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”Exact” numerical algorithms for linear stochastic wave
equation and stochastic Klein-Gordon equation !

A. Martin?, S.M. Prigarin® and G. Winkler*

On the basis of integral representations we propose numerical methods to solve
the stochastic wave equation and the stochastic Klein-Gordon equation. The algo-
rithms are exact in a probabilistic sense.

1 The Cauchy problem for stochastic wave equation.
Integral representation

Let us consider the Cauchy problem for the stochastic wave equation

0%u 5 0%u B 1

W(tax) —a w(t’x) - g(t,x,u(t,x)) + f(t,x,u(t,x))w(t,x), ( )
ou -

’U,(O,ZE) = ’U,()(iﬂ), E(Oax) = ’U,()(fL'), (2)

where a >0, z € R, t € R", and w is a Gaussian white noise on the plane.

The aim is to numerically solve the Cauchy problem for the stochastic wave
equation, i.e., to simulate realizations of the random field u(¢,z). To this end we
need an exact definition of the solution of problem (1), (2). The corresponding
formalism can be found, for example, in the papers [1], [2], [3]. For our purposes it
is enough to assume that the solution u (¢, z) of problem (1), (2) can be defined as a
unique solution to the stochastic integral equation

u(t,z) =i(t,z) + /R /RG(t,x,s,y)g(s,y,u(s,y)) dyds+ (3)

+/R+/RG(t,x,s,y)f(s,y,u(s,y))W(dsdy).

Here
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G is Green’s function for the wave equation,

G(ta T, s, y) = ]-A(t,x) (37 y)/(2a’)7
Alt,z) ={(s,y) E Ry xR:0<s<t |z —y|<alt—s)}, (tz)€e Rt xR,
and W is a Gaussian stochastic measure with the properties
EW(A)=0, EW(A)W(B)=m(ANB),

where A, B are measurable sets and m is the Lebesgue measure on the plane.
In particular, a solution u of the integral equation (3) exists (and it is unique
and almost surely continuous) if the following conditions are fulfilled [2, 3]:

(A) there exist strictly positive constants C'(g) and C(f) such that

l9(t,2,y) — gt z,2)| < Clg)ly — 2I, |f(t,z,9) — ft2,2)| < C(f)ly — 2|
forallt € Ry and z, y, z € R;

(B) for all (t,z) € Ry x R the function (s,y) — G(t,z,s,y)g(s,y,0) is integrable
and the function (s,y) — G(t,z, s,y)f(s,y,0) is square integrable,

(C) the functions ug, g are continuous and [5 |ug(z)|* dz + [5 |0 (z)|? dz < cc.

If the functions g and f do not depend on u, then the solution is given by

u(t,z) =i(t, x) —l—/RJr/RG(t,x,s,y)g(s,y) dyds—+ (4)

—l—/R+/RG(t,x,s,y)f(s,y)W(dsdy).

In this case the random function « is Gaussian, and an "exact” numerical algorithm
can be constructed on the basis of representation (4).

2 7Exact” numerical algorithms for ¢ and f indepen-
dent of u

2.1 Algorithm for the Cauchy problem without boundaries

A realization of the solution u for the Cauchy problem (1), (2) will be simulated on
a grid G,
Gy = {(t]'vxk) = (jh,akh)},

1 1 1 1 1
5,2,25,...}, ke {...,—15,—1,—5,0,5,1,...},
where h is a time step, ah is a spatial step and for a grid point the indices 7, k are
simultaneously either integers or fractional numbers.

In addition to the values ul, = u(jh,akh) on the grid G, the algorithm operates
with the values

1
j€{0,-,1,1
]6{7277

Trt+ah/2 Hy,

(tj,y)dy

v = —
J
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on an adjacent grid G,
Gy = {(tj, zk) = (jh,akh)}

with the same sets for the indices j, k. The difference from the grid G, is that for
any point of G, one of the indices is an integer while another one is fractional.

The algorithm can be described by the following steps.

Initialization. We set j = 0 and from the initial conditions (2) we find the
values u, vg+1/2 forke{...,-1,0,1,...}. |

Step 1. Equation (4) gives an explicit rule to calculate u/*1/2:

g2 _ (L j L j+1/2
Ukt1/2 = <§ (“?c + “?c+1) + %”iﬂ/z) + &hr1y2 (5)

where

. t; T
+1/2 j4+1/2 k+1
£i+1§2 = /t / G(tj+1/27xk+1/2aSay)g(say) dy ds
) Tk

j+1/2 [ Tk+1
+ /t / G(tj+1/27$k+1/27Say)f(say) W(dey)
j T
is a Gaussian random variable with variance

titi/2 [Tk41
/t / G2(tj+1/2,xk+1/2,s,y)f2(s,y) dy ds.
) o,

Note, that to simulate the values uf:rll//g for the time level j + 1/2 we use only the
values ui, vi +1/2 from the time level j and independgnt random variables éf:%
Step 2. Now we want to calculate the values of viii/ 2. To obtain an expression
for Uij:/ ? we use two different representations for ufcill, namely
S L/ jvi2 | j+1/2 1 L1/ j+1
Uk = <2 ( Uy1/2 Jr“k+3/2) T 5g Ukt > + &t (6)
witt = (L 4w L j 7
Upt1 = | 5 (Uk + Uk+2) t 5, (”k+1/2 + ”k+3/2) + (7)
N e J+1
+ (§k+1/2 $taje T Oy + 5k+1) ;
where
j+1/2 [Thp1ta(s—t;) Qv d
k+1_ 2a/t /kaastj 9(s,y) dyds

j+1/2  [The1ta(s—t;)
=L §(s,) W (ds dy)

k41— a(s— t
is a Gaussian random variable with variance

j+1/2  [Thrta(s—t;)
dy ds.
<2a> / /Ik+1 a(s—t;) (S’y) yas

]

A combination of (6) and (7) yields

2 _on [ (0 Lo j
Vg1 =20 [5 (“k + “k+2) o (“k+1/2 + ”k+3/2) + (8)



i+1/2 i+1/2 j 1/ jy1/0 i+1/2
+ (£i+1§2 + fi+3§2) + 5i+1 5 (“?c+1//2 + “?c+3//2)] :

1/2

Thus, at this step the values viil are simulated according to expression (8). Note,

that all the components of the expression, except (5% 41, are defined at the previous

steps of the algorithm, and the random variables fﬂ_} appear in (6) and (7) but
cancel out in (8).
Cycling. Set j = j + 1/2 and go back to step 1.

2.2 Algorithm for the Cauchy problem with the Dirichlet boundary
conditions

Assume now that the random function u(t,z), z € (A4, B), t € R™, is a solution of
the Cauchy problem (1), (2) with the Dirichlet boundary conditions

ult, A) = u(t, B) = 0. 9)

For the numerical modelling of the Gaussian field u(t,z) we should modify the
previous algorithm. To simplify the notation, hereafter we set A =0, B = 1.
Green’s function for problem (1), (2), (9) can be written down in the form

S(tesy) = Y [Glte+ 2k5,y)1p 1)
k

—G(t,— + 2k; 5,9) 1o ()]

The solution of the Cauchy problem with the Dirichlet boundary conditions is given
by the following equation (cf.[2])

u(t,x) =ip(t,z) + /R /01 Y(t,z,8,9)9(s,y) dy ds+ (10)
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Representation (10) implies the following modification of the numerical algorithm.
For the step size ah in space, we assume that 1/ah = N is an integer.

Initialization. Set 7 = 0 and determine ug for k € {0,...,N} and U2+1/2 for
k € {0,...,N — 1} according to the initial conditions (2).

Step 1. The values ufcill//é for k € {0,..., N — 1} are calculated by (5).



Step 2. The values ka/ for k € {0, . — 2} are calculated by (8).

Step 3. The values u, 1 for ke {1,. N - 1} are calculated according to (5),

while u) 1 and uy 1 are defined by the boundary conditions, ie., u%“ = uJA;“ L—o.

Step 4. Calculatlon of vk+1 For k € {3, 3,..., 255} we use (8). To find

]-I—l
Y12

particular, we have (note, that u)t" = 0)
i3 (Lot g [ Es] J+3/2
Uypp = <§ ( 0 tu ) +5- {/2> + &1/

A S s +3/2
= <2] +_{/2 +§{/2 J

and UN 1 /2 at the boundaries we should apply the boundary conditions. In

'+3/2 1 +1/2 +1/2 1 '+1/2
u{/Z <:! ( {/2 g/Z ) f!aU{ >
S'—l—l j+1/2 S‘+3 2

From these two representations we obtain:

. 1 1 .
j+1 + ]+1/2 j+1/2 L j+1/2
vipp = 20 [2( uly ) + 50 (o177)

2a
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Similarly, for the other boundary we can obtain

j+1 _ j+1/2 j+1/2 j+1/2
vN- 12 = 2a {5 (UN73/2 - “N71/2) T 5, (UN—I )

() o - 2 ()

Cycling. Set j = 7 + 1 and go back to Step 1.

Remark. The two algorithms are "exact” in the sense that the finite-
dimensional distributions of the field (¢, ) on the grid G\, coincide with the finite-
dimensional distributions of the numerical solution ui On the other hand, the
algorithms are not stable (as well as the solution u(t, z)): a disturbance occurring in
computation will spread along the characteristics of the equation without decreasing
in time. The Markov property (the values for the next time level depend only on
the values obtained at the previous time level) makes algorithms fairly attractive for
the numerical simulation.

3 On ”exact” algorithms for the stochastic Klein-Gordon
equation

A solution for the Cauchy problem (1), (2) for the stochastic Klein-Gordon equation

0%u 0%u

o082 (t,z) — 02 (t,z) = au(t,z) + w(t, x)



can be written down in the following way [3]

ult2) =ina(to) + [ [ Graltw,s,y) Wdsdy) (1)
Ry JR
where
) a T+t x+t B
ZKG’(t,,’L‘) = a ; GKG(t,fE,Oa?/)UO(y) dy+/ . GKG’(t,fL',O,y)UO(dy),

Grolt.5,1) = Glt.,5.)0o (1falt =57 = @ =) ) s a >0,

Gralt..5.9) i= Gt 5,) 00 (y/lal (£ =97 = (@ = 9)%) ) s <0,

and Iy, Jy are the Bessel functions.

An ”exact” numerical algorithm can be constructed on the basis of representation
(11). But now the situation is rather different in comparison with the algorithms
considered in Sections 2.1 and 2.2:

- The Bessel functions in the integral representation make computations much
more laborious.

- The algorithm does not have the Markov property anymore, and the Gaussian
random variables that have to be simulated, are dependent in a complicated
way. This means that, practically, the algorithm results in a general simulation
of a Gaussian random vector with correlated components, and for a fine grid
(when the dimension of the vector becomes too large) the algorithm may not
be feasible.

In our opinion, more efficient numerical algorithms for the stochastic Klein-
Gordon equation, as well as for the general stochastic wave equation (1), can be
developed on the basis of an iterative method for the integral representation (3).
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