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October 6, 2003

Abstract

We present a stochastic model for single cell gel electrophoresis (COMET-assay)

data. Essential is the use of point process structures, renewal theory and reduction to

intensity histograms for further data analysis.

1 Introduction

Single cell gel electrophoresis or “COMET-assay” is a very efficient method to examine

DNA damage and repair with many applications, for example in cancer research. A non-

damaged DNA molecule is a long linear chain of desoxyribonucleic acids. When a cell is

irradiated several strand breaks in the DNA may occur. The aim of the study is to detect

to which amount a broken DNA molecule can be recombined by the organism. Non ef-

ficient repair may indicate genetically determined malfunctions in the recombination and

replication mechanisms of the DNA. At present, the COMET assay is the only technique

to monitor DNA damage and repair at the level of single cells.

The standard way to analyze COMET data is to compute characterizing geometric

properties of the comet, e.g. the tail moment [3] or the comet moment [19]. Some of

these parameters show only little variability across experiments [12]. However, all these
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parameters are sensible to small changes in the recorded COMET image. The used image

processing method plays a role and the errors in detecting faster fragments. Such frag-

ments appear usually darker and are thus not well separable from the background of the

image. Further, the images contain much more information than could be coded in one or

a few parameters. If one had a comprehensive model for the whole data and some robust

methods to extract relevant information, one could make better use of the recorded im-

ages. In the present work, we show that such modelling and also robust classification of

the comets is possible. On the other hand, extracting more information from the images

on the basis of the model leads to more subtle empirical deconvolution problems. This

will be addressed in a forthcoming paper [7].

This work is structured as follows. Section 2 is a short introduction to the COMET-

assay and to our approach for its modelling. In section 3 we will describe the problem as

a marked point process. In the subsequent sections we derive stochastic models for the

various stages of the experiment like the distribution of fragment masses after radiation

and the mass dependent migration distance of a single DNA fragment. In section 7, we

discuss the combined model by means of simulation and parameter estimation.

2 The COMET-assay and its modelling

A large amount of articles describe the technical details of the COMET-assay, for instance

[3, 6, 19]. An up to date source of information is the Web site [17] and an extensive

review of the COMET-assay can be found in [13]. Here, we only present a short overview

of the method with emphasis on few features which are important for our mathematical

modelling.

The cells to analyze are attached to an agarose gel and placed in an electric field, after

suitable treatment and in particular conditions. Since DNA is polar, DNA molecules tend

to migrate. Big DNA molecules (i.e. non-damaged or repaired DNA molecules) show

no observable migration, whereas small DNA molecules (i.e. damaged DNA molecules)

migrate quickly off the center of the cell. These small fragments constitute the tail of

the comet like electrophoresis image. Hence the name COMET-assay, see Figure 1. It is

quite difficult to explain why small molecules migrate faster than big ones, but one of the

main explanations is that big molecules are more sensitive to hurdles (gel fibers) during

the migration. Till now there are diverse opinions among biologists about the underlying
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mechanisms. Anyway, at the end of the electrophoresis, it is possible to see whether a

cell is ’quite damaged’ or ’quite non-damaged’, by analyzing the shape of the comet: a

damaged cell has a long and/or dense tail, whereas a non-damaged cell merely looks like

a homogeneous disk.

Figure 1: A comet from an irradiated cell

Our aim in the present paper is to establish a reasonable stochastic model describing

the data which can serve as a basis for future statistical inference. This strategy is in con-

trast to the standard approach, which uses only a few geometric features. We emphasize

again that the image data containmuch informationnot represented in the single geomet-

ric parameters. We are able to retrieve this information only if we can model the physical

processes of the experiment with sufficient accuracy. The final goal is to estimate the

distribution of lengths of DNA molecules (or equivalently their distribution of mass) in

damaged and repaired cells, in order to get more information on the repair mechanism and

its efficacy. Keeping track of the approximations and assumptions in the modelling pro-

cess will help to implement methods which are robust under changes of model parameters

and slight violations of model assumptions.

In terms of the data, the distribution of molecule lengths we want to estimate is best

associated to the distribution of displacements of single DNA molecules. This demands

some further knowledge about the relation between length and speed. In the literature,

biologists propose theoretical models (for instance in [27]) for this relation and give ex-

perimental results (for instance in [23]) obtained in various conditions. These studies are

especially designed for usual gel electrophoresis, where the lengths of the DNA fragments

is ≈ 500 bp. This is much smaller than the fragment lengths considered in COMET ex-

periments. In section 3 we propose a global model to describe the DNA migration and

finally get a formula agreeing with some of the experimental results. Our model takes into

account a great part of the physical features cited in the literature and is quite consistent
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with the empirical formulae already known.

Our model for the available data is guided by the experiment: First we describe the

placement of the DNA fragments before radiation and after radiation. To model the effect

of the gel electrophoresis, we then give a mathematical description of the migration of

DNA molecules through an agarose gel.

3 Marked Point Processes as Description

We consider a single cell containingN DNA fragments, whereN is a (random) number

depending on the number of DNA breaks. Each of theN fragments is represented by a tu-

ple (X i ,mi), i ∈ {1, . . . ,N}, whereX i is a three dimensional vector representing the initial

location of fragmenti andmi is its mass.Ξ = {(X i ,mi) : i ∈ {1, . . . ,N}} corresponds to

the observed fragments, approximating the location of a fragment by a point, but carrying

its mass into the calculations viami . Note, that we can not differentiate between break

experiments resulting in fractions of the same size. So, the setΞ which is a simple finite

markedpoint process[11] is a natural description of the fragments. LetDi be the three

dimensional vector of displacement of thei-th fragment andX′
i = X i +Di , which is thus

the three dimensional vector of end location of fragmenti. X, D andX′ are depicted in

figure 2 for one point.

Figure 2: Coordinate system. The represented point is atX at the beginning, its displace-

ment isD and its end location isX′.

4 The Length Distribution — Poisson Approximation

Our goal is to determine the distribution of fraction lengths. It remains a very complex

issue because we do not know much about the mechanisms of breakage and repair.
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However, with a few simple assumptions, one can regard the distribution of lengths

in a damaged cell as exponential. This model is commonly called ’Random Breakage

Model’ (RBM) and described in [21]. Let us briefly discuss its underlying assumptions.

1. Breaks occur completely at random, i.e. the radiation causes only single break

events which do not influence each other (this hypothesis is supported by the low

energy ofγ-radiation) .

2. Breaks occur homogeneously, i.e. no part of the the DNA strand has a higher or

lower risk for break events. This hypothesis is questionable, since the DNA in the

cell nucleus has spatially a very complicated crystalline structure and parts of DNA

deeper inside this structure may be exposed to less radiation.

In our setting it is also sensible to make the following additional assumptions

• Breaks are rare compared to the number of unbroken sites.

From literature, we know that depending on experimental conditions 1 Gy radiation

intensity causes on average one single strand break (ssb) every several ten thousand

base pairs (bp). For example, [24] gives a value of 5.98∗10−8Gy−1Da−1, corre-

sponding approximately to one ssd for every 25000 bp (with 660 Ga as average

molecular weight of a bp). In our case, a 3.5 Gyγ-source has been used leading to

a rough estimate of one ssb for every 7000 bp.

Further, the considered mouse chromosomes exceed by far 10 Mbp and thus we

state that

• the total number of breaks is large.

The following lemma gives a hint how to find distributions that model large numbers

of rare events.

Lemma 1 Suppose(Nk)k∈N are random variables geometrically distributed with survival

probabilities(qk)k∈N, limk→∞−k lnqk = λ. Then

L(
Nk

k
) =========⇒

k→∞
Expλ.

If (Ξk)k∈N are simple point processes onN such that P({n1, . . . ,nl} ⊆ Ξk) = (1−qk)l ,

limk→∞−k lnqk = λ then

L(Ξk/k) =========⇒
k→∞

Πλ,
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whereΠλ is the stationary Poisson process onR+ with intensityλ andΞ/r = {x/r : x∈
Ξ}.

Proof. By use of Laplace Transform, [11, Proposition 9.1.VII]. 2

The lemma tells us, that for all sufficiently long pieces of DNA the number of breaks

can be be regarded as Poisson distributed with parameterνL|I |, whereνL is some strictly

positive real constant and|I | is the length of the piece.

Under the second assumptions, the length resp. the mass between two breaks is expo-

nentially distributed with parameterνL resp., say,νM . In the following, we will always

consider only the massm. Note, that it would be strictly equivalent to consider the length

instead. Thus, we can assume that the density of mass of the DNA fragments has the form

fM(m) = νM exp(−νMm), (m≥ 0).

This model suggests that we only have to determine the constantνM in order to know the

distribution of mass completely. Indeed, one can find in the literature tables recording the

average number of breaks per thousand of DNA bases for specific experimental conditions

(including the radiation intensity). These numbers could in principle be used to determine

the parameter of the exponential distribution. However, these tables are highly dependent

on experimental conditions, which unfortunately do not fit our case. Therefore, we need

the COMET-assay to fix the parameterνM.

Things get more complicated, if we consider the repair mechanism, which controls

the data for the “repair” group. We assume

1. that breaks are repaired independently,

2. the repair mechanism is homogeneous (it does not depend on the site of the chro-

mosome where the break occurred) and

3. there is no difference for the cell to repair breaks between short or long fragments.

This means, we assume that breaks are deleted independently of each other. In the lan-

guage of point processes the process of break points isthinned.

The following lemma is well-known.

Lemma 2 ([11, Example 8.2(a)])If Z is a Poisson process with intensity measure µ then

the thinned configuration Zp, where each point of Z is deleted with probability0≤ p≤ 1

is Poisson distributed with intensity measure pµ.

6



Due to the above assumption 3, this carries over to the case of marked point processes.

In our applicationp describes the repair efficacy. Of course, an estimation ofp would

be highly dependent on the RBM and our assumptions on the repair mechanism. So, we

should look for robust substitutes ofp.

5 Migration of a Single Fragment — Renewal Processes

and Diffusion Approximation

In this part we propose a model for the migration of DNA fragments in order to determine

theoretically the conditional distribution of displacement given the mass of a fragment. In

the literature, various qualitative models have already been proposed, for instance DNA-

fragments as small balls moving in a thin net of points ([4], [9], [28]) or as long ’snakes’

creeping between big obstacles ([1], [23], [27], [28]). Most of these models are mainly

qualitative and tailored for specific experimental conditions. Our model is an adaptation

of the Ogston theory [9]. We aim to make a model simple enough to allow mathematical

treatment, while taking into account as many features as possible.

Let us consider each cell separately. Since in our case the agarose gel concentration is

very low, the gel can be assumed as a net of randomly distributed points, like in the Ogston

model. DNA fragments are considered as solid round balls because we assume them to be

rolled and not stretched. The modelling can easily be generalized if DNA fragments are

assumed to be ellipsoids, as it was suggested in [4]. We admit, that this assumption on the

geometry of the fragments is quite bold and this issue is still very controversial. But, it

allows us simple modelling, which would be not possible without restrictive assumptions.

The whole cell is assumed to be a flat cylinder (See figure 3): each fragment can move

in a three-dimensional space, but in fact we will not pay attention to the displacements

along the vertical axiszbecause they are negligible in comparison with the displacements

induced by the electric field, which is parallel to thex-axis. For the same reason we also

neglect the displacements of the fragments in they-direction. The displacements in the

y-direction andz-direction are quite complicated to understand and to model. To sum up,

they can be assumed approximately as complex diffusion movements. The displacement

in the x-direction depends on the mass (or length) of the fragment in a way that will be

specified later. In our model we will only consider the displacements in this direction.
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This means, that we look for the projections on thex-axis of the vectorsX, D andX′,

which will be simply denoted asX, D andX′.

Figure 3: A whole cell in the coordinate system

Let us consider a fixed fragmenti. When the electric field is applied, fragmenti begins

to migrate freely with constant and mass-independent speed (denotedv0) in thex-direction

during a periodTi1 till it collides with an hurdle (gel fiber). Then it needs some time

(Si1) to bypass it, using the shortest path (see figure 4). Then it can migrate freely again

duringTi2 till it meets the next hurdle, etc. Thus the migration consists of a succession of

periodsTi1,Si1,Ti2,Si2, . . . ,Tik,Sik, . . . The electric field is applied at timet = 0 and time

t0 corresponds to the end of the experiment, the time at which we observe the location of

the fragment. TheTik andSik can be seen as realizations of random variablesTk andSk.

In the following, we model the distribution of the(Tk)∞
k=1 and(Sk)∞

k=1.

Figure 4: DNA fragments bypassing hurdles using the shorter path. The big ball are

DNA fragments, the small balls (which are assumed to be points) are hurdles. The arrows

represent the path of the fragment centers.
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The Distribution of Tk

To modelTk, we assume that the distribution of hurdles is a spatial Poisson process along

thex-axis. In other words, if we follow a DNA fragment along thex-axis, we make the

following assumptions (withP(I) being the probability for the fragment bumping into a

hurdle in intervallI andP>1(I) being the probability for the fragment bumping more than

once into a hurdle in intervallI ):

1. We suppose the gel is perfectly homogeneous, so the probability for a certain frag-

ment to bump into a hurdle is everywhere the same:P([x,x+∆x]) does only depend

on ∆x but not onx, ∀x≥ 0 and∆x≥ 0.

2. We also suppose that the probability for a certain fragment to bump into a hurdle is

independent from where and how many times it bumped into a hurdle earlier: ifI

andJ are disjoint intervals,P(I) andP(J) are independent.

3. Since the gel is very thin, we make the assumption that a fragment can not be in

contact with more than one hurdle at the same time. So we have:P>1([x,x+∆x]) =

o(∆x) ∀x≥ 0 and∆x≥ 0.

Under these assumptions, the number of hurdles a fragment meets on its way along the

x-axis is a Poisson process withx playing the role oft. So we have:

lim
∆x→0

P([x,x+∆x])
∆x

= λ,

whereλ is a real positive parameter. Then the distance between two hurdles is exponen-

tially distributed with parameterλ. We callC the number of hurdles per volume unit. To

computeλ, let us imagine a round ball migrating along thex-axis. The cross section of a

ball with radiusa equalsπa2. Thus, during a short displacement∆x, the swept volume is

πa2∆x and the probability that the ball bumps into a hurdle isπa2C∆x, hence the simple

formulaλ = π ·Ca2. Since the massm of the fragment is proportional to its volume,λ is

proportional toCm2/3.

As we assume constant and mass-independent speed along the x axis, theTk are pro-

portional to exponentially distributed random variables with parameterλ. The respective

means and variances can now be computed as functions ofm: ∀k > 1, E(Tk) = KTm−2/3

andV(Tk) = (KTm−2/3)2, with KT being a constant not depending on the fragmenti.
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The Distribution of Sk

Under quite strong assumption, the modelling of theSk is easy. Assuming that all frag-

ments bypass the hurdles with the same constant speed iny-direction, we get after a short

computation that theSk are uniformly distributed in the interval[0,2KSm1/3], with KS be-

ing a constant that is the same for all fragments. The factor 2 was introduced only for

computational reasons.

Definition of τ

We now define for each DNA fragment the integer random variableτ:

τ = max{n :
n−1

∑
k=1

(Tk +Sk) < t0} (1)

Since most of the fragments do not move at all betweent = 0 andt = t0 (there are much

more DNA in the head than in the tail), we assume that the fragments spend much more

time bypassing hurdles than migrating. Thus, a given fragment is much more likely to be

bypassing an hurdle than to be migrating when the experiment is stopped at timet0. The

sum of theSk will be much larger than the sum of theTk and especially for largeτ the

quantity∑τ
k=1Tk is a good approximation for time a fragment migrated in the direction of

the field.

With this approximation and the constant migration speedv0 one gets the displacement

D of a given fragment as

D = v0 ·
τ

∑
k=1

Tk.

The Mean ofD

For a given DNA fragment with known mass, the mean ofD exists and can be computed

similar to Wald’s identity, see [10, VII, Theorem 3].

Lemma 3 Let (Tk)∞
k=1 and (Sk)∞

k=1 be independent and identically distributed positive

random variables with finite mean. Letτ be defined by equation (1). Then

E(
τ

∑
k=1

Tk) = E(T1) ·E(τ)
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Proof. Since for allk > 0, the event{τ ≤ k−1} is independent ofTk, and therefore also

{τ ≥ k}, we have:

E(
τ

∑
k=1

Tk) = E(
∞

∑
k=1

Tk ·1[k,+∞)(τ))

=
∞

∑
k=1

E(Tk ·1[k,+∞)(τ))

=
∞

∑
k=1

E(Tk) ·E1[k,+∞)(τ)

= E(T1) ·
∞

∑
k=1

E(1[k,+∞)(τ))

= E(T1) ·E(τ).

Note, that the interchange of expectation and infinite sum is justified by the theorem of

monotone convergence. 2

Corollary 1 Under the above assumptions the expected displacement is

E(D) = v0 ·E(T1) ·E(τ) (2)

To utilize this result, we needEτ. Actually, we use an approximation forEτ which can

easily be computed with good precision.

The definition ofτ shows:

t0 ≤
τ

∑
k=1

(Tk +Sk) < t0 +Tτ +Sτ

t0 ≤ E(
τ

∑
k=1

(Tk +Sk)) < t0 +E(T1 +S1).

Applying Wald’s identity to the middle term yields lower and upper bounds forEτ.

t0
E(T1 +S1)

≤ Eτ <
t0

E(T1 +S1)
+1.

By introducing this inequality into (2) we get:

v0t0E(T1)
E(T1 +S1)

≤ E(D) <
v0t0E(T1)
E(T1 +S1)

+v0E(T1).

Therefore,

ED ≈ t0 ·v0 ·
ET1

ET1 +ES1

= t0 ·v0 ·
KTm−2/3

KTm−2/3 +KSm1/3

=
1

K1 +K2m
, (3)
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with suitable constantsK1 andK2. This formula is considered in some references as the

best empirical approximation of the (mean) displacement as function of the mass (or the

length) [30, 27].

Many other formulae have been proposed in the literature [23, 1, 4]. These formulae

are suited to model specific experimental conditions (strength of the electric field, approx-

imate fragment size, gel properties, etc). However, the formulaD = 1/(K1 + K2m) and

slight modifications seem to prevail.

6 Migration of the Fragment Population

To describe the migration of fragments we use the above point process notation. We as-

sume that the electric field generates a stochastic displacement [11] of the fragments, i.e.,

each fragment moves independently from the others and from the interaction of the others

with the gel. This implies that the random variablesDi are independent and, conditioned

on mi = m, identically distributed for everym > 0. Further,Di should be independent

from mj , j 6= i. Now we show that these assumptions allow a simple formulation of the

migration problem involving a convolution product.

Our basic assumption on the images is that the intensity in one pixel is proportional

to the mass of DNA concentrated there. So, we have to consider the mass distribution for

the DNA. In point process language, we look for the intensity measures of the process.

The mass intensity measureµΞ [11] is defined as

µΞ(A) = E( ∑
(X,m)∈Ξ

m1A(X))

for each Borel setA.

In our situation there are two intensity measures: the start intensityµX and the end

intensityµX′.

The following assumptions now govern our migration model:

1. The DNA-breaking rate and the DNA-repairing rate are spatially homogeneous.

This implies especially thatXi andmi are independent.

2. The distribution of the displacementDi of fragmenti depends only on its mass

mi and not onXi . There may be doubts, if this assumption is justified. Indeed,

especially when the DNA-concentration is high, fragments may be broken by other
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fragments during the migration. However, to get a feasible model, we assume that

this effect does not play an important role.

We definefM as the density of mass, i.e.
R m2

m1
fM(m) ·dm is the fraction of fragments

with mass betweenm1 andm2. Further,fX denotes the start density, i.e.
R x2

x1
fX(x) ·dx is the

fraction of fragments betweenx = x1 andx = x2 at the beginning of the electrophoresis,

or, to be more precise, the fraction of fragments whose gravity center is betweenx = x1

andx = x2. Similarly, we define the conditional densitiesfX′|m and fD|m:R x′2
x′1

fX′|m(x) ·dx is the fraction of fragments betweenx′1 andx′2 at the end of the elec-

trophoresis given the massm, and
R d2

d1
fD|m(d) ·dd is the fraction of fragments with dis-

placement betweend1 andd2 given the massm. Further, letfµX denote the density ofµX

and fµX′ the density ofµX′.

Because of the assumption 1,fX = fµX . Finally, letMc denote the total mass of DNA

contained in the considered cellc.

Lemma 4 With the global density of displacement

fσ(d) =
1

Mc

Z ∞

0
m· fM(m) · ( fD|m)(d) ·dm,

we have

fµX′ = fµX ∗ fσ.

Proof.

The densityfµX′ of µX′ can be written as

fµX′ (x
′) =

1
Mc

Z
m· fM(m) · fX′|m(x′)dm.

From

fX′|m(x′) =
Z

fX(x) · fD|m(x′−x)dx

we immediately find our assertion:

fµX′ (x
′) =

1
Mc

Z
fX(x) ·

Z
m· fM(m) · fD|m(x′−x)dx dm

=
Z

fX(x) · fσ(x′−x)dx.

2

Thus, our model leads to a convolution problem.
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Figure 5: Three simulations from the point process model, parameters top: middle: bot-

tom:

7 Simulation and Comparison to Data

In this section, a simulation is carried out to check qualitatively whether the model for the

DNA mass distribution and the model for the DNA migration lead to comet-like shapes.

Subsequently, we present a simple method which allows a rough estimate of the model

parameters from two specific histograms. These histograms represent, respectively, the

horizontal distribution at the beginning and at the end of the electrophoresis. One of

these parameters is the requiredνM determining the exponential distribution of fragment

masses.

Simulation of the DNA migration

With the software package AntsInFields [15] we implemented the above model, leaving

aside the problem of calculating the correct variances. The length of the fragments was

sampled from an exponential distribution. The number of fragments was fixed beforehand

and assumed to be uniformly distributed over a ball. The distribution of the displacement

D was taken as bivariate normal with expectation( 1
K1+K2l ,0). The variancesσx andσy

were fixed independently from the fragment lengthm and covariance was assumed to be

0. We stopped the simulations after suitable times to find comet-like shapes.

As Figure 5 indicates, the model is able to capture at least the comet-like shape of the

real-world data. The programs written in Oberon are available on request from the last

author.

A simple method to estimate the model parameters

The model presented above includes two steps of modelling:
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1. the modelling of the distribution of masses as exponential with parameterνM:

fM(m) = νM exp(−νMm)

2. the modelling of the dependency between the displacementD and the massm. The

problem of determination of a correct variance formula is ignored: for simplicity

the displacement given the mass is assumed to be equal to its mean:

D(m) =
1

K1 +K2m
.

We define a new densityfµM as follows:
R m2

m1
fµM(m)dm is the fraction of DNA mass

contained in fragments of mass betweenm1 andm2.

As fµM = m fM(m) one has

fµM(m) = ν2
Mmexp(−νMm).

Using the convolution lemma 4, it is easy to show that

fσ(d) =
ν2

M

d2K2
2

(
1
d
−K1)exp(−νM

K2
(
1
d
−K1)).

Although this model involves 3 parameters (νM, K1 andK2), it has only two degrees

of freedom, sinceK2 andνM appear only in the ratioK2
νM

. Thus, can only identify the two

parametersK1 andK = νM
K2

. Thereto, we need to know the distribution along thex-axis

before and after electrophoresis.

Unfortunately, no images of the cells before electrophoresis are available. We only

have images of degraded and repaired cells to analyze and images of control cells which

have not been grayed. Making the assumption that the DNA distribution in control cells

after electrophoresis is similar to the DNA distribution in degraded cells before elec-

trophoresis, we use the images of the control cells to estimate the starting DNA density.

This assumption can be justified by the fact that the histograms of control cells are per-

fectly symmetric, indicating that the DNA fragments in control cells are too big to migrate

at all during electrophoresis.

Let us consider two images from the same mouse: an image of a control cell and an

image of a degraded cell. Using a JAVA programm, we sum the intensities of all the pixel

columns successively, for both images. Thus we obtain discretised estimates offµX and

fµY , as depicted in figure 6. Notice that we have aligned the two images arbitrarily. As

will become clear later, this causes no problem.
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Figure 6: Histograms of a control cell (top) and a damaged cell (bottom) from the same

mouse

To estimate the parametersK1 (whose unit ispixel−1) andK, we proceed as follows.

For different values ofK1 andK, we perform a discrete convolution off̂µX and fσ. Our

goal is to find the values for which a certain dissimilarity function between this convolu-

tion product and the observed̂fµY is minimal. Since we do not know the location of the

axis origin in the histogram̂fµY , this dissimilarity measure has to be translation invariant.

A simple method is to ’subtract’ the histogram̂fµX ∗ fσ from the histogramf̂µY using the

criterion of minimal quadratic transportation costs as described in (Boulesteixet al.,2003)

and to use the variance of the resulting histogram as dissimilarity measure. Clearly, this

measure is translation invariant and it is higher for ’very different’ histograms than for

’similar’ histograms.

To minimize this criterion, we employ theRprogrammoptim which implements the

optimization method of Byrd et al. (1995) and allows to give as inputs lower and upper

bounds for each parameter. Here, we set the lower bounds to zero, because the parameters

K and K1 have to be strictly positive. This method yields estimates forK and K1. A

drawback is that our model allows only the estimation ofνM
K2 and notνM, which is actually

the parameter we want to estimate. This issue will be addressed in further research.
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Figure 7: Histograms of a control cell (top) and a damaged cell (bottom) from the same

mouse

Results of the parameter estimation

For the two histograms depicted in figure 7, the optimization algorithm yields the follow-

ing parameter estimates:

K̂1 ≈ 0.0074

K̂ ≈ 74.

For these values, the displacement densityfσ is depicted in figure 8 (left). To evalu-

ate qualitatively the quality of the estimation, we superpose the result of the convolution

product of f̂µX ∗ f̂σ obtained with the estimated parameters and the observedf̂µY , as de-

picted in figure 8 (right). The estimate fits the data well, which indicates that our model

is quite realistic.

8 Discussion

In this work, we introduced a stochastic model to describe the comet assay experiment.

This model includes two parts. The first part, known in the literature as ’Random Break-
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Figure 8: Histogramm of the estimated displacement density with the fitted parameters

K1 = 0.0074 andK = 74 (left) and of the estimated end density with the fitted param-

eters (right,solid). On the right panel, the observed end density of the damaged cell is

represented as well (dotted), to allow comparison.
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age Model’ deals with the distribution of length of the DNA fragments. The ultimate goal

of this work is to estimate the parameter of this distribution. The second part describes

the migration of DNA fragments among gel fibers. This model might be to simple to give

a sensible description of the complex mechanisms of DNA damage and electrophoresis.

However, it allows mathematical analysis of the obtained cell images, a great advantage

compared to more complicated (and unfeasible) theories. Moreover, simulations showed

that the model captures phenomenological aspects quite well.

A naive approach to estimate the model parameters is presented in section 7. The

major drawback of the present version is, that it allows to estimate the parameter of interest

only up to a constant. In future work, this issue should be given much attention. Moreover,

the estimation is based on one control cell and one damaged cell, although 30 control

cells and 30 damaged cells are available for each mouse. Thus, two major issues should

be addressed in future. First, the robustness of the proposed estimation method has to be

be studied. Since it is not clear if all cells of the same mouse are equally damaged, the

study of robustness might be quite difficult. Second, a criterion is required to address the

question of biologists: What is the ability of a given mouse to repair its damaged DNA.
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