolf, 1998].
The reinsertion of the modified ES cell genome within the
germ line provides an almost abundant source of trans-
genic animals [Seamark, 1994], and a method to rapidly
introduce new genetic information without conventional
cross-breeding [Wheeler and Choi, 1997]. Gene transfer
focuses on the improvement of productivity traits (milk
and carcass composition, growth rate and feed utilization)
but also of disease resistance and reproductive perfor-
mance [Wheeler et al., 1995]. Other important applica-
tions include the production of pharmaceutical proteins
in specific organs or body fluids of transgenic animals
(gene farming) [Brem and Müller, 1994], and the genetic
modification of pigs to produce cells, tissues or organs for
xenotransplantation [reviewed in Platt, 1998]. In addi-
tion, genetically engineered farm animals may become
important animal models. The establishment of animal
homologues for human diseases has proven to be an
invaluable tool for studies of human genetic and infec-
tious disorders and cancer. In particular, pigs offer some
distinct advantages compared to the commonly used
rodent models because they are immunologically and
physiologically more similar to humans and have a more
diverse genetic background [Brem and Müller, 1994;
Wheeler, 1994]. Recent progress in nuclear transfer using
transfected cells offers an alternative, apparently more
efficient strategy for producing transgenic animals than
DNA microinjection, especially in species where ES cells
are not established but nuclear transfer is successfully per-
formed (fig. 2).

Potential Benefits of Totipotent and Somatic
Cell Cloning

Cloning is an asexual form of reproduction, resulting
in genetically identical organisms [Anderson and Seidel,
1998]. Embryo cloning by nuclear transfer involves the
transfer of genetic material from a donor cell (karyoplast)
to the cytoplasm of an oocyte or zygote from which the
genetic material has been removed (cytoplast). Since the
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number of cells in preimplantation embryos is limited,
their use as donor nuclei prohibits the generation of larger
clones and also genetic modification. Recent progress in
cloning animals from cultured cells of embryonic, fetal, or
adult origin offers the possibility of unlimited multiplica-
tion of elite embryos or animals, and of precise genetic
modification [reviewed in Wolf et al., 1998] (fig. 2). With
the conventional use of ES cells via blastocyst injection or
morula aggregation chimeric animals are generated and
subsequent production of homozygous transgenic foun-
der animals by conventional cross-breeding is necessary
[reviewed in Stice et al., 1998]. In contrast, after the utili-
zation of transfected presumptive ES or somatic cells as
donors in nuclear transfer experiments, all offspring of the
first generation will consist entirely of donor cell nuclei
carrying the transgene. Also the sex of the nuclear donor
cells can be determined prior to use and the problem of
mosaicism in the transgenic founders resulting in failure
of transgene transmission in the gametes is eliminated
[Anderson and Seidel, 1998]. Production of transgenic
livestock by nuclear transfer of transfected cultured cells
requires fewer embryos than direct DNA microinjection
into zygotes [Schnieke et al., 1997]. This implies impor-
tant advantages saving time and expense particularly in
large domestic animals with a long generation time and a
limited number of offspring [First and Thomson, 1998].

Additionally, the availability of cultured cells for nu-
clear transfer allows further investigation of the cell cycle
and its role in the development of cloned embryos [Camp-
bell et al., 1996b]. Some investigators argue that forcing
the donor cell into a quiescent G0 stage enhances nuclear
reprogramming by switching off genes in differentiated
cells [Campbell et al., 1996b]. Reprogramming includes
reduction or cessation of transcription, changes in the
nuclear structure (nuclear lamina), chromatin structure,
nuclear morphology and stage-specific protein synthesis
[reviewed in Wolf et al., 1998]. Reprogramming is also
affected by the timing of embryonic genome activation
[reviewed in Stice et al., 1998], which occurs at a later
stage in sheep and cattle (8-cell stage), but earlier in spe-
cies less amenable to nuclear transfer (mouse: 2-cell stage;

Fig. 2. Pluripotent and somatic cells as alternatives for gene and
nuclear transfer in vertebrates: derivation, genetic modification and
utilization via in vitro differentiation, blastocyst injection and nu-
clear transfer for in vitro studies, cell therapy and production of
transgenic animals for different purposes.

pig: 4-cell stage), leaving a shorter time period for the
transferred nucleus to be reprogrammed [Solter, 1998].

However, Wakayama et al. [1998] succeeded in full-
term development of mice by simple nuclear transfer of
cumulus cells. This report also underlines a series of find-
ings initiated by Campbell et al. [1996a] suggesting that
nuclei from differentiated cells introduced into enu-
cleated oocytes are capable of supporting full develop-
ment. Originally, differentiated cells have been thought to
be inappropriate as nuclear donors because of apparently
irreversible changes in their genome during differentia-
tion (e.g. epigenetic methylation of cytosines). This dog-
ma has been overcome by successful nuclear transfer
using fetal cells in cattle and sheep [Schnieke et al., 1997;
Wells et al., 1997; Cibelli et al., 1998b; Zakhartchenko et
al., 1999b]. In the first successful cloning experiment of
goats donor karyoplasts were obtained from a transgenic
female fetus and one of three identical offspring produced
human antithrombin III in its milk [Baguisi et al., 1999].
Fully differentiated somatic cells from adult animals used
as nuclear donors, e.g. oviductal cells [Kato et al., 1998]
and mural granulosa cells [Wells et al., 1999], resulted in
healthy calves. However, success might be limited due to
decreased and variable telomere length in the latter [An-
derson and Seidel, 1998]. Mitotically inactive adult cells,
such as neurons, might be poor candidates, while contin-
uously dividing cells, such as epidermal cells, should be
preferred [Wilmut et al., 1997; Wakayama et al., 1998].
Also a random loss of correct imprinting and the inactive
X chromosome in differentiated female cells may be
responsible for low full-term development of embryos
derived from adult cell nuclei [Solter, 1998]. Not only a
high rate of perinatal mortality but long-lasting deleteri-
ous effects might be associated with adult somatic clon-
ing. The random choice of cultured donor cells bearing
mutations or the lack of fine-tuned regulation during
nucleocytoplasmic interaction are considered as epigenet-
ic events affecting the correct reprogramming of gene
activity [Renard et al., 1999].

These difficulties together with a finite life span of dif-
ferentiated cells in culture also limit the types of transgen-
ic modifications that can be made. Homologous recombi-
nation requires the selection of transfected cells and the
propagation of these cells to identify the correctly targeted
ones. This common strategy would be limited by a low
number of cell divisions [Cibelli et al., 1998b]. Therefore,
the establishment of pluripotent cells still remains a mat-
ter of scientific interest, at least as a unique source for
studies of early embryonic development in respect to cell
commitment and gene regulation.
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Potential Applications of ES Cells and Cell
Cloning to Human Biology and Medicine

Although the recent success in establishing human ES
cells raised numerous ethical concerns, acceptable appli-
cations of ES cell technology in the human can be envis-
aged and will be based on manipulation and analysis of
human ES cells in vitro. Bongso et al. [1994] reported the
isolation of human ICM cells at day 8 postinsemination
and culture on ampullary epithelial feeder layers for 2 pas-
sages using human LIF. ES-like cells were identified by
typical morphology and AP activity. Recently, five hu-
man ES cell lines were established from immunosurgical-
ly isolated ICMs, and at least one was maintained for
more than 8 months showing similar morphology to rhe-
sus monkey ES cells [Thomson et al., 1998]. ES-like char-
acter was demonstrated by surface marker (SSEA-3,
SSEA-4) expression, AP activity, teratoma/teratocarcino-
ma formation in nude mice, and high telomerase activity
(which is involved in maintenance of telomere length and
correlates with immortality in human cell lines). Addi-
tionally, human primordial germ cells were derived from
5- to 9-week-old fetuses and cultured on STO cells with
medium containing human LIF and bFGF for up to 21
days. The growing colonies were AP-positive, expressed
characteristic immunological markers (SSEA-1, SSEA-3,
SSEA-4), and differentiated in vitro into derivatives of all
three germ layers [Shamblott et al., 1998]. In vitro differ-
entiation of human ES cells directed along chosen path-
ways would allow investigation of human developmental

events including regulatory signals, cell commitment and
morphogenesis, and identification of target genes for new
drugs and teratogenic or toxic compounds that cannot be
analyzed in vivo due to ethical constraints [Rathjen et al.,
1998; Thomson et al., 1998]. ES cell technology together
with cloning can be useful in humans for cell and tis-
sue therapy [Gearhart, 1998; Trounson and Pera, 1998]
(fig. 2). People could provide their own cells and, by using
them to replace the nuclei of their own or donor eggs,
obtain stem cells in culture and then induce differentia-
tion to provide individually tailored cell and tissue re-
placements without rejection problems offering lifelong
treatment [Gage, 1998]. The major obstacles for gene
therapy, (1) the lack of long-lived cell types easily isolated,
maintained and manipulated in vitro, and (2) the possibil-
ities of only crude modification of the human genome,
could be solved by permanent human ES cell lines suit-
able for precise genetic modification [Rathjen et al.,
1998]. But before future application of the human ES cell
technology, international rules should be worked out with
respect to ethical implications and the commercial use of
human ES cells [see Anderson and Seidel, 1998].
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