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Numerical solution of boundary value problems
for stochastic differential equations on the basis of

the Gibbs sampler !

S.M. Prigarin 2 and G. Winkler *

To solve boundary value problems for linear systems of stochastic differ-
ential equations we propose and justify a numerical method based on the
Gibbs sampler. In contrast to the technique which yields for linear systems
an "exact” numerical solution, the proposed method is simpler to general-
ize for stochastic partial differential equations and nonlinear systems. Such
generalizations are discussed as well.

1 Statement of the problem for linear stochastic
differential equations

Let us consider a boundary value problem for a linear vector-valued stochas-
tic differential equation (SDE) of the Ito type

du(t) = A(t)u(t)dt + X(t)dw(t), t € (t1,tn), (1)

u(ty) = us,  u(ty) =u’, (2)

where u(t) = (uy(t),...,ur(t))” is a vector-valued random process, w(t) =
(wy(t), ..., we(t))T is a vector of independent standard Wiener processes,

A(t) and X(t) are k x k matrices whose elements are piecewise continuous
functions, u, and u* are non-random vectors.

The problem is to construct realizations of the process u(t) satisfying
SDE (1) and boundary conditions (2). In other words, it is necessary to
simulate a set U = {u(t1),u(t2),...,u(tn)} of dependent random vectors
u(t;) (for a fixed grid T' = {¢1,t2,...,tn}) with a joint distribution P(U)
generated by the SDE and the boundary conditions.
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2 7”Exact” numerical solution of boundary value
problems for systems of linear stochastic differ-
ential equations

For a solution u(t) of the linear SDE (1) the finite-dimensional distributions
can be described in a comparatively simple way: if the values u(a) and u(f)
are fixed, then the distribution of u(vy), v € («,3), is Gaussian and does
not depend on the values of u(s) for s < a and s > 3. The moments of the
Gaussian distribution are written down in the following two statements (for
details and proofs see [1,2]).

Here by ®(t,s) we denote the principal matrix associated with A(¢) and
by R. we denote Gram’s matrix

Rl = / o(t, r)5(r)=T (r)d7T (1, 7)dr.

Lemma 2.1 (conditional distributions for linear SDE) Assume that
a vector-valued random process u(t) satisfies SDE (1) on the segment [a, ],
and the matriz RS is nonsingular. Then the distribution of the vector u(vy),
v € (a,B), provided that u(a) = ua, u(B) = ug (the vectors uq, ug are
non-random), is Gaussian with expectation

m = [®(y,0) - RO (8,7)(R]) 'B(B, )| ua +
+RL2T(B,7)(R2) ug (3)

and correlation matriz

B (uly) —m) (s () = m") =
= R} - R1®T(8,7)(R]) ' ®(B,7)Ry. (4)

If the matrix Rf is singular and ug € ®(83, a)u(a) + RE(RF), then for-
mulas (3), (4) remain valid with pseudo-inverse matrix (R2)* instead of
(R3)~".

Lemma 2.2 (conditional distributions for time-invariant linear SDE)
Assume that the vector-valued random process u(t) is a solution to SDE (1)
with constant matrices, and the matriz A is stable (i.e., A(t) = A and
Y(t) = X do not depend on t and the real parts of the roots A of the charac-
teristic equation det(A—MXI) = 0 are strictly negative). Then the distribution
of the vector u(y), v € (a, B), provided that u(a) = uq, u(B) = ug, is Gaus-
sian with expectation

m* = (By — K1BI K 'B)u, + K1 BI K tug



and correlation matrix
R* =E (u(y) — m*) (u(y) - m")" = K; — K1BIK™'B, K,
where By = exp((y — a)A), Bs =exp((8 —v)A), B = B1By = B2Bjy,

K AT + AK, = Bi2x"B] — ux7,
KyAT + AK, = Byyx"BY — uxT,
KAT + AK = BexTBT —y»»T,
K = ByK\BY + K.

(Here we assume that the matriz K is nonsingular. In particular, K is
nonsingular if the matriz ¥ is nonsingular.)

According to the "exact” algorithm, the grid T is sequentially scanned
in a certain order. For the current grid point v € T, the closest points
a < 7y and B > v must be found, where the values of u are already known,
(note, that at the very beginning only the values u(t1), u(ty) are known).
Then the value u(vy) is simulated according to the conditional distribution
described in Lemma 1. (Calculation of averages and correlation matrices for
the conditional distributions in Lemma, 1 is one of the most labor-consuming
steps of the algorithm.) Finite-dimensional distributions of the process u(t)
are reproduced exactly by this algorithm.

There are no restrictions for the order of scanning, but computational
costs can appreciably depend on it. From this point of view the bisection
scheme seems to be efficient for time-invariant equations.

Further results and examples concerning the ”exact” algorithm, includ-
ing the study of existence and uniqueness of the solution for more general
boundary conditions, can be found in [2,3].

3 The Gibbs sampler to solve boundary value prob-
lems for linear systems of SDE

For the method on the basis of the Gibbs sampler, we propose below, it is
necessary to find conditional distributions of a special kind. For all inner
grid points t; € {t9,...,tny_1} = Tp it is necessary to know the distributions
of u(t;) provided that the values u(t;_1), u(t;1+1) are fixed. These distribu-
tions will be denoted by P(u(t;)|u(t;—1),u(ti+1)) and they can be found by
Lemma 1.

3.1 Description of the algorithm

An iterative numerical algorithm to solve boundary value problem (1), (2)
can be described as follows.



Initial step. A vector (which can be random or non-random)
U® = uOt),...,u0(ty))
is taken as initial, where
uO(t) = uty) = uy, u®(tn) = ulty) = u*.

For example, the points with the coordinates (t;,u(?)(¢;)) can be disposed
on the straight line which connects the boundary points (¢, u.), (tn,u*).

Iterative step. We will consider two versions of the iterative step, to
produce a random vector UM™Y from the vector U™,

(a) Random wvisiting scheme. First, according to a proposal distribution
G on Ty we choose a node ¢ € Ty. Then the value of u(t1)(t) is simulated
according to the distribution P(u(™*1 (¢)|u™ (t—1),u™ (t+1)). For all other
values we set u("*1)(s) = u(™(s), t # s € Ty. The proposal distribution G
is assumed to be strictly positive on Tj.

(b) Deterministic visiting scheme. The inner grid Ty is scanned sequen-
tially according to some fixed procedure (a sweep with deterministic visiting
scheme) in such a way that all the nodes from T must be, at least, once
visited. For every visited node ¢ € Ty the value of u(™ (¢) is changed accord-
ing to the conditional distribution P(u(™ (#)|u(™ (t —1),u(™ (t+1)) (possible
previous changes of u(™ (¢t — 1), u(™ (¢ 4 1) during the current sweep should
be taken into account). The configuration obtained at the end of the sweep
will be taken as U"+1),

After many iterative steps a configuration U for large n is considered
to be an approximation of U.

3.2 Convergence

The sequence U™, n = 1,2,.. ., generated by the algorithm is a Markov
chain with a continuous state space of N *x k dimension. Obviously, the
distribution P(U) is invariant for the Markov chain, and then (under some
additional assumptions) the distributions of U™ converge to P(U).

The exact results can be obtained from the general ergodic theory for
Markov chains presented, for example, in [5,6]. In particular, the following
statements can be obtained like consequences of Orey’s theorem.

Proposition 3.1 Assume the matrices RZ“, i=1,...,N —1, to be non-
singular. Then for any initial configuration U, |[P(U™) - P(U)|| = 0 as
n — 0o (henceforth by ||.|| we denote the total variation norm,).

Proposition 3.2 Consider a boundary value problem (1), (2) for a time-
invariant SDE with a stable matriz A, and assume the matriz RS to be
nonsingular. Then for an arbitrary initial configuration U©), the algorithm
on the basis of the Gibbs sampler converges to a solution of the boundary
value problem, i.e., ||[P(UM™) — P(U)|| = 0 as n — oo.



Remark 3.3 For a time-invariant SDE with a stable matrix A, the set
R!(RF¥) does not depend on the values s and t for s < ¢. If the matrix
Rg is singular, then existence of the solution is equivalent to the condition
75 € exp((f — a)A)z + RI(RF), and the initial configuration cannot be
arbitrarily chosen.

4 A general scheme for partial differential equa-
tions and nonlinear systems

The approach of Markov Chain Monte Carlo (MCMC) seems to be promising
for the numerical solution of boundary value problems for stochastic differ-
ential equations of different types. There are several well-known schemes
of MCMC like the Gibbs, the Metropolis and the Hastings methods. For
stochastic differential equations (when there is a description of ”local” de-
pendency for the values of a simulated process or a field) the Gibbs sampler
seems to be one of the most appropriate and natural.

Let us describe a general scheme. Consider a boundary value problem
for a (partial nonlinear) SDE Au(z) = w(z), where z € X C R and w(x)
is white noise. After discretization, the boundary value problem can be re-
duced to another boundary value problem for a finite difference equation
Ai(xz;) = w(z;), where A is a discrete approximation of the operator A on
the grid X C X, 2; € X, and 4(z;) is a discrete white noise. The latter equa-
tion enables to find the conditional distributions P(u(x;)|u(z),z € d(z;)) for
@(z;) when the values of @ in the neighborhood d(z;) C X of the node z;
are given. Then the Gibbs sampler (like in Ttem 3.1) can be used for the
approximate simulation of @(z;) on X: first, some initial configuration is
fixed and then the nodes of the grid are scanned (according to a random
or a deterministic visiting scheme) and the values in the nodes are updated
according to the conditional distributions.

Remark 4.1

1. The following problems are significant for the considered algorithm:
(a) the study of accuracy for discrete approximation, (b) an appropriate
choice of the initial configuration and the stopping rule for the Gibbs sam-
pler, (c) balancing the errors for discretization and the Gibbs sampler to
diminish the total error of the result.

2. To optimize the algorithm, one can use such well-known techniques
like the simultaneous updating for ensembles of nodes, synchronous and
partially parallel algorithms, etc.

3. Conventional iteration methods for deterministic systems can be con-
sidered as an extreme case for the Gibbs samplers when white noise has zero
intensity.



4. If the intensity of the white noise in the SDE tends to zero, then the

result of simulation possibly converges to a solution for a certain problem of
optimal control (cf. [2], p.153).
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