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Abstract

Principal components are a well established tool in dimension reduction. The
extension to principal curves allows for general smooth curves which pass through
the middle of a p— dimensional data cloud. In this paper local principal curves are
introduced, which are based on the localization of principal component analysis. The
proposed algorithm is able to identify closed curves as well as multiple curves which
may or may not be connected. For the evaluation of performance of data reduction
obtained by principal curves a measure of coverage is suggested. The selection of
tuning parameters is considered explicitely yielding an algorithm which is easy to
apply. By use of simulated and real data sets the approach is compared to various

alternative concepts of principal curves.

Key Words: Local smoothing, mean shift, principal components, principal curves.

1 Introduction

The classical problem of how to find the best curve passing through some data points
(4,9i),4 = 1,...,n can be handled in two fundamentally different ways. Let us regard
the data points as realizations of i.i.d. random variables (X;,Y;) drawn from a population
(X,Y). A common approach is to regard X as an explanatory variable for the dependent
variable Y. This concept is used in all methods where the focus is on regression or smooth-

ing and is especially useful when the objective is prediction of the dependent variable from



the observations z;. Thereby X and Y have an asymmetric relationship and cannot be

interchanged without changes of the results.

In contrast, X and Y may be regarded as symmetric, thus we do not assume that one
variable can be made reponsible for the value of the other one. Rather they are generated
simultanuously from a common underlying distribution. These approaches are useful when
the focus is on dimension reduction or simply description of the data. Representants
here are methods like the ACE algorithm, canonical correlation or principal component
analysis. Linear Principal components, introduced by Pearson (1901), are a common tool
in multivariate analysis, applied for example in feature extraction or dimension reduction.
Jolliffe (1986) gave an overview on properties and applications of principal components.
Nonlinear principal components have been developed by Scholkopf & Smola (1998) and

successfully employed for pattern recognition.

A natural extension of principal components are principal curves, which are descrip-
tively defined as one-dimensional smooth curves that pass through the “middle” of a
p—dimensional data set. Though this concept is intuitively clear, there is much flexibility
in how to define the “middle” of a distribution or a data cloud. Hastie & Stuetzle (1982)
(hereafter HS), who did the groundbreaking work on principal curves, use the concept of
self-consistency (Tharpey & Flury, 1996), meaning that each point of the principal curve
is the average of all points that project there. A variety of other definitions of principal
curves have been given subsequently by Tibshirani (1992), Kégl, Krzyzak, Linder & Zeger
(2000) (hereafter KKLZ), and more recently Delicado (2001), which differ essentially in
how the “middle” of the distribution is found.

Apart from Delicado (2001), all concepts mentioned above work more or less as follows:
They start with a straight line, which is mostly the first principal component of the data
set, and try to dwell out this line or concatenate other lines to the initial line until the
resulting curve is passing satisfactory through the middle of the data. This methodology
leads to some technical problems. HS generally exclude intersecting curves from the def-
inition of principal curves and are not able to handle closed curves. Banfield & Raftery
(1992) (hereafter BR) provide a bias corrected version of the HS algorithm which solves the
latter problem, but yields more wiggly results than HS. Chang & Ghosh (1998) combine
the algorithms of HS and BR and show that this yields a smooth and unbiased principal
curve, at least for simple data situations. Tibshirani’s theoretically attractive approach

seems to have the same problems as HS, though not explicitely stated, and further seems



to have a lack of flexibility for strongly skewed data. These difficulties have been solved
by Verbeek, Vlassis & Krose (2001), but at the expense of an apparent wiggly principal
curve, since polygonal lines are connected in a somehow unsmooth manner. KKLZ work
also with polygonal lines and obtain with high computational effort a smooth and flexible
principal curve, which only fails for very complicated data structures. None of these algo-
rithms seems to be able to handle curves which consist of some multiple or disconnected
parts. Recently, Kégl & Krzyzak (2002) provided a promising algorithm to obtain princi-
pal graphs, i.e. multiple connected piecewise linear curves, in the context of skeletonization

of hand-written characters.

All these methods have to be regarded as global, since in every step of their algorithms,
or at least in the initial step, all available data points are used. As alternative to the
global methods, which lead to exploding computational costs for large data sets or high-
dimensional data, it would be desirable to have a local method at hand, which only
considers data which are close to the target point. Lately, Delicado (2001) proposed the
first principal curve approach which can be called local. Assume a d-dimensional random
vector X and n random samples X; € R4, i =1,...,n from X, where X; = (X;1,..., Xiq).
For each point z, Delicado considers the hyperplane H(z,b) which contains z and is
orthogonal to a vector b. The set of vectors b*(x) minimizing the total variance ¢(z,b) =
TV (X|X € H(z,b)) defines a function p*(z) = E(X|X € H(z,b*(x))). Principal oriented
points (POPs) are introduced as fix points of the function p*(-). For a suitable interval
I € R, « is called a principal curve of oriented points (PCOP) if {a(s)|s € I} is a subset
of the fix point set of p*. Delicado shows that POPs exist, and that in case b*(z) is unique
(this implies that the principal curve is a function), to each POP exists a PCOP passing
through it. Since the hyperplanes H are sets of measure zero, it is necessary to employ
a kind of smoothing for calculating the conditional expectation on the hyperplane. This

H

[

is achieved by projecting all data points on H(z,b), obtaining points X;*, and assigning
weights

wi = w(|(X; — 2)"b)), (1)

where w is a decreasing positive function, e.g. w(d) = K(d/h), with a kernel function
K. Let fi(z,b) denote the weighted expectation of the X with weights w;. Now p*(z)
is approximated by ji*(z) = ji(x, b*(z)), where b*(z) (and hence H) is constructed such
that the variance of the projected sample, weighted with w;, is minimized. Localization
enters here twofold. Firstly, by applying (1), points near to the hyperplane are upweighted.

Secondly, a cluster analysis is performed on the hyperplane, and only data in the local



cluster are considered for averaging. How is the principal curve found in practice? The
algorithm searches the fix point set of m*(x) as follows. Repeatedly, choose a point
randomly from the sample X1,..., X, and call it 2(g). Then iterate x(y) = i*(z(—1))
until convergence. In this manner a finite set of POPs is obtained. However, no fix
point theorem guarantees convergence of this algorithm, although Delicado reports quick
convergence for some real data sets. In order to obtain a PCOP from a set of POPs,
Delicado proposes an idea which we will further exploit. Assume an POP z; calculated
as explained. From the set of principal directions b* (x1), choose one vector b;. Now walk

a step of length 0 from 27 in direction of by, i.e.
x5 = x1 + Oby, (2)

where 0 is previously fixed. The point z3 serves as a new starting point for a new iterating
process, leading to a new point z9 of the principal curve. This is repeated k times until no
points X; can be considered to be near the hyperplane H(z},b;). Then return to (z1,b1)
and complete the principal curve in direction of —b;. Afterwards move on to another of

the previously chosen POPs and continue analogously.

Delicado’s concept is mathematically elegant, theoretically well elaborated, and works
fine in the examples he provided. It might work fine even for complicated data structures
(spirals, disconnected branches, etc.), though he didn’t provide examples for those cases.
One might consider it as a drawback that the concept is mathematically demanding and

not intuitively clear. Further, Delicado does not reflect the choice of parameters 9 and h.

In this paper, we introduce a concept similar to that of Delicado. However, we replace
the fix points of i* by local centers of mass, and replace the principal direction b; by
a local principal component. We call the resulting curve, which consists of a series of
local centers of mass, local principal curve. We introduce the notion of coverage, which
evaluates the performance of the principal curve approximation and is a helpful tool to
compare the performance of different principal curve algorithms. We show that, using this
concept of coverage, the parameters which are necessary for our algorithm can easily be
selected in a data-adaptive way. The price paid for the easiness of the concept is that in
contrast to Delicado’s approach there is no statistical model and consequently it is hard
to derive theoretical results. However, in Section 5 we give a theoretical justification for

our method. The algorithm will be presented in the following section.



2 Local Principal Components

Assume a d-dimensional data cloud X; € R?,i = 1,...,n, where X; = (Xi1,...,X;q). We
try to find a curve which passes through the “middle” of the data cloud. The curve will
be calculated by means of a series of local centers of mass of the data, according to the

following strategy:
1. Choose a suitable starting point z(g). Set z = z(q).
2. Calculate the local center of mass p® around z.
3. Perform a principal component analysis locally at .

4. Find the new value x by following the first local principal component % starting at
pe.
5. Repeat steps 2 to 4 until x* remains (approximately) constant.

The series of the y* make up the desired curve. In the sequel we will explain these steps

in detail:
1. Selection of the starting point

In principle, every point z () € R? which is in or close to the data cloud can be chosen as

starting point. There are two ideas which suggest themselves:

e Based on a density estimate the point with the highest density z ) = mawweRf(m)

is chosen.
e A point z(g) = X; is chosen at random from the set of observations.

The advantage of the density method is that one can be quite sure not to start in a
blind alley, whereas a randomly chosen point could be an outlier far from the data cloud
which stops the algorithm already in the first loop. However, this is not very likely, and
the computational costs of the second approach are much lower. Moreover, for handling

crossings a randomly chosen starting point is even superior to a high density point.
2. Calculating the local center of mass

Let H be a bandwidth matrix and Ky (-) a d— dimensional kernel function. Given that
all components of X are measured on the same scale, we set H = {h%-1:h > 0}, with I

standing for the d-dimensional identity matrix. For a detailed description of multivariate



kernels and bandwidth matrices see Wand & Jones (1993). For selection of h, see Section

7. The local center of mass around z is given by

i Ka(Xi —2)X;
HO) = S R (X — o)

This estimator and its relation to the Nadaraya-Watson estimator have been analyzed in

(3)

Comaniciu & Meer (2002). For ease of notation, we will abbreviate y* = u(x) in the

following. We denote by uj the j-th component of u(z).
3. Calculating the local principal component

Let X% = (07;,) denote the local covariance matrix of z, whoose (j, k)-th entry (1 <j,k <

d) is given by
o = Z ki(Xij — n3)(Xik — pi) (4)
i1

with weights k; = Ky (X; —2)/ Y i) Ku(X; — «), and H as in 2. Let v be the first
eigenvector of %*. Then % is the first column of the loadings matrix I'* from the principal

components decomposition (I'?)7'$2['% = A%, where A® = (M, ..., Ap) is a diagonal matrix

containing the ordered eigenvalues of X%, with A7 > ... > AJ.

Note that the denotation “local principal components” is not new, but has been previously
used for linear principal components localized in clusters (Skarbek, 1996; Kambhatla &
Leen, 1997) or based on contiguity relations (Aluja-Banet & Nennell-Torrent, 1991) rather

than by kernel functions.
4. Obtaining an updated value

The local principal component line v* can now be parameterized as
vi(t) = "+ 17" (tER), (5)
and we obtain an updated value of z by setting
z = p" +ty", (6)

in analogy to step (2) of Delicado’s algorithm. A suitable value of t; thereby has to be
chosen beforehand. We defer the task of how to select ¢y to Section 7.

5. Stop when p* remains constant

When the end of the data cloud is reached, the algorithm will naturally get stuck and

produce approximately constant values of u®. One might stop before this state occures,



e.g. when the difference between previous and current center of mass falls below a certain

threshold.

The mechanism is demonstrated in Fig. 1. The starting point z (g is denoted by 0. The
radius of the circle is equal to the bandwith A = 0.2. Calculating the local center of mass
around 0 yields the nearby point m. Moving along the first principal component with
to = 0.2 leads to the new point z denoted by “1”, and so on. The series of m’s is the
local principal curve. Note that the algorithm is based on finding an equilibration between
opposing tendencies: On the one hand, the local principal components are oversteering,
i.e. tending “outside” to the concave side of the curvature of the data cloud. On the other
hand, the calculation of the local center of mass is smoothing the data towards the interior
and thus in the opposite direction. These two effects together ensure that the estimated

principal curve is not systematically biased.

-1.0 08 0.6 04 0.2 0.0
X1

Figure 1: Demonstration of the local principal curve algorithm.



3 Technical details

In practice, some modifications of the above algorithm are useful, which we describe in

the following.

3.1 Maintainig the direction

A principal component line always has two directions, thus the corresponding eigenvector

v* could be replaced by its negative value —~*.

Depending on the orientation of the
eigenvector, the constructed curve moves in opposite directions. If this direction changes
from one step to another, the algorithm dangles between these two points and will never
escape. Therefore one should check in every step that the local eigenvector has the same
direction as in the previous step. This can be done by calculating the angle afi) between
the eigenvectors fyg;fl) and 'yé’“;.) belonging to the (i — 1)-th resp. i-th step , which is given
by

T

cos(e) = V1) © oy
where o denotes the scalar product. If cos(afi)) < 0, set 'ygci) = —'ygcl.), and continue the
algorithm as usual. This “signum flipping” has been applied in the step from “2” to “3”

in Figure 1.

3.2 Running backwards from z g

When one starts at a point z(p) and moves by means of local principal components to one
“end“ of the cloud, one has omitted to consider the part between the starting point and
the other end of the cloud, except if the data describe a closed curve, e.g. a circle or a
ellipse. Therefore it is advisable to run from the starting point in both directions of the

first principal component, what in practice means adding a 6th step to the algorithm:

6. For the starting direction —fyg"o) := —%© perform steps 4 and 5.

3.3 Angle penalization

If the data cloud locally forms crossings, at each crossing the local principal curve has
three possibilities where to move on. Often one desires that the curve goes straight on at

each crossing, and does not turn arbitrarily to the left or right. In order to achieve this



effect, we recommend to perform an angle penalization in addition to the signum flipping

in each step of the algorithm. This might be done as follows:

Let k£ be a positive number. For the angle 04‘6.), set

agyy = | cos(oz%'i))|k

and correct the eigenvectors according to

T T T T

Ty = @Gy Vi + (1= aly) iy

Thus, the higher the value of k, the more the curve is forced to move straight on. We
recommend to set set £k = 1 or 2. For higher values of k the local principal curve looses

too much flexibility.

3.4 Multiple initializations

Assume that the data cloud consists of several branches, which might or might not be
connected. Then one single local principal curve will fail to describe the whole data set,
but will only find one branch. This is a problem inherent to all global principal curve
algorithms. In our approach this problem can be solved by doing multiple initializations,
i.e. we choose subsequently a series of starting points, so that finally at least one starting
point is situated on each branch, and perform the algorithm for each starting point. In
this manner the whole data cloud will be covered by the local principal curve. The starting
points can be imposed by hand on each of the branches, or, if this is not possible or too
cumbersome, they might be chosen randomly. If one has for example two disconnected
branches of the data cloud, which contain more or less the same amount of data, then the
application of four randomly chosen starting points already effects that with 93.75% prob-
ability at least one starting point is on each cloud. For an arbitrary number of branches,
Borel-Cantelli’s Lemma tells us that with the number of starting points increasing to in-
finity, each branch is visited with probability 1. In practice this technique proves to work
satisfactory, even for a high number of branches. To conclude, for a set of starting points

Sp, we add a 7th step to the algorithm:

7. If So # 0, choose (without replacement) a new starting point ) € Sp and start

again with step 1.

It should be noted that our algorithm is deterministic given the starting points, but yields

different principal curves for different starting points. However, since in each case the local



centers of mass of the same data are calculated, differences of principal curves on the same
branch are usually neglectable. In contrary, KKLZ’s implementation of their algorithm is

strongly indeterministic, and that even for equal starting conditions.

4 Examples

4.1 2-dimensional data

Firstly, we compare the results of our algorithm with some standard examples which were
also examined by KKLZ (In this and the following examples, the curves from KKLZ and
BR are obtained via the Principal Curves Java program from Baldzs Kégl, available at
http://www.iro.umontreal.ca/~kegl/research/pcurves/. The HS curves were ob-
tained by Hastie’s Splus function http://1lib.stat.cmu.edu/S/principal.curve). We
start with a circle with radius » = 1, which is contaminated with bivariate uncorrelated
Gaussian noise with variance 0.04 in each component. The result is demonstrated in Fig.

2.

We notice that only the BR and the proposed local principal curve (hereafter: LPC)
algorithm produce a closed curve, whereas HS and KKLZ lead to an open curve. The
LPC curve seems to be a bit wiggly in comparison to the other curves, but it should be
noted that the LPC approach is fully nonparametric and is only steered by the data, but
not by an initial line like the other approaches. This leads to more flexibility (looking at
the data, the bump in the left top is not unlikely to be a real feature of the distribution)

at the price of a higher variance.

Secondly, we examine the spiral data from KKLZ, Fig. 10, b) and ¢) (where the con-
taminated big spiral is newly simulated). The standard deviation of the noise is equal to
0.01 for both spirals, and in in each experiment 1000 data points were generated. The
small spiral, see Fig. 3, is found nearly perfectly by KKLZ and LPC, however the HS
algorithm shows a fairly bad performance here. The big spiral is only found by LPC.
KKLZ’s polygonal line algorithm fails here and yields erratic results, which differ in each
run of the algorithm. The result of HS is even worse (compare KKLZ, page 21, Fig. 11.).

Finally, we consider real data recorded by the Office of Remote Sensing for Earth Re-

sources, Pennsylvania State University, which show the location of floodplains in Beaver
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Figure 2: Local principal curve for an underlying circle in comparison to other principal

curve algorithms.
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Figure 3: Local principal curve for underlying small and big spirals in comparison to other

principal curve algorithms.
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Figure 4: Floodplains in Beaver County, PA. (left: original, right: digitalized).

County, PA, USA, 1996 (Fig. 4). For analyzing the data, we digitalized the map to a
grid of 106 x 70 = 7420 digits. Fig. 5 shows the result of a run of the LPC algorithm
using the digitalized floodplain data. We used 50 initializations and a bandwidth h = 1.5
(The automatic selection routine from Section 7 suggests 2.5, but a smaller bandwidth
seemed more appropriate in this case.). The principal curve uncovers nicely the principal
courses of the floodplains. Taking a look at maps from Beaver county, we see that our
principal curve reconstructs the underlying rivers resp. valleys in this district (The data as
well as corresponding maps are available at PASDA - Pennsylvania Spatial Data Access,
www.pasda.psu.edu. The best form to regard those maps is to open the ArcExplorerWeb
at http://wuw.esri.com/software/arcexplorer and search in the opening menue for
Pennsylvania Spatial Data Access, “PA Streams” or “PA Floodplains”). Note that a
quite big cluster in the central bottom is not covered - this simply occurs because none of
the randomly chosen starting points is situated there, and this isolated cluster cannot be
reached by an external principal curve. More initializations would be necessary to solve

this.

4.2 3-dimensional data

We now consider a data set included in the Splus software package, namely the “radial ve-
locity of galaxy NGC7531”. This data frame, recorded by Buta (1987), contains the radial

velocity of 323 points of that spiral galaxy covering about 200 arc seconds in north-south
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Figure 5: Floodplain data (.) with principal curves (+).
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Figure 6: Galaxy data (o) with principal curves (+).

and 135 arc seconds in east-west direction in the celestial sphere. All the measurements lie
within seven slots crossing the origin. The x- and y-coordinate describe the east-west resp.
north-south coordinate, and the z-coordinate is the radial velocity measured in km/sec.

For simplicity, we only consider the first 61 data points of the data set (this corresponds

to two slots crossing the origin).

Since the data are now situated on two (connected) branches, we need to inititialize more
than once. We choose to initialize 4 starting points. We apply an angle penalization using

k = 2, which serves to keep the curve on the correct slot at the crossing. The result is
shown in Fig. 6.
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Figure 7: Kernel density estimation of simulated circle data.

5 Theoretical justification

This approach seems to be heuristic to some extent, since we have provided neither a
model for the data nor a mathematical precise definition of a local principal curve. In
this section we will give some idea which curve we are actually estimating via the LPC
algorithm. When we started to work on principal curves, we were not primarily influenced
by Delicado’s work, but were guided by a simple and appealing idea. It is instructive to

take a look at the circle data in Section 4.1. A kernel density estimation yields Figure 7.

Looking at this figure, the course of the principal curve is easily to imagine - one simply has
to walk along the crest of the mountain. Unfortunately this crest line, which everybody is
able to draw rapidly with a pencil, is mathematically intractable. To our knowledge, there
exists no mathematical definition of a crest point. However, we will argue in the following
that the principal curve we are estimating by means of our algorithm is approximating

this crest line.

Comaniciu, Ramesh & Meer (2001) and Comaniciu & Meer (2002), among others, study

the properties of the so-called mean shift vector

M(z) = p(z) -, (7)

16



with p(z) being the local center of mass (3). They provide two results which are of interest

for us:
For a Gaussian kernel K and a bandwidth matrix H = {h? - T : h > 0},

(A) the mean shift vector (7) is proportional to the estimated gradient function V fx (),

where the estimated gradient is the gradient of the kernel density estimator

rcla) = #ZK (F75). ®

(B) the sequence

m® = 4

mED = (m®)

converges to a nearby point where the estimator (8) has zero gradient, i.e. to a mode

candidate of the kernel density.

For other kernels these statements continue to hold under certain conditions, if in (8) K

is substituted by its shadow, see Comaniciu & Meer (2002).

Let us return to our algorithm now. For any point x, we can calulate a local center of
mass p(z) via function (3). It is easy to imagine, that the closer z is to the middle of the
distribution of the data, the smaller is the mean shift. According to (7) this mean shift is

zero for the fix point set of function (3), i.e. the set

{zlp(z) = =}

(what shows another analogy of our concept to that of Delicado). Considering (A) we
realize that these are the points where the estimated gradient function of the density is
minimized, which is the case for modes of the estimated density. By applying (B), we thus
have a tool for estimating the modes of the density of the data. This is however not our
intention: An algorithm like this would get stuck at the modes and be unable to connect
the modes in a proper way. Therefore, in each step of the algorithm, we employ only the
first loop of the iterative process (B), which brings us near the crests, but not nesessarily
in a mode point. Then, for not getting stuck in a mode, we move along a little step in
direction of the local principal component (what means in practice: along a crest). If
thereby, after one or more steps, a point z () is approached which is near to a new mode,

then the local center of mass () will tend to this mode, as the following (quite trivial)

17



lemma shows. If no further modes exists, the algorithm will stop itself when the end of
the data cloud is reached.

Lemma 1. Let X; € R4, i =1,...,n be a data cloud and H be a bandwidth matriz. Let
wo a fix point of (3) resp. H and x — pg. Then, applying the same bandwidth matriz

H, we have convergence p(x) — po.

Proof

() — o] = | o= K Xi — )X T, Ku(Xi = po) X
St Ku(X;—z)  Sr, Ku(X; — o)

for continuous non-zero kernel-functions.

6 Coverage

There is need for some criterion to evaluate the performance of a principal curve. This is

usually done by means of a quantitative measure as the expected squared distance
A(m) = E (inf||X = m(0)]?) (9)

between data X and the curve m. Principal curves according to HS are critical points
of (9), whereas principal curves by KKLZ are minimizing (9) over a class of curves with
bounded length. Another quantitative measure is the generalized total variance (Delicado,
2001). However, definitions of this type are connected to an underlying stochastic model
for the data, which is not used in our case. Therefore we propose a model-independent
criterion to assess the quality of a principal curve. We define the coverage of a principal
curve m by the fraction of all data points which are situated in a certain neighborhood
of the principal curve. More precisely, let a principal curve algorithm select a principal

curve m counsisting of a set P, of points. Then
Cn(7) = #{z € X|Tp € P, with||z — p|| < 7}/n

is the coverage of curve m with parameter 7. Obviously the coverage is a monotone
increasing function of 7 and will reach the value 1 for 7 tending to infinity. Note that
the coverage can be interpreted as the empirical distribution function of the “residuals”,
i.e. the shortest distance between data and principal curve. For evaluating the quality
of a principal curve fit it is necessary to take a look at the whole coverage curve C,,(7).

In Fig. 8 we provide the coverage plots for the spiral data (Fig. 4), each for the HS,

18



KKLZ and LPC algorithms and for principal component analysis. For the small spiral,
the coverage of the LPC and the polygonal line algorithm from KKLZ are comparable,
whereas HS is falling back significantly and is performing only slightly better than the
principal component approach. For the big spiral, the LPC algorithm clearly outperforms

all other algorithms.

Certainly a concave coverage curve is desirable, i.e. it is “best” when rising rapidly for
small 7. The better the principal curve, the smaller is the area in the left top above the
coverage curve, i.e. the area between Cp,(7), the line 7 = 0 and the constant function
¢(7) = 1. This area corresponds to the mean length of the observed residuals. To obtain a
quantitative measure for the performance of a principal curve, we set this area in relation
to the corresponding area obtained by standard principal component analysis. The smaller
this quotient, the smaller is the relative mean length of the observed residuals and the
better is the principal curve compared to principal components. The following table
provides this quotient A¢ for HS, KKLZ and LPC, where the latter one is calculated
applying the optimal bandwidths according to Section 7.

small spiral | big spiral
algorithm Ac Ac
HS 0.79 0.92
KKLZ 0.03 0.66
LPC 0.06 0.08

Table 1: Area-quotient A for some principal curve algorithms.

For the HS algorithm, the quotient A takes values near 1, which means a quite bad per-
formance. KKLZ yields an excellent value for the small spiral and a rather unsatisfactory

value for the big spiral. LPC performs fine in both cases.

7 Selection of parameters

The algorithm is based on two parameters which have to be selected beforehand: The
bandwidth h for the radius of the local center of mass and the value ¢y which determines
the step length. Assume a center of mass ufi at step 4, using the data within a radius h
around a nearby value z(;y. Starting from Mﬁ.), it seems sensitive to walk along the first

principal component 'ygci) until the border of the circle around z(;y is reached, what leads
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Figure 8: Coverage for small (top) and big (bottom) spiral data.
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roughly to the update rule

This means that we employ

This rule works fine in practice and was applied in all examples in this paper. It now
remains to select the value h, which plays the role of a classical smoothing parameter, thus
the smaller the value of h, the more details are unveiled by the local principal curve and
the more wiggly it is. To select i, we make use of the concept of coverage introduced in the
previous section. The idea is the following: If a certain bandwidth A is supposed to serve
satisactory for calculating the local center of mass around z, we assume implicitely that
this value h covers more or less the width of the data cloud around z. Thus, as a criterion
for the adequacy of a principal curve m(h) calculated with a certain bandwidth A we can
apply its proper coverage C,)(h). We will will refer to this coverage as self-coverage
hereafter. This curve has a typical behaviour: It starts with small values, then increases
rapidly until a local maximum is reached, where the best fit is achieved. Afterwards
the self-coverage curve is falling again or shows erratic behaviour, but finally rises up to 1
since for large bandwidths the coverage naturally takes the value 1. Note that the fact that
Cn(ny(h) is falling is not in contradiction with the property of monotoneness mentioned
in the previous section: In contrast to C, ) (h), the coverage Cp,(7) is calculated for the

same principal curve m for all 7! Our parameter selection rule is the following:
Choose the lowest parameter h for which

e the function Cy,;)(h) achieves its first local maximum,

e or, if no local maximum exists, the function C,,)(h) achieves the value 1.

We want to illustrate this methodology by means of the spiral data shown in Fig. 3. For
the small and the big spiral, we calculate the self-coverage over a grid from h = 0.01 up
to h = 1.0 in steps of 0.01. The results are presented in Fig. 9. Since the maxima are
partially very flat, we provide in addition the numeric values (for the crucial range of h)

in Table 2.
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Figure 9: Self-coverage for spiral data.
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small spiral | big spiral

hl  Cumy(h) | Crny(h)
0.01 0.013 0.177
0.02 0.961 0.589
0.03 0.996 0.990
0.04 0.999 0.997
0.05 1.00 0.998
0.06 1.00 1.00
0.07 1.00 1.00
0.08 1.00 1.00
0.09 1.00 1.00
0.1 1.00 0.998

Table 2: Self-coverage for spiral data.
For the small spiral, the first local maximum is achieved at value h = 0.05 with
Cin(0.05)(0.05) = 1. Thus we choose h = 0.05. For the whole span from h = 0.05 to
h = 0.16 we would however obtain an ideal principal curve (see the flat maximum). Af-
terwards the self-coverage is unstable and partially deteriorating. For large values of h
the self-coverage tends to 1. The big spiral data lead to a first local maximum starting
at h = 0.06. Afterwards the curve shows erratic behaviour and approaches slowly to the
constant value 1, which is reached at h = 0.88. In these calculations, we worked with one
fixed starting point (more starting points should not be necessary, since the data cloud is

connected and consists of only one branch).

8 Discussion

We demonstrated that the concept of applying local principal components in connection
with the mean shift is a simple and useful tool for calculating principal curves, which
shows mostly superior performance in simulated data sets compared to other principal
curve algorithms. We showed that the algorithm works in simulated and real data sets
even for highly complicated data structures. This includes data situations which yet could
only be handled unsatisfactory, as data with multiple or disconnected branches. Especially
for noisy spatial data as the floodplain data the approach has a high potential to detect
the underlying structure. We further provided a tool to select the necessary parameters

in a data-adaptive way.
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There is still need for further research concerning the theoretical background of the
method. Though working fine, we still don’t have a theoretical justification why we use
local principal components to connect the modes of the density. This choice is sensible
but in no way unique, and there seem to be many alternatives, such as the extrapolation
of the already estimated part of the curve. Due to the nice properties of the mean shift,
it might even work to use a line in an arbitrary direction, as long it is not orthogonal to
the principal curve in the observed point. Important is simply that a movement is made
- the mean shift will afterwards adjust the principal curve in direction of the “middle” of
the data cloud. However, by applying local principal components the algorithm is fastest,
most stable, and the results are as intuitively expected. We consider the first local prin-
cipal component to be a (biased) approximation of the tangent to the crest line: One can
easily derive from its definition that the first local principal component around £ is the
line through ¢ which minimizes the weighted distance between the X; and the line, using
the weights k; as in (4). The first local principal component is therefore that line through
& that locally gives the best fit.

Furthermore, it will be interesting to investigate if the proposed algorithm can be extended
to obtain local prinicpal surfaces or even local principal manifolds of higher dimensions.
This might be a quite difficult job, since yet easy techniques as the signum flipping or
the mean shift will probably not be transferable to higher dimensional curves without

cumbersome extra work.
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