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Abstract

We present a stochastic model for single cell gel electrophoresis (COMET-assay)
data. Essential is the use of point process structures, renewal theory and reduction to

intensity histograms for further data analysis.

1 Introduction

Single cell gel electrophoresis or “COMET-assay” is a very efficient method to examine
DNA damage and repair with many applications, for example in cancer research. A non-
damaged DNA molecule is a long linear chain of desoxyribonucleic acids. When a cell is
irradiated several strand breaks in the DNA may occur. The aim of the study is to detect
to which amount a broken DNA molecule can be recombined by the organism. Non ef-
ficient repair may indicate genetically determined malfunctions in the recombination and
replication mechanisms of the DNA. At present, the COMET assay is the only technique
to monitor DNA damage and repair at the level of single cells.

The standard way to analyze COMET data is to compute characterizing geometric
properties of the comet, e.g. the tail moment [3] or the comet moment [19]. Some of

these parameters show only little variability across experiments [12]. However, all these
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parameters are sensible to small changes in the recorded COMET image. The used image
processing method plays a role and the errors in detecting faster fragments. Such frag-
ments appear usually darker and are thus not well separable from the background of the
image. Further, the images contain much more information than could be coded in one or
a few parameters. If one had a comprehensive model for the whole data and some robust
methods to extract relevant information, one could make better use of the recorded im-
ages. In the present work, we show that such modelling and also robust classification of
the comets is possible. On the other hand, extracting more information from the images
on the basis of the model leads to more subtle empirical deconvolution problems. This
will be addressed in a forthcoming paper [7].

This work is structured as follows. Section 2 is a short introduction to the COMET-
assay and to our approach for its modelling. In section 3 we will describe the problem as
a marked point process. In the subsequent sections we derive stochastic models for the
various stages of the experiment like the distribution of fragment masses after radiation
and the mass dependent migration distance of a single DNA fragment. In section 7, we

discuss the combined model by means of simulation and parameter estimation.

2 The COMET-assay and its modelling

A large amount of articles describe the technical details of the COMET-assay, for instance
[3, 6, 19]. An up to date source of information is the Web site [17] and an extensive
review of the COMET-assay can be found in [13]. Here, we only present a short overview
of the method with emphasis on few features which are important for our mathematical
modelling.

The cells to analyze are attached to an agarose gel and placed in an electric field, after
suitable treatment and in particular conditions. Since DNA is polar, DNA molecules tend
to migrate. Big DNA molecules (i.e. non-damaged or repaired DNA molecules) show
no observable migration, whereas small DNA molecules (i.e. damaged DNA molecules)
migrate quickly off the center of the cell. These small fragments constitute the tail of
the comet like electrophoresis image. Hence the name COMET-assay, see Figure 1. Itis
quite difficult to explain why small molecules migrate faster than big ones, but one of the
main explanations is that big molecules are more sensitive to hurdles (gel fibers) during

the migration. Till now there are diverse opinions among biologists about the underlying



mechanisms. Anyway, at the end of the electrophoresis, it is possible to see whether a
cell is 'quite damaged’ or 'quite non-damaged’, by analyzing the shape of the comet: a
damaged cell has a long and/or dense tail, whereas a non-damaged cell merely looks like
a homogeneous disk.

Figure 1: A comet from an irradiated cell

Our aim in the present paper is to establish a reasonable stochastic model describing
the data which can serve as a basis for future statistical inference. This strategy is in con-
trast to the standard approach, which uses only a few geometric features. We emphasize
again that the image data contamuch informatiomot represented in the single geomet-
ric parameters. We are able to retrieve this information only if we can model the physical
processes of the experiment with sufficient accuracy. The final goal is to estimate the
distribution of lengths of DNA molecules (or equivalently their distribution of mass) in
damaged and repaired cells, in order to get more information on the repair mechanism and
its efficacy. Keeping track of the approximations and assumptions in the modelling pro-
cess will help to implement methods which are robust under changes of model parameters
and slight violations of model assumptions.

In terms of the data, the distribution of molecule lengths we want to estimate is best
associated to the distribution of displacements of single DNA molecules. This demands
some further knowledge about the relation between length and speed. In the literature,
biologists propose theoretical models (for instance in [27]) for this relation and give ex-
perimental results (for instance in [23]) obtained in various conditions. These studies are
especially designed for usual gel electrophoresis, where the lengths of the DNA fragments
is ~ 500 bp. This is much smaller than the fragment lengths considered in COMET ex-
periments. In section 3 we propose a global model to describe the DNA migration and
finally get a formula agreeing with some of the experimental results. Our model takes into
account a great part of the physical features cited in the literature and is quite consistent
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with the empirical formulae already known.

Our model for the available data is guided by the experiment: First we describe the
placement of the DNA fragments before radiation and after radiation. To model the effect
of the gel electrophoresis, we then give a mathematical description of the migration of

DNA molecules through an agarose gel.

3 Marked Point Processes as Description

We consider a single cell containiigj DNA fragments, wher& is a (random) number
depending on the number of DNA breaks. Each offeagments is represented by a tu-

ple (Xi,m),i€{1,...,N}, whereX; is a three dimensional vector representing the initial
location of fragment andm is its mass.= = {(X;,m) :i € {1,...,N}} corresponds to

the observed fragments, approximating the location of a fragment by a point, but carrying
its mass into the calculations vig. Note, that we can not differentiate between break
experiments resulting in fractions of the same size. So, the sdtich is a simple finite
markedpoint procesg11] is a natural description of the fragments. [Dgtbe the three
dimensional vector of displacement of theh fragment ancK{ = X; + Dj, which is thus

the three dimensional vector of end location of fragmienX, D and X’ are depicted in

figure 2 for one point.

Figure 2: Coordinate system. The represented pointXsaitthe beginning, its displace-

ment isD and its end location iX’.

4 The Length Distribution — Poisson Approximation

Our goal is to determine the distribution of fraction lengths. It remains a very complex

issue because we do not know much about the mechanisms of breakage and repair.
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However, with a few simple assumptions, one can regard the distribution of lengths
in a damaged cell as exponential. This model is commonly called 'Random Breakage
Model' (RBM) and described in [21]. Let us briefly discuss its underlying assumptions.

1. Breaks occur completely at random, i.e. the radiation causes only single break
events which do not influence each other (this hypothesis is supported by the low

energy ofy-radiation) .

2. Breaks occur homogeneously, i.e. no part of the the DNA strand has a higher or
lower risk for break events. This hypothesis is questionable, since the DNA in the
cell nucleus has spatially a very complicated crystalline structure and parts of DNA
deeper inside this structure may be exposed to less radiation.

In our setting it is also sensible to make the following additional assumptions

e Breaks are rare compared to the number of unbroken sites.

From literature, we know that depending on experimental conditions 1 Gy radiation
intensity causes on average one single strand break (ssb) every several ten thousand
base pairs (bp). For example, [24] gives a value 885 108Gy 'Da 1, corre-
sponding approximately to one ssd for every 25000 bp (with 660 Ga as average
molecular weight of a bp). In our case, a 3.5 yource has been used leading to

a rough estimate of one ssb for every 7000 bp.

Further, the considered mouse chromosomes exceed by far 10 Mbp and thus we

state that
¢ the total number of breaks is large.

The following lemma gives a hint how to find distributions that model large numbers

of rare events.

Lemma 1 SupposéNk)ken are random variables geometrically distributed with survival
probabilities 0k )ken, liMk— —KINgx = A. Then

N
L(?) P:w> EXpy,.

If (Zx)ken are simple point processes dhsuch that B{ny,...,m} C =) = (1—qx)',
limg_»—kIngx = A then
L(Z/K) ===,
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wherefT, is the stationary Poisson process Bn with intensityA and=/r = {x/r : x €

=}
Proof. By use of Laplace Transform, [11, Proposition 9.1.VII]. |

The lemma tells us, that for all sufficiently long pieces of DNA the number of breaks
can be be regarded as Poisson distributed with paramgtérwherev_ is some strictly
positive real constant ant] is the length of the piece.

Under the second assumptions, the length resp. the mass between two breaks is expo-
nentially distributed with parameteg resp., sayywm . In the following, we will always
consider only the mass. Note, that it would be strictly equivalent to consider the length

instead. Thus, we can assume that the density of mass of the DNA fragments has the form
fm(m) = v exp(—vum), (m>0).

This model suggests that we only have to determine the congjantorder to know the
distribution of mass completely. Indeed, one can find in the literature tables recording the
average number of breaks per thousand of DNA bases for specific experimental conditions
(including the radiation intensity). These numbers could in principle be used to determine
the parameter of the exponential distribution. However, these tables are highly dependent
on experimental conditions, which unfortunately do not fit our case. Therefore, we need
the COMET-assay to fix the parametgy.

Things get more complicated, if we consider the repair mechanism, which controls

the data for the “repair” group. We assume

1. that breaks are repaired independently,

2. the repair mechanism is homogeneous (it does not depend on the site of the chro-

mosome where the break occurred) and

3. there is no difference for the cell to repair breaks between short or long fragments.

This means, we assume that breaks are deleted independently of each other. In the lan-
guage of point processes the process of break poititiised

The following lemma is well-known.

Lemma 2 ([11, Example 8.2(a)])If Z is a Poisson process with intensity measure p then
the thinned configurationZ where each point of Z is deleted with probability< p < 1

is Poisson distributed with intensity measure pu.
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Due to the above assumption 3, this carries over to the case of marked point processes.
In our applicationp describes the repair efficacy. Of course, an estimatignwduld
be highly dependent on the RBM and our assumptions on the repair mechanism. So, we

should look for robust substitutes pf

5 Migration of a Single Fragment — Renewal Processes

and Diffusion Approximation

In this part we propose a model for the migration of DNA fragments in order to determine
theoretically the conditional distribution of displacement given the mass of a fragment. In
the literature, various qualitative models have already been proposed, for instance DNA-
fragments as small balls moving in a thin net of points ([4], [9], [28]) or as long 'shakes’
creeping between big obstacles ([1], [23], [27], [28]). Most of these models are mainly
qualitative and tailored for specific experimental conditions. Our model is an adaptation
of the Ogston theory [9]. We aim to make a model simple enough to allow mathematical
treatment, while taking into account as many features as possible.

Let us consider each cell separately. Since in our case the agarose gel concentration is
very low, the gel can be assumed as a net of randomly distributed points, like in the Ogston
model. DNA fragments are considered as solid round balls because we assume them to be
rolled and not stretched. The modelling can easily be generalized if DNA fragments are
assumed to be ellipsoids, as it was suggested in [4]. We admit, that this assumption on the
geometry of the fragments is quite bold and this issue is still very controversial. But, it
allows us simple modelling, which would be not possible without restrictive assumptions.

The whole cell is assumed to be a flat cylinder (See figure 3): each fragment can move
in a three-dimensional space, but in fact we will not pay attention to the displacements
along the vertical axig because they are negligible in comparison with the displacements
induced by the electric field, which is parallel to tkaxis. For the same reason we also
neglect the displacements of the fragments inydarection. The displacements in the
y-direction andz-direction are quite complicated to understand and to model. To sum up,
they can be assumed approximately as complex diffusion movements. The displacement
in the x-direction depends on the mass (or length) of the fragment in a way that will be

specified later. In our model we will only consider the displacements in this direction.



This means, that we look for the projections on #axis of the vectorsX, D and X,
which will be simply denoted aX, D andX’.

Figure 3: A whole cell in the coordinate system

Let us consider a fixed fragmentWhen the electric field is applied, fragmeiegins
to migrate freely with constant and mass-independent speed (degpiethex-direction
during a periodTi; till it collides with an hurdle (gel fiber). Then it needs some time
(S1) to bypass it, using the shortest path (see figure 4). Then it can migrate freely again
during T2 till it meets the next hurdle, etc. Thus the migration consists of a succession of
periodsTi1,S1, T2, S2, ..., Tk, Sk, ... The electric field is applied at timnte= 0 and time
to corresponds to the end of the experiment, the time at which we observe the location of
the fragment. Th&j andSk can be seen as realizations of random variablesnd .
In the following, we model the distribution of th&),_, and(S)y_

/ﬂ(\@
AL

Figure 4: DNA fragments bypassing hurdles using the shorter path. The big ball are
DNA fragments, the small balls (which are assumed to be points) are hurdles. The arrows
represent the path of the fragment centers.



The Distribution of Ty

To modelTy, we assume that the distribution of hurdles is a spatial Poisson process along
thex-axis. In other words, if we follow a DNA fragment along tkexis, we make the
following assumptions (withP(l) being the probability for the fragment bumping into a
hurdle in intervalll andP-1 (1) being the probability for the fragment bumping more than

once into a hurdle in intervall):

1. We suppose the gel is perfectly homogeneous, so the probability for a certain frag-
ment to bump into a hurdle is everywhere the saR{, x+ Ax]) does only depend
on Ax but not onx, Vx > 0 andAx > 0.

2. We also suppose that the probability for a certain fragment to bump into a hurdle is
independent from where and how many times it bumped into a hurdle earller: if
andJ are disjoint intervalsP(l) andP(J) are independent.

3. Since the gel is very thin, we make the assumption that a fragment can not be in
contact with more than one hurdle at the same time. So we Ravé€x,x+Ax]) =
0(Ax) Vx> 0 andAx > 0.

Under these assumptions, the number of hurdles a fragment meets on its way along the
X-axis is a Poisson process witlplaying the role ot. So we have:

im P([x,x+ Ax])

=A
Ax—0 AX ’

whereA is a real positive parameter. Then the distance between two hurdles is exponen-
tially distributed with parametex. We callC the number of hurdles per volume unit. To
computeA, let us imagine a round ball migrating along thaxis. The cross section of a
ball with radiusa equalsma?. Thus, during a short displacemeit, the swept volume is
ma?Ax and the probability that the ball bumps into a hurdle@€CAx, hence the simple
formulaA = 11- C&?. Since the mass of the fragment is proportional to its volumejs
proportional taCm?/3.

As we assume constant and mass-independent speed along the x akisarén@ro-
portional to exponentially distributed random variables with paramet&he respective
means and variances can now be computed as functiams'df > 1, E(Ty) = Kym~2/3

andV(Ty) = (Kym~2/3)2 with K1 being a constant not depending on the fragment



The Distribution of S,

Under quite strong assumption, the modelling of $es easy. Assuming that all frag-
ments bypass the hurdles with the same constant spegediiiection, we get after a short
computation that th& are uniformly distributed in the intervéd, 2Ksm!/3], with Ks be-

ing a constant that is the same for all fragments. The factor 2 was introduced only for

computational reasons.

Definition of T

We now define for each DNA fragment the integer random variable

n—1

T=max{n: z (Tk+S) <to} (1)
K=1

Since most of the fragments do not move at all betwteerD andt = tg (there are much
more DNA in the head than in the tail), we assume that the fragments spend much more
time bypassing hurdles than migrating. Thus, a given fragment is much more likely to be
bypassing an hurdle than to be migrating when the experiment is stopped &j.tifine
sum of theS will be much larger than the sum of tAg and especially for large the
quantityy ., T is a good approximation for time a fragment migrated in the direction of
the field.

With this approximation and the constant migration spgeathe gets the displacement

D of a given fragment as

The Mean of D

For a given DNA fragment with known mass, the meamaxists and can be computed
similar to Wald’s identity, see [10, VII, Theorem 3].

Lemma 3 Let (Tx)y_; and (S)y_; be independent and identically distributed positive
random variables with finite mean. Lebe defined by equation (1). Then

T

E(Y T = E(T)-E(T)

k=1
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Proof. Since for allk > 0, the evenf{t < k— 1} is independent ofy, and therefore also
{t >k}, we have:

E(Y T = ZTk k+o0)

= ZETk k40 (T))

Note, that the interchange of expectation and infinite sum is justified by the theorem of

monotone convergence. O

Corollary 1 Under the above assumptions the expected displacement is
E(D) = vo-E(T1)-E(1) (2)

To utilize this result, we neeBt. Actually, we use an approximation fét which can
easily be computed with good precision.

The definition oft shows:

T
tp < ZTHﬁ<<M+E+S

T

th < E(Z(Tk—I—S()) < to+E(M+S).
k=1

Applying Wald's identity to the middle term yields lower and upper boundfior

to o

— < Et < ——+1
E(Ti+S) E(Ti+S)
By introducing this inequality into (2) we get:
VotolE (T]_) VotolE (T]_)
—————— < ED) < ———% +VoE(Ty).
Em sy = P < g gy TR
Therefore,
ETy
ED =~ ty-Vor =———"—
0V BT +ES,
t KTm*Z/S
= -V -
UMY Ky m-2/3 + Kgml/3
1
— - 3
Ky 1Ko 3)
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with suitable constant&; andK,. This formula is considered in some references as the
best empirical approximation of the (mean) displacement as function of the mass (or the
length) [30, 27].

Many other formulae have been proposed in the literature [23, 1, 4]. These formulae
are suited to model specific experimental conditions (strength of the electric field, approx-
imate fragment size, gel properties, etc). However, the fordual/(K; + Kom) and

slight modifications seem to prevail.

6 Migration of the Fragment Population

To describe the migration of fragments we use the above point process notation. We as-
sume that the electric field generates a stochastic displacement [11] of the fragments, i.e.,
each fragment moves independently from the others and from the interaction of the others
with the gel. This implies that the random variab®sare independent and, conditioned

on my = m, identically distributed for everyn > 0. Further,D; should be independent
fromm;, j #i. Now we show that these assumptions allow a simple formulation of the
migration problem involving a convolution product.

Our basic assumption on the images is that the intensity in one pixel is proportional
to the mass of DNA concentrated there. So, we have to consider the mass distribution for
the DNA. In point process language, we look for the intensity measures of the process.

The mass intensity measyue [11] is defined as

p=(A) = E( Y mia(X))
(X,m)e=

for each Borel sef.
In our situation there are two intensity measures: the start intepgignd the end
intensity .

The following assumptions now govern our migration model:

1. The DNA-breaking rate and the DNA-repairing rate are spatially homogeneous.
This implies especially that; andm; are independent.

2. The distribution of the displacemeb of fragmenti depends only on its mass
m; and not onX;. There may be doubts, if this assumption is justified. Indeed,
especially when the DNA-concentration is high, fragments may be broken by other
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fragments during the migration. However, to get a feasible model, we assume that
this effect does not play an important role.

We definefy as the density of mass, iﬁnmz fm(m) - dmis the fraction of fragments
with mass betweem; andny. Further,fx denotes the start density, Ué‘z fx (x)-dxis the
fraction of fragments between= x; andx = x at the beginning of the electrophoresis,
or, to be more precise, the fraction of fragments whose gravity center is bexweean
andx = xz. Similarly, we define the conditional densitigs, and fpm:

f;{z fx/m(X) - dx is the fraction of fragments betweeth andx; at the end of the elec-
trophoresis given the mass, andfc‘fl2 fpjm(d) - dd is the fraction of fragments with dis-
placement betweedy, andd, given the massn. Further, letf,, denote the density qix
andf,,, the density ofux:.

Because of the assumption f, = f,,. Finally, letM denote the total mass of DNA
contained in the considered cell

Lemma 4 With the global density of displacement

fol MC/ m- fw (m) - (fo|m)(d) - dm,
we have

fux, = fIJX * fo-.

Proof.

The densityf,,, of ux: can be written as

fo (0X) = 57 / M- (M) - fym(x)dm.
From
fom(X /fx ) fom(X —X)dx
we immediately find our assertion:
fu, (X) = Mc/fx /m fm(m) - fpm(X' — x)dx dm

_ /fx ) fo(X — x)dx

Thus, our model leads to a convolution problem.
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Figure 5: Three simulations from the point process model, parameters top: middle: bot-

tom:

7 Simulation and Comparison to Data

In this section, a simulation is carried out to check qualitatively whether the model for the
DNA mass distribution and the model for the DNA migration lead to comet-like shapes.
Subsequently, we present a simple method which allows a rough estimate of the model
parameters from two specific histograms. These histograms represent, respectively, the
horizontal distribution at the beginning and at the end of the electrophoresis. One of
these parameters is the requirggl determining the exponential distribution of fragment

masses.

Simulation of the DNA migration

With the software package AntsinFields [15] we implemented the above model, leaving
aside the problem of calculating the correct variances. The length of the fragments was
sampled from an exponential distribution. The number of fragments was fixed beforehand
and assumed to be uniformly distributed over a ball. The distribution of the displacement
D was taken as bivariate normal with expectat(%sz,O). The variance®y andoy
were fixed independently from the fragment lengtland covariance was assumed to be
0. We stopped the simulations after suitable times to find comet-like shapes.

As Figure 5 indicates, the model is able to capture at least the comet-like shape of the
real-world data. The programs written in Oberon are available on request from the last

author.

A simple method to estimate the model parameters

The model presented above includes two steps of modelling:
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1. the modelling of the distribution of masses as exponential with paramgter

fm (M) = v exp(—vpmm)

2. the modelling of the dependency between the displaceBvantl the mass. The
problem of determination of a correct variance formula is ignored: for simplicity
the displacement given the mass is assumed to be equal to its mean:

1

DM = ——.
( ) K1+ Kom

We define a new density,, as follows: fr?f fuy (M)dm is the fraction of DNA mass
contained in fragments of mass betwasnandmy.

As f,,, = mfy(m) one has
fu (M) = VEmexp(—vum).

Using the convolution lemma 4, it is easy to show that

v 1 v, 1
fold) = iz (g ~ KD eXP(—ic; (G~ K0

Although this model involves 3 parametews( K1 andKy), it has only two degrees
of freedom, sinc&, andvy, appear only in the ratié%. Thus, can only identify the two
parameter¥; andK = ‘,’<—“g Thereto, we need to know the distribution along xhaxis
before and after electrophoresis.

Unfortunately, no images of the cells before electrophoresis are available. We only
have images of degraded and repaired cells to analyze and images of control cells which
have not been grayed. Making the assumption that the DNA distribution in control cells
after electrophoresis is similar to the DNA distribution in degraded cells before elec-
trophoresis, we use the images of the control cells to estimate the starting DNA density.
This assumption can be justified by the fact that the histograms of control cells are per-
fectly symmetric, indicating that the DNA fragments in control cells are too big to migrate
at all during electrophoresis.

Let us consider two images from the same mouse: an image of a control cell and an
image of a degraded cell. Using a JAVA programm, we sum the intensities of all the pixel
columns successively, for both images. Thus we obtain discretised estimédjgsanid
f.y, as depicted in figure 6. Notice that we have aligned the two images arbitrarily. As

will become clear later, this causes no problem.
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Figure 6: Histograms of a control cell (top) and a damaged cell (bottom) from the same

mouse

To estimate the parametefs (whose unit ispixel~1) andK, we proceed as follows.
For different values oK; andK, we perform a discrete convolution cﬁjx and fgs. Our
goal is to find the values for which a certain dissimilarity function between this convolu-
tion product and the observe, is minimal. Since we do not know the location of the
axis origin in the histogranﬁuy, this dissimilarity measure has to be translation invariant.
A simple method is to 'subtract’ the histograf@ x fo from the histogram‘hY using the
criterion of minimal quadratic transportation costs as described in (Boulestaix2003)
and to use the variance of the resulting histogram as dissimilarity measure. Clearly, this
measure is translation invariant and it is higher for 'very different’ histograms than for
'similar’ histograms.

To minimize this criterion, we employ tieprogrammoptim which implements the
optimization method of Byrd et al. (1995) and allows to give as inputs lower and upper
bounds for each parameter. Here, we set the lower bounds to zero, because the parameters
K andK; have to be strictly positive. This method yields estimateskiandKi. A
drawback is that our model allows only the estimatio%@fand notvy, which is actually

the parameter we want to estimate. This issue will be addressed in further research.
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Figure 7: Histograms of a control cell (top) and a damaged cell (bottom) from the same
mouse

Results of the parameter estimation

For the two histograms depicted in figure 7, the optimization algorithm yields the follow-
ing parameter estimates:
K1 ~ 0.0074

K~ 74.

For these values, the displacement densityis depicted in figure 8 (left). To evalu-

ate qualitatively the quality of the estimation, we superpose the result of the convolution
product of f,, * f obtained with the estimated parameters and the obsefyeds de-
picted in figure 8 (right). The estimate fits the data well, which indicates that our model

IS quite realistic.

8 Discussion

In this work, we introduced a stochastic model to describe the comet assay experiment.
This model includes two parts. The first part, known in the literature as 'Random Break-

17



0.030
|
0.030
|

0.020
1
0.020
1

displacement density
end density

0.010
0.010

0.000
|
0.000
|

0 50 150 0 50 150

Figure 8: Histogramm of the estimated displacement density with the fitted parameters
K1 = 0.0074 andK = 74 (left) and of the estimated end density with the fitted param-
eters (right,solid). On the right panel, the observed end density of the damaged cell is

represented as well (dotted), to allow comparison.
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age Model deals with the distribution of length of the DNA fragments. The ultimate goal
of this work is to estimate the parameter of this distribution. The second part describes
the migration of DNA fragments among gel fibers. This model might be to simple to give

a sensible description of the complex mechanisms of DNA damage and electrophoresis.
However, it allows mathematical analysis of the obtained cell images, a great advantage
compared to more complicated (and unfeasible) theories. Moreover, simulations showed
that the model captures phenomenological aspects quite well.

A naive approach to estimate the model parameters is presented in section 7. The
major drawback of the present version is, that it allows to estimate the parameter of interest
only up to a constant. In future work, this issue should be given much attention. Moreover,
the estimation is based on one control cell and one damaged cell, although 30 control
cells and 30 damaged cells are available for each mouse. Thus, two major issues should
be addressed in future. First, the robustness of the proposed estimation method has to be
be studied. Since it is not clear if all cells of the same mouse are equally damaged, the
study of robustness might be quite difficult. Second, a criterion is required to address the

question of biologists: What is the ability of a given mouse to repair its damaged DNA.

Acknowledgements We thank C. Schindewolf for introduction into the problem, J.
Georgii for the development of a Java platform, and F.Friedrich for the simulation via
the AntsinFields platform [15].

References

[1] Akerman B. (1996), Cyclic migration of DNA in gels: DNA stretching and elec-
trophoretic mobility,Electrophoresisl7, 1027-1036

[2] Alsmeyer G. (1991)Erneuerungstheorieleubner, Stuttgart

[3] Ashby J., Tinwell H., Lefevre P.A. and Browne M.A (1995), The single cell gel elec-
trophoresis assay for inducet DNA damage (COMET-assay): measurement of tail

length and momeniMutagenesislO, 85-90

[4] Bearden J. C. (1979), Electrophoretic mobility of high-molecular-weight double-
stranded DNA on agarose geBeng 6, 221-234

19



[5] Bhattacharya R.N. and Waymire E.C. (1998)pchastic processes with applicatipns
Wiley series in probability and mathematical statistics, Chichester

[6] Bocker W., Bauch T., Nlller W.U. and Streffer C. (1997), Image analysis of COMET-
assay measurementst.J.Radiat.Bio) 72, 449-460

[7] Boulesteix, A.-L, Hsel, V. and Liebscher, V., A comparative study of empirical de-

convolution techniques for the COMET-assay. In preparation.

[8] Byrd R.H., Lu P., Nocedal J. and Zhu C. (1995), A limited memory algorithm for
bound constrained optimizatio8JAM J.Scientific Computind6, 1190-1208

[9] Calladine C.R., Collis C.M., Drew H.R. and Mott M.R. (1991), A study of elec-
trophoretic mobility of DNA in agarose and polyacrylamide gél$jol.Biol, 221,
981-1005

[10] Shiryayev A.N., (1984) Probability, Graduate Texts in Mathematics, Springer-
Verlag, New York

[11] Daley D. and Vere-Jones D. (1988), An Introduction to the Theory of Point Pro-

cesses, Springer Series in Statistics, Springer-Verlag, New York Heidelberg

[12] De Boeck M., Touil N., De Visscher G., Aka Vande P., Kirsch-Volders M. (2000),
Validation and implementation of an internal standard in comet assay an&litsis,
tat.Res.469 181-197

[13] Fairbairn D.W., Olive P.L. and O’Neill K.L. (1995), The COMET-assay: a compre-
hensive reviewMutat.Res.339, 37-59

[14] Feller (1971)An introduction to probability theory and its application, Vo] Wiley

series in probability and statistics

[15] Friedrich F. (2002), The software package AntsinFields,
http://www.antsinfields.de

[16] Grimmett G. and Stirzaker D. (1992probability and random processe®xford
science publications

[17] Introduction to COMET assawttp://www.cometassay.com

20



[18] Karr A.F. (1986),Point processes and their statistical inferen&sobability: pure
and applied, Manuel Neuts

[19] Kent C.R.H., Eady J.J., Ross G.M. and Steel G.G. (1995), The comet moment as a
measure of DNA damage in the COMET-asday.J.Radiat.Biol. 67, 655—660

[20] Kingman, J.F.C.Poisson processevolume 3 of Oxford Studies in Probability
Clarendon Press, Oxford, 1993.

[21] Kraxenberger F., Weber K.J., Friedl A.A., Eckardt-Schupp F., Flentje M., Quicken
P. and Kellerer A.M. (1998), DNA double-strand breaks in mammalian cells exposed
to y-rays and very heavy ionRadiat.Environ.Biophys37, 107-115

[22] Krishnaiah P.R. and Sen P.K. (1984jandbook of statistics,4Elsevier Science

Publishers, Amsterdam.

[23] Lalande M., Noolandi J., Turmel C., Brousseau R., Rousseau J. and Slater G.W.
(1988), Bands in gel electrophoresis of DNAicl.Acids.Res1988 5427-5437

[24] Milligan J.R., Aguillera J.A., Paglinawan R.A., Ward J.F. and Limoli C.L. (2001),
DNA strand break yields after post-high LET irradiation incubation incubation with
endonuclease-lll and evidence for hydroxyl radical clustering,J. Radiat. Biol,
77,2,155-164

[25] Nelson R. (1995)Probability, stochastic processes and queuing the&gringer-
Verlag, Berlin

[26] Ross S.M. (1983)Stochastic processg@/iley series in probability and mathemati-
cal statistics, Chichester.

[27] Serwer P. (1989), Sieving of double-stranded DNA during agarose gel electrophore-
sis,Electrophoresis10, 327-331

[28] Slater G. W., Mayer P. and Drouin G. (1996), Migration of DNA through gdisth-
ods Enzymo) 270, 272—-295

[29] Software for Comet Analysis: VISCOMET, TILL Photonics

[30] Southern E.M. (1979), Measurement of DNA Length by Gel Electrophoresis,
Anal.Biochem100 319-323

21



