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1 Introduction

Certain time series models known as ARCH (AutoRegressive Conditional Heteroscedastic-
ity) and GARCH (Generalised ARCH) models are popular in financial econometrics where
they are designed to capture some of the distinctive features of asset price, exchange rate,
and other series. So-called stylised facts characterise financial data as heavy-tailed, uncor-
related, but not independent, with time-varying volatility and a long range dependence
effect evident in volatility, this last also being manifest as a “persistence in volatility”.
Various attempts have been made to capture these features in a continuous time model,
a natural extension being given by diffusion approximations to the discrete time GARCH
as in Nelson [20] and Duan [9] or also in de Haan and Karandikar [7]. These lead to
stochastic volatility models of the type

dY, = 0,dB"Y | do? = 0(y — o2)dt + po2dB®, t>0, (1.1)

where BM and B® are independent Brownian motions. For a review paper on such
continuous time GARCH models we refer to Drost and Werker [8].

Various related models have been suggested and investigated, many generalisations
being based on Lévy processes replacing the Brownian motions and on relaxing the in-
dependence property. We refer here to Barndorff-Nielsen and Shephard [2, 3] and Anh,
Heyde and Leonenko [1] for quite sophisticated models.

The main difference between models like (1.1) and the original GARCH setup is the
fact that in the GARCH modelling one single source of randomness suffices; all stylized
features are then captured by the dependence structure of the model.

We adopt this idea of a single noise process and suggest a new continuous time GARCH
model, which captures all the stylized facts as the discrete time GARCH does. As noise
process, any Lévy process is possible, its increments replacing the innovations in the dis-
crete time GARCH model. The volatility process is modelled by a stochastic differential
equation, whose solution displays the “feedback” and “autoregressive” aspect of the re-
cursion formula for the discrete time GARCH model.

Our paper is organised as follows. We start in Section 2 with the basics, giving neces-
sary and sufficient conditions (NASC) for the existence of stable solutions to the discrete
time GARCH(1,1) model, assuming no a priori conditions whatsoever; in particular, no
moment or log-moment assumptions are made.

In Section 3, motivated by the structural results of the previous section, we suggest
a new continuous time GARCH(1,1) model taking a general Lévy process as the driving
process. The resulting volatility process satisfies a stochastic differential equation and is
stationary under analogous conditions as for the discrete time GARCH model. Moreover,

it is Markovian and a stationary version exists. For the continuous time GARCH model



a bivariate state space representation exists and is Markovian, again in analogy to the
discrete time GARCH.

Section 4 is devoted to an investigation of the stylized facts for the volatility process as
mentioned above. The second order properties of the continous time GARCH match those
of the discrete time model, as calculated moments and autocorrelation functions reveal.
Moreover, the stationary volatility is heavy-tailed in the sense that not all moments exist
in a given parametrisation.

Finally, in Section 5 we summarize some moment properties of the GARCH process
itself, showing in particular that its squared increments are positively correlated under

some conditions.

2 Discrete time ARCH(1) and GARCH(1,1) processes

We write the discrete time GARCH(1,1) process in the form

Y, = €,0,, where 02 = 3+ \Y2 | + o> n € N. (2.1)

n—1>

The parameters 3, A and § satisfy § > 0, A > 0 and § > 0. When 6 = 0 in (2.1),
GARCH(1,1) reduces to ARCH(1), and if 6 = A = 0, (Y},)nen is simply a sequence of

i.i.d. random variables (rvs), so we assume J + A > 0 to exclude this case. The random

2

variable (rv) o, is the positive square root of o}

and the ¢, are i.i.d. non-degenerate
rvs with P{e; = 0} = 0. We assume some initial almost surely (a.s.) finite (random, in
general) values for ¢y and oy, independent of each other and independent of (¢,,),>1, and
let Yy = 90¢. For general background on ARCH we refer to Engle [12], and for GARCH
to Bollerslev, Engle and Nelson [5]; see also Shephard [28].

There have been many empirical and theoretical investigations into properties of the
models. Of major theoretical importance are conditions on the parameters in the model
under which a stationary version of the process exists. Define the rvs

n

Tn = Tp(A,0) == H(6 +Ae?), mneN.

=1

. . . . D
The next result will be used to motivate our continuous time model. Throughout, “—=”

e P . . D
means “convergence in distribution”, “—” means “convergence in probability”, and “="

means “has the same distribution as”.

Theorem 2.1. (a) (GARCH(1,1)) Assume the above setup with § > 0 and A > 0, but

no further restrictions. Suppose
E|log(d + Ae?)| < oo and Elog(d + Ae?) < 0. (2.2)
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Then we have stability of the mean and variance processes, that is, Y, LY and On Y o,
as n — oo, for finite rvs Y and o. Conversely, if (2.2) does not hold, then o, L 0o and
|Yn|£>oo as n — 00.

(b) (ARCH(1)) Suppose 6 =0 and A > 0. Then we have stability of (Y;,)n>0 and (0n)n>0
if (b1) (2.2) holds with 6 =0, or (b2)

00 x -1
E(log(Ae?))” =00 and / x </ P(log(Ae?) < —y) dy) dP(log(\e?) < ) < 00
0 0
(2.3)
Conversely, if (2.2) with § =0, or (2.3) fails, then oy, L~ and 1Y, | L 50 as n — oo.

Proof. Take § > 0, A > 0. From (2.1) we have
ol=B+AY? | +d02 =B+ 5+ X2 o, neEN, (2.4)

where &,,_1 is independent of o2_,. Iterate this to get (cf. Goldie [15], Nelson [21] Eq. (6))

n—1 n—1

BZH (0 + Aed) +00H5—|—)\6 neN (2.5)

=0 j=i+1

(take IT%_, = 1 when a > b). This relation shows that the distribution of ¢, has the form
of the distribution of a discrete time perpetuity, as in Goldie and Maller [16]. Setting
M; = M;(6,\) =0+ )\53, and (); = 1 in their notation, we can apply their Theorem 2.1
to see that o2 B 62 for a finite rv o, provided lim, s 7, = 0 a.s. Assuming lim,,_,o 7, =
0 a.s., and taking limits in (2.4) shows that o satisfies 02 2 8 + (8 4+ Ae2)o?, with &
and o independent. From (2.1) we then get Y, 4 Y, satisfying Y 2 oe, with € and o
independent. If 7, does not tend to 0 a.s., then Theorem 2.1 of [16] shows that o, SR 00,
and then |Y,| 2 50 because P{e; = 0} = 0. Thus, a NASC for stability of the discrete
ARCH(1) and GARCH(1,1) processes is 7, — 0 a.s. as n — 00.

Now define

So=0, S,=> X;, neN, for X;=-log(6+\), i€N.
i=1
Since P{e; # 0} = 1, the X; and S, are a.s. finite rvs for any 6 > 0, A > 0, 6 + A > 0.
Further, m, — 0 a.s. if and only if S, — oc a.s. Let X = X, XT = max(0,X) and
X~ = —X+ X7. Then, by Kesten and Maller [17] and Erickson [13], a NASC for m,, — 0

a.s., or, equivalently, S, — 00 a.s., is:

E|X| < oo and EX > 0; (2.6)
or else
x
EXT = d — | dP{X ™ < . 2.
oo an /[;],oo)<E(X+/\$)> { <z} <oo (2.7)
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(a) Keep d > 0, A > 0. Now (2.6) is exactly (2.2), so we only have to check that condition
(2.7) cannot occur in this case. We do this by showing EX™ < oo. Note that (2.2) implies
0 < 1, as does lim,,_,o, m, = 0 a.s. So we may keep 0 < d < 1. Then for x > 0,

P(X > z) = P(—log(d + )\5%) > x) = P(log(d + )\53) < =) Lz 10g4} 5

SO
—logd
EX* = / Plog(6 + Ae?) < —x) da,
0

which is always finite, completing the proof of (a).

(b) Next, keep 6 = 0, A > 0. This time (2.7) can occur, the condition being equivalent to
(2.3). Alternatively, (2.6) is equivalent to (2.2) with § = 0 in this case. This proves (b).
O

Remark 2.2. (i) Under the a priori assumption that the expectations of the positive and
negative parts of log(d + Ae?) are not both infinite, Nelson [21] gives a NASC for stability
of the ARCH(1) and GARCH(1,1) volatility processes as Elog(d + Ae?) < 0 (see also
Sampson [25]). In the GARCH case, § > 0 and A > 0, we always have E(log(d + Xe?))™ <
00, and so (2.2) recovers Nelson’s sufficient condition. Nelson claims that if (2.2) fails,
then 0,, — oo a.s., but his proof is incorrect in the case Elog(d+ Ae?) = 0. Only the weak
divergences, that o, — oo and 1Yy RIS (n — o0) as stated in our Theorem 2.1, can be
claimed in general. This distinction is important in some applications.

In the ARCH case, 6 = 0 and A > 0, then it is easy to construct (e,)nen such that
E(log(\e?))” = E(log(\e?))™ = oo, but (2.3) still holds. Thus Theorem 2.1 extends
Nelson’s result for the ARCH(1) case.

(ii) Condition (2.2) obviously implies ¢ < 1. Conversely, if § > 0 and
§+AE(e2) < 1,

then (2.2) holds by an application of Jensen’s inequality. Under the finite variance condi-
tion E(e?) < oc, Bougerol and Picard [6] give NASC for strict stationarity of GARCH(p,q)

models.

(iii) Note that lim, ,o m,(A,d) = 0 a.s. for A > 0, ¢ > 0 implies lim,, o, 7,(\,0) = 0 a.s.
for A > 0. Thus, the GARCH(1,1) stability condition implies stability of ARCH(1). O

Remark 2.3. When Y and o exist in Theorem 2.1 they satisfy the random equations

Y £ o¢, where 02 2 8+ (6 + Ae?)o?,



with & 2 1 independent of o, as shown in the proof. Also, o has an explicit representation

as an infinite (absolutely convergent) random series:

o 283 [+ Ae). (2.8)

i=0 j=1

Equation (2.8) makes it clear why lim,, ,., 7, = 0 a.s. is necessary for the stability of
GARCH(1,1), but the sufficiency comes about using deeper properties of random walks,
as exploited in Goldie and Maller [16]. O

For conditions guaranteeing various useful properties of a stationary solution (existence
of moments, tail behavior, extremal behavior, etc.) when it exists, Mikosch and Starica [19]
provide the most general investigation so far. Such results of course have great practical
importance as well. Connections between GARCH models and the random difference
equation literature have been noted by various authors, among them Goldie [15]; see
Embrechts et al. [11], Section 8.4 for further references. Rather than pursue these here,

we turn to a continuous time setting.

3 A continuous time GARCH process

Our aim now is to construct a kind of GARCH process in continuous time. We want to
preserve the essential features of (2.1), that innovations feed into the volatility process,
which has in addition an autoregressive aspect. We proceed from the representation (2.5).
The summation in (2.5) can be written as

n n—1
B/ exp Z log((H—)\g?) ds, (3.1)
0

j=ls]+1

which suggests replacing the noise variables ¢; by increments of a Lévy process. Accord-

ingly, let L be a (cadlag) Lévy process with jumps AL, = L, — L, , t > 0, defined on a

probability space with appropriate filtration, satisfying the “usual conditions”. We recall

some of its properties. For each t > 0 the characteristic function of L; can be written in

the form

) e )

E(e) = exp <t (i’yLQ - 7'25 +/ (em -1- i@xl{mgl}) HL(dx)>> , 0eR,
e (3.2)

(Sato [26], Theorem 8.1, Bertoin [4], p. 13). The constants v, € R, 77 > 0 and the

measure II; on R form the characteristic triplet of L; as usual, the Lévy measure Il is

required to satisfy [, min(1,2*)II;(dz) < oo. If in addition [, min(1,|z|)II,(dz) < oo,



then v := v, — f[fl 1 211y (dx) is called the drift of L. We will only be interested in the
situation where II; is nonzero.
Keep 0 < § <1, A >0, and, with (3.1) in mind, define a cadlag process (X;);>¢ by

Xy =—tlogd — Y log(1+ (A/0)(AL,)%), t>0. (3.3)

0<s<t

Then, with § > 0 and o0¢ a finite rv, independent of (L;);>o, define the left-continuous
volatility process analogously with (2.5) by

t
ol = <B/ eXeds + a§> e~ N t>0, (3.4)
0
and define the Integrated GARCH Process (G;);>o as the cadlag process satisfying
th:O'tst, tZO, G():O (35)

Thus G jumps at the same times as L does, and has jumps of size AG; = 0, ALy, t > 0.
Here AL, is to play the role of the innovation ¢, in the discrete time GARCH, and
the intention is that (G;);>o and (07);> display a kind of continuous time GARCH-like
behaviour. This indeed turns out to be the case.

We begin our analysis by first investigating the process (X;);>o, which has a special
structure.

Proposition 3.1. (X});>¢ is a spectrally negative Lévy process of bounded variation with

drift yxo = —logd, Gaussian component 7% = 0, and Lévy measure lx given by

Ix([0,00)) =0 and IIx((—oo,—z]) =II,({y €R : |y| >/ (e*—=1)d/A}), x>0.

Proof. That (X;);>0 is a Lévy process with no positive jumps is clear. The Lévy measure

of (X})i>0 has negative component given by

Mx{(—00, 2]} = E Y 1{ log1+(/6)(AL)?)<— s}

0<s<1
=k 0;1 LN ey
s_

= I {y: |yl >+ (e* =15/}, x>0.

This means that I1y is the image measure of II; under the transformation 7" : R —
(—00,0],  — —log(1 + (A\/d§)x?). This shows in particular that

z|llx (dz) = lo MOy T, (d
[ st = [ st (o Ty



is finite, because [ ,,,y°l;(dy) is finite. Thus (X;)i>0 is a Lévy process of bounded

variation (e.g., Sato [26], Theorem 21.9), having characteristic function
E(eXt) = exp <—z‘t9 logd +t / (e —1) HX(dx)> , OER, (3.6)
(_0070)

(e.g. Sato [26], Theorem 19.3), showing that yxo = —logd and 7% = 0. (In fact (X})s>0

is the negative of a subordinator together with a positive drift.) O

We now proceed to investigate (G;);>0 and (07);>0 given by (3.4) and (3.5).

Proposition 3.2. The process (07)i>o satisfies the stochastic differential equation

doy, = Bdt +oje*-d(e™™), t>0, (3.7)
and we have
t
ol =Bt + log&/ o?ds + (\/6) Z o2(AL)* + o3, t>0. (3.8)
0 0<s<t

Proof. Set K := tlogd, S; := [[yc,,(1+(A/6)(AL,)?) and f(k, s) := efs. Then use [to’s
lemma in two variables (e.g., Protter [22], Theorem 33, p. 74) to get, from (3.3),
€7Xt = f(Kta St)
t
_ 1+log6/ e Xds+(\6) 3 e (ALY, t20.  (39)
0

0<s<t

Integration by parts gives

t t s t s .
eXt/ erods = / e Xs=d </ eXydy> +/ </ eXydy> d(e )+ [ex',/ 6X5ds] ;
0 0+ 0 o+ \Jo 0 t

wherein the quadratic covariation is, in view of (3.9),

. . t
{logd/ e_XSds,/ eXSds] :/ d[slogd,s] =0, t>0.
0 0 ¢ 0
t t
d <€_Xt/ 6X5d3> =dt+ (/ eXSds> die™™), t>0,
0 0

by the associativity of the stochastic integral. So we obtain from (3.4) that (3.7) holds,
from which (3.8) follows after application of (3.9). O

Thus

Equation (2.4) shows that the discrete GARCH(1,1) satisfies
ol —o02=0B—(1—20)o+ Aozes, n€ Ny,

n-n?

8



which by summation yields

n—1 n—1
op=Bn—(1-06)) ol +\Y olel+a;, (3.10)
i=0 i=0

analogously to (3.8). (Note that we use (02)nen, to denote the squared discrete time
GARCH volatility process, and (07);>¢ to denote the continuous time process defined by
(3.4); these are quite different processes but this should cause no confusion.) Thus (3.8)
captures the “feedback” and “autoregressive” aspects of the GARCH volatility process
which are important features of its application.

By comparison with Theorem 2.1 we are now led to:

Theorem 3.3. Suppose
/log(l + (M8)y*) T (dy) < —logé (3.11)
R

(which, since § > 0, incorporates the requirement that the integral be finite.) Then o? 4
2

[eops

05, ast — oo, for a finite rv 0 satisfying

D o.¢]
o 5/ e Xtdt
0

(thus, the improper integral exists as a finite rv, a.s.). Conversely, if (3.11) does not hold,

P
then 0 — oo ast — oo.

Proof. By a continuous time analogue to the Goldie and Maller [16] theorem, due to
Erickson and Maller [14], [ e~ ds converges a.s. to a finite rv if X; — oo a.s., and

o? %4 50 as t — 0o otherwise. By the stationarity of the increments of (Xt)e>0,

t t
e_Xt/ eXsds 2/ e Xeds, t>0.
0 0

Hence we only need to show that (3.11) is equivalent to X; — oo a.s. as t — oco. Since
[Ix{[0,00)} = 0, EX; always exists (possibly, EX; = —o0) and X,;/t - EX; a.s. as
t — oo (e.g., Sato [26], Theorem 36.3). If EX; < 0 then X; — —oo a.s. or (Xy)i>o
oscillates, so we need to show that £X; > 0 if and only if (3.11) holds. From (3.6) we get

EX; =—logd + / zllx(dz) = —logd — / log(1 + (\/&)y?) 1 (dy),
R
(700’0)

implying the equivalence of FX; > 0 and (3.11). O

Next we show that (07);>0 is Markovian and further that, if the process is started at

02 2 52 | then it is strictly stationary.



Theorem 3.4. The squared volatility process (07 )i>0, as given by (3.4), is a time ho-
mogeneous Markov process. Moreover, if the limit variable 0% in Theorem 3.3 exists and

02 £ 62 independent of (Ly)sso, then (02)10 is strictly stationary.

Proof. Let (F;)i>o be the filtration generated by (07);>0. Then for 0 <y < ¢
Y t
% = B/ eXds e e 5/ eXeds e Xt opem Nt
0 y

t
= (05 - age_Xy*)e_(Xt*_Xy’) + 5/ eXeds e Xt 4 opem N

0y Ay + By, say, (3.12)

where .
Ay = e~ Xe==Xo-)  and By, := ﬁ/ eXs=Xu-) g o (Xe=—Xy-)

are independent of F,. This means that, conditional on F,, o7 depends only on 02 from

which it follows easily that (07);>0 is a Markov process.

Next, let D[0, c0) be the space of cadlag functions on [0, 00) and define g, , : D0, c0)
R?, z +— (e~ (@e——ay - ﬁf e~ (@t——as) ds). Since (X,;);> is a Lévy process, (X,)s>0
(Xs1n — Xp)s>0 for any A > 0. Further, we have that (A, By:) = gy,:((Xs)s>0) and
(Aysntrhs Bysngrn) = Gyi((Xsyn — Xn)s>0). This shows that the joint distribution of

(Ay+, By:) depends only on ¢ — y. By independence of 05 and (A,, B,;) the transition

o 4

functions are thus time homogeneous.

It remains to show that o} = o2, for all t > 0, provided o = o2 . For calculating the
distribution of

¢

2 _ Xoo— X —X¢ 2

Ut+—ﬁ/ e ds +e "oyg,
0

we can take any version of o7, independent of (Ls)o<s<t, and with the distribution of o2,
A suitable choice is 02 := f [ e~ X=+=Xt) ds. Then

Ut-i— B/ (X(t—s)=—Xt) d8+€(X(t - —Xt) 5/ Nt =Xt) g

By the time reversal property of Lévy processes (e.g. Bertoin [4], Lemma I1.2, p. 45),

(X(t_s)_ — Xi)o<s<t L (—Xs)o<s<t and both processes are independent of ag as chosen.

Hence,

o2, 2 b’/ Neds e X’fﬁ/ ~Xere=Xe) g

= 5/ e_XSds—l—ﬂ/ e_XSdsgog.
0 0

10



Since 02, = o2 a.s. (02 has no fixed points of discontinuity, a.s.), o2 2 o2 follows for all

t > 0. O
For the process G; = fot osdLg, t > 0, note that for any 0 <y < t,

t
Gt:Gy+/ O'des, tZO
y+

Here, (05)y<s<; depends on the past until time y only through o,, and the integrator is

independent of this past. From Theorem 3.4 we thus obtain:

Corollary 3.5. The bivariate process (oy, Gy)i>o is Markovian. If (of)i>o is the stationary

. . D . . . .
version of the process with og = o2, then (Gy)i>o s a process with stationary increments.

Remark 3.6. (i) The analogy between (3.8) and (3.10) is not exact, in that the param-

eterisation is slightly different; (1 — 0) is replaced by —logd in the continuous version.

(ii) The value A = 0 is permissible in (3.3), in which case X; = —tlogd, t >0, (0 < < 1),
and by (3.4) we have the trivial solution

2 5(1_5t) 25t
%= g +028t, t>0

For the discrete GARCH, from (2.5), when A =0,

p—d")

13 + 026", mnéEN,

n—1
op =Y 0" 4o =
1=0

again demonstrating the correspondence between the discrete and continuous time version.
(The same results if we take L = 0.)

(iii) Only § > 0 is allowed in (3.3) — (3.9). Thus our continuous time GARCH does not
contain a continuous time ARCH as a submodel. To accommodate the case = 0, which
is the ARCH situation, we have to go back to (3.1). Then X; should be taken as

Xy = —tlogA — Z log(ALy)*1aL,20, >0,

0<s<t

and this is only a well-defined (Lévy) process, if IT; is compound Poisson. O
We treat this important example in the more general GARCH setup.

Example 3.7. (Compound Poisson GARCH(1,1) model)

Let (L;)¢>0 be a compound Poisson process, with jumps e, at the times 7;, of an in-
dependent Poisson process (NV;);>o. Thus, L; = ZZN:tl g, with Ly = Ty = 0 and N; =
max{n > 1:7T, < t}, t > 0. Suppose P{e; = 0} = 0. Evaluated at 7,,, L has jumps

11



ALy, = Ly, — Ly,,— = &5, 50 AXy, = Xq, — Xp,_, = (1 — AT;,)logd — log(d + Ae2),
where the AT, =T, —T,_; are i.i.d. exponential rvs. This shows that the continuous time
GARCH process evaluated at the jump times differs from a discrete GARCH process, due
to the term (1 — AT,,)logd, though it evidently has similar characteristics. A simulation
of such a process, driven by a compound Poisson process with rate 1 and standard nor-
mally distributed jump sizes, is given in Figure 1. The parameters were chosen as § =1,
§ = 0.95 and A = 0.045. For these values, a stationary distribution of (07);>¢ exists and
has finite second, but not third, moment (by (4.12)). The parameters were chosen so the
simulated series is close to non-stationarity, as is often observed for financial time series.
([

ISR
P
=
S 4
—
Sl .
=
8 -
8 .
s
-
T T
o 2000 4000 6000 8000 10000
= 4
=
= 4
©
= 4
S
= 4
T T T T T
(o) 2000 4000 6000 8000 10000
P
(&)
§ i
T T T T T
o 2000 4000 6000 8000 10000

Figure 1: Simulated compound Poisson process (L;)o<¢<ioooo With rate 1 and standard normally dis-
tributed jump sizes (top) with corresponding volatility process (o;) (middle) and integrated GARCH
process (Gt) (bottom). The parameters were: § = 1, 6 = 0.95 and A = 0.045. The starting value was

chosen as oy = 10.
Of course, the class of continuous time processes given by our model is much larger than
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the compound Poissons. Examples currently of great interest in financial modelling are
the pure jump process generated by a normal inverse Gaussian or hyperbolic (Barndorff-
Nielsen and Shephard [2] and Eberlein [10]), a variance gamma (VG) process (Madan
and Seneta [18]), a Meixner process (e.g., Schoutens and Teugels [27]), or simply a stable
process (e.g., Samorodnitsky and Taqqu [24]). These processes are not compound Poisson
— they have infinitely many jumps, a.s., in finite time intervals — and have been successfully
used for financial modelling in various applications.

It is instructive to compare the process defined in (3.3) with the stochastic volatility
model of Barndorff-Nielsen and Shephard [2, 3], which specifies

do} = —\ojdt +dzy, t>0, (3.13)

(with A > 0) for a subordinator (increasing Lévy process) (z);>0. The solution to (3.13)
is the Ornstein-Uhlenbeck-type process

t
af = e_’\t/ eMdzys + e_’\tag, t>0. (3.14)
0

By comparison with (3.4), the Lévy process is in the integrator rather than in the in-
tegrand. A class of processes which includes both models is to let o7 have the same

distribution as .
/ e"Sdn,, t>0, (3.15)
0

where (£, n) is a bivariate Lévy process. When (1;);>¢ is pure drift we get (3.4) and when
(&4)i>0 is pure drift (to co) we get an rv with the same distribution as the one in (3.14).
Conditions for convergence of (3.15) as ¢ — oo are in Erickson and Maller [14], but we do
not investigate further at this stage.

An alternative stochastic volatility model is introduced in Anh, Heyde and Leo-

nenko [1], Section 5, who propose as volatility the stationary process

a(t):/_t M(t - s)dL(s), t>0,

where M is a “memory” function and (L¢);>¢ is a Lévy process such that L(1) is a rv
with positive support. In this paper, as well as in [2, 3], the logarithmic price process is
modelled by the SDE

dz*(t) = (p+ bo?(t))dt + o(t)dW (t), t>0,

where 11 and b are constants and (W (t));>o is standard Brownian motion, independent of

the Lévy process (L;)i>o. The It solution of this SDE is given by
t
¥ (t) = / o(w)dW (u) + pt + bo**(t), t>0,
0
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where 0% (t) = [{ 0*(u)du. For A > 0 the rvs
Un = 2" (nA) —z*((n —1)A), neN,

model the logarithmic asset returns over time periods of length A.

4 Second order properties of the volatility process

In this section we derive moments and autocorrelation functions of the squared stochastic
volatility process (07);>0. It is obvious from equation (3.4) that moments of (07);>0 cor-
respond to certain exponential moments of (X;);>¢. To specify the relationships exactly,

we give Lemma 4.1.

Lemma 4.1. Keep ¢ > 0 throughout.
(a) Ee=¢Xt < oc for some t > 0, or, equivalently, for all t > 0, if and only if EL?* < cc.

(b) When Ee™**t < oo, define ¥(c) = Ux(c) = log Ee™*1. Then |¥(c)| < oo, Be™*Xt =

t¥(c)

e , and

U(c) =clogo + /R (1+ (A/8)y*) — 1) T (dy). (4.1)

(c) If EL? < oo and ¥(1) < 0, then (3.11) holds, and o? converges in distribution to a

finite rv.

(d) If ¥(c) < 0 for some ¢ > 0, then U(d) <0 for all 0 < d < c.

Proof. (a) By Sato [26], Theorem 25.17, the Laplace transform Ee “** is finite for some
and hence all ¢ > 0 if and only if

=TTy (dar) = / =TTy (dar) = / (14 (\/6)y2)° T, (dy)
A|I|>1} (—o00,—1) {lyl>+/(e—1)5/A}

is finite, giving (a) (see e.g. Sato [26], Theorem 25.3).
(b) follows from Sato [26], Theorem 25.17, and (3.6).

(c) From (4.1) we see that (1) < 0 is equivalent to

(A/5)/Ry2HL(dy) < —logé.

Since log(1 + (A\/d)y?) < (A\/d)y?, this implies (3.11).

(d) Let ¥(c) < 0. From (a) and (b) we conclude that W(d) is definable for 0 < d < .
From (4.1) it then follows that ¥(d) < 0 if and only if

G) /R <(1 i <§> v - 1> 1 (dy) < —log?d.
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Since the function (0,00) — R, d — (1/d)((1 + (A/8)y?)¢ — 1) is increasing for any fixed
y, the result follows. O

The next result gives the first two moments and the autocovariance function of (7)o
in terms of the function ¥, showing in particular that the autocovariance function de-

creases exponentially fast with the lag.

Proposition 4.2. Lett >0, h > 0.
a) Eo? < oo if and only if EL? < oo and Eo? < oo. If this is so, then
i 1 0

Eo? = _\5(1) + <E0§ + %) et (4.2)

where for ¥(1) = 0 the righthand side has to be interpreted as its limit as U(1) — 0, i.e.
Ec} = Bt + Eo}.

(b) Eo} < oo if and only if EL} < co and Eog < oc. In that case, the following formulae

hold (with a suitable interpretation as a limit if some of the denominators are zero):

2B2 2B2 6t\II(Z) et\I/(l)
EazL = + _
U(MW(2)  (2) - w(1) \¥(©2) ()
) el¥(2) _ ot¥(1) L e
+2BEO'0 W + EUO e ( ), (43)
Cov(o?,02,,) = Var(o}) e, (4.4)

Proof. (a) We start with the calculation of Eo?. Using Fubini’s Theorem and the fact
that o is independent of all the other quantities, we conclude from equation (3.4) and
Lemma 4.1 that

t t
Eo? = BE / e’ M- ds + Eol Ee Xt- = 3 / Ee * ds+ Eof Ee”
0 0
is finite if and only if EL? < oo and Fo3 < oo. Then (4.2) follows from
¢
Eo} = B/ e ds + Eole™W,
0
(b) Assume FL] < co and Eoj < co. We calculate Eo} as follows:

t 2 t
Eo! = PB*F </ eXs =Xt ds) + 28 Eo} E/ e 72Xt s + Foj Be 2%t
0 0

= B’EI +2BEo; El, + Eo, @ | say.
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Using the stationarity of increments, we get
2

([oma) = ([ )

2

t t t S
= / / e X e Nududs = 2/ / e~ (Xo=Xu) o=2Xu gy g,
0o Jo 0o Jo

Then by the independence of increments,

t s
EL, = 2 / / (Be X X)) (Be %) duds

= // (s—u) w¥(2) gy ds

9 Q) ()
- w<1>w<2> TR e <w<2> B \Ifu)) |
By similar arguments,

t t
El, = E/ e Xt s = E/ e HXe=Xs) =X g
0 0

_ /t L) 1) g et¥(2) _ et\I!(l)‘
0 U(2) — (1)

Putting all this together, we see that Fo} < oo, and we obtain (4.3). The converse follows

similarly.

For the proof of (4.4), let (F;)i>o be the filtration generated by (07);>0. Then it follows

from (3.12) and (4.2) that

stz = 4o [ e
= (02 — Eol)e"™ M 4 Fo?.
Then

E(o}07) = E(0}((0} — Boy)e™™ + Eo}))
= (Eo} — Eo} Ec}) MW 1+ Bo? Bo?.

Calculations using (4.2) show that
Eo? Eo} — Eo? Eo},), = (Eo? Eo} — (Ea?)?)e"™W.

Then (4.4) follows immediately from (4.6).

(4.6)

The following results hold for the stationary version of the volatility process. Recall

from Theorem 3.4 that this is (0¢);>0 for oy 2 0o, Where o is the limit rv from Theo-

rem 3.3.
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Proposition 4.3. The k-th moment of 02, is finite if and only if EL?* < oo and ¥ (k) < 0,
k € N. In this case,

k
1
Eo?t = k! gk | | —. (4.7)
1Y)

Proof. Using Fubini’s Theorem and the independent and stationary increments property,
it follows from Theorem 3.3 that for £ € N

o0 k
B’ = pFE </ e~ dt)
0

= BkE/ / e Xt e N dty L dty
0 0

oo rl1 lg—1
= k! ﬁkE/ / e / e~ Kt —Xep) g2 Xty =Xtg) L o= (k=1 (Xt =Xy) o=k Xty gp
0 0 0

o t t —1
_ g / / / ) BRI | R g g
0 0 0

A
! S
=1

provided that ¥(1),..., U(k) are all defined and negative. The last equality follows from
analytic calculations. If j € {1,...,k} is the first index for which ¥(j) > 0, or Ee™7/¥t =
oc, then the calculation shows that Eo% = oco. Since Eo?* < oo implies Eo% < oo for
j < k, it follows from Lemma 4.1 that Fo? < oo if and only if W(k) is defined (i.e.
FL3* < 00) and negative. O

From this result we obtain the mean and second moment of 02 ; we also calculate the

autocovariance function of the stationary process (07);>o.

Corollary 4.4. If (07)>¢ is the stationary process with of L o2, then

p

EoZ, = (D) (4.8)
. 2P
Eo,, = T (4.9)
2 2 _ 2 2 1 h¥(1
Cov(oy,0p10) = B (q;(1)\1;(2) — \11(1)@(1)) MWt k>0, (4.10)

provided EL* < oc and V(k) < 0, with k =1 for (4.8), and k = 2 for (4.9), (4.10).

Proof. (4.8) and (4.9) are immediate from (4.7), and (4.10) follows by inserting (4.8) and
(4.9) into (4.4). O
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Of course it is our goal to express the quantities Ux in terms of the driving Lévy

process (L;)¢>o. We obtain the following results for the existence of moments.

Theorem 4.5. Let k € N, 0 < < 1, A > 0. Then the limit variable o2, exists and has
finite k-th moment if and only if

<%> / ((1 + %yQ)k — 1) I (dy) < —logé. (4.11)

Proof. By Lemma 4.1, FL?* < 0o and ¥(k) < 0 imply EL? < oo and ¥(1) < 0, which
implies the stability condition (3.11). Now the condition for Fo* < oo is FL?* < oo and
U(k) < 0, which is (4.11). O

As for the discrete GARCH model, also the continuous time GARCH turns out to be
heavy-tailed. This is an implication of the fact that the volatility process never has mo-
ments of all orders.

Proposition 4.6. Let ke N, 0<d <1, A > 0.
(a) For any Lévy process (Ly)¢>o with nonzero Lévy measure such that [, log(1+y®) I (dy)

is finite, there exist parameters 6, X € (0,1) for which o2, exists, but Eo? = cc.

(b) For any Lévy process (L;);>o such that EL?* < oo and for any § € (0,1) there exists

As > 0 such that the limit variable 0% exists with Ec?* < oo for any pair of parameters

(0, A) such that 0 < X\ < As.

(¢) Suppose 0 < § < 1, A > 0. Then for no Lévy process (Ly)i>o (with nonzero Léuvy
measure) do the moments of all orders of o2, ewist. In particular, the Laplace transform

of ago does not exist for any negative arqgument.

Proof. (a) Let 0y := exp(— [ log(1 + y*)lI (dy)) and &, := exp(— [, ¥’ (dy)). Then
0 <6y <dp <1,and for any A =0 € (d1,9), (3.11) holds, but (4.11) does not.

(b) Let 0 < 0 < 1 be fixed. Since EL?* < oo, the lefthand side of (4.11) is finite for any
A > 0, and goes to zero as A — 0. Choosing A sufficiently small then implies (4.11).

(c) Let n > 0 be such that ¢ :=II.({y : |y| > n}) > 0. Then for k € N,

/R (1 + (A\/o)yH* — 1) M (dy) > ¢ ((1 + (o))" - 1) ,

If all moments of 02 existed, this would imply that

k
1
<1+<§>n2> —1<k< 2g5> VkeN,

a contradiction. O
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Example 4.7. (Compound Poisson GARCH(1,1) model)

Let (L;);>0 be a compound Poisson process with Poisson rate ¢ > 0 and jump distribution
Y. Then I, = ¢¥. Let Y be a random variable with distribution ¥ and set Z := \Y?/6.
Then for k € N,

/R (14 (VB2 — 1) u(dy) = ¢ B(1 + 2)* 1),

and (07);>0 is a stationary Markov process whose stationary distribution has finite k-th

moment if and only if

C

EQ+2)F 1+ <@> logd < 0, (4.12)

which is equivalent to (4.11) in this case. O

5 Second order properties of the GARCH process

In (3.5), the integrated GARCH process was defined to satisfy dG; = 0ydLy, t > 0, i.e. G
jumps at the same time as L does and has jumps of size AG; = 0,;AL,;. This definition
implies that for any fixed timepoint ¢ all moments of AG; are zero. It makes sense, however,
to calculate moments for the increments of GG in arbitrary time intervals. Consequently,

for r > 0 set
t+r

GE’“)::GW—Gt:/ o,dL,, t>0.
t+

We shall restrict ourselves to the case of stationary (o7);>0. Recall from Corollary 3.5,

that this implies strict stationarity of (G");q.

Proposition 5.1. Suppose (L;);>o is a quadratic pure jump process (i.e. 73 =0 in (3.2))
with EL} < oo, ELy = 0, and that U(1) < 0. Let (07)>0 be the stationary volatility
process with o} 2 o2 . Then for anyt >0 and h > 1 > 0,

EG" = o, (5.1)
(rye _ Br 2
Cov (G,GV),) = 0. (5.3)

Assume further that EL} < oo and ¥(2) < 0. Then

—ro(1) _
COV((GET))Q, (Ggi)h)Z) — <%> EL? Cov(G?,62) M. (5.4)

TyoTr

Assume further that ELY < 0o, 1(4) < 0, and that [, 2*11;(dx) = 0. Then the righthand
side of (5.4) is strictly positive.
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Proof. Since (L;);>o is quadratic pure jump, its quadratic variation process is given by
L= ) (AL,)? t>0
0<s<t
(e.g. Protter [22], p. 63). Then, by the properties of the stochastic integral,

E(G)? = EG? = E/ odL],=E Y o}AL,)

0 0<s<r

The last can be calculated from the compensation formula (e.g. Bertoin [4], p. 7) and
(4.8) as the righthand side of (5.2). This shows square integrability of G, and (5.2) then

follows from stationarity of the increments of (G4);>o.

From the It6 isometry for square integrable martingales as integrators (e.g. Rogers and
Williams [23], IV 27) follows

t+h+r
E(GG,)=E / 02 1 4ar)(8) Lsnasnsn(s) d[L]s = 0

for h > r. By the martingale property of (L;);>o we have (5.1), and hence also (5.3)
follows.

For the proof of (5.4), assume further that FL} < co and ¥(2) < 0, and let E, denote
expectation with respect to F,, the o-algebra generated by (02)y<s<,. Integration by

parts, the compensation formula and the use of (3.12) and (4.5) give

h+r
E.(GP) = B, (2 . GsdGs+[G]g+T>

h+r h+r
= F, (2/ Gsades> +ET/ o?d[L],
h+ h+

— 0+ E, Z (024, + B, ) (AL,)*

h<s<h+r

h+r
_ pL / (6?EA,, + EB,.) ds
h

h+r
= EI? / E,(0?)ds
h

S

| ds

h+r
= EL?/ (0% — BEo2)ets=" D 1 po?
h
= (02— Eo})FEL? / e YW gs MW L Eo2EL .
0
Conditioning on F, gives
B(GOPE?) = B(GEG)))

—ro(1) _ 1
_ g (%) E(G%0 — G?Eo?) ™ + Ea?EL? r EG?.
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This shows

Cov(G2, (G)?) = -1 g Cov(G?,02) "W 4 BEG? O g2 opes
T h _\11(1) 1 ror r _\11(1) 1 rf-

Equation (5.4) then follows from (5.2).

Finally, assume that EL} < oo, ¥(4) < 0 and that [, 2°II;(dz) = 0, and we prove that
Cov(G?,0?) > 0. First, we calculate F(G?0?). Using integration by parts,

t t
G? = [G]t+2/ G, dG, = Z ag(ALs)2+2/ G, o,dLs.
0 0

0<s<t

Substituting from (3.8) gives

t t
(MG = o, — Bt — logd / o2ds — o2 + 2(\/6) / G, odL,, (5.5)
0 0

which we will multiply through by o7 and take expectations. The last term in (5.5) gives
rise via (3.12) to

¢ ¢
af/ G, o,dLg = / Gs_ 0, (afAs,t + Bs,t) dL,, (5.6)
0 0+

wherein we substitute

t
At = eXs-=Xt— and B, = B/ eXu =Xy,
S

Let I, := fot+ eX=G4_o3dL,. Since X; has no fixed points of discontinuity, a.s., to show
that the A-component in (5.6) has expectation 0 it will suffice to show that E(e *;) = 0.

Integration by parts gives

t t
e X, = / e Xe=dl, + / I,_d(e ™)+ C,, (5.7)
0+ 0+

where C} is the quadratic covariation. Since EL; = 0 and ¥ (4) < 0, I; is a locally square
integrable zero-mean martingale and hence the first term on the righthand side of (5.7)

has expectation 0. Substituting
de ™) = etq’(l)d(e’xt’”'(l) — 1) + e U(1)dt,

we can write the second term on the righthand side of (5.7) as an integral with re-
spect to a locally square integrable zero-mean martingal, hence having expectation 0,

plus ¥(1) fot e *sI.ds. Since L, is pure jump,

AC, = (Ae=¥)(ALL) = (%) G o} (AL
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(using (3.9)). Letting M, = Z(ngt(ALs)?’, the quadratic covariation is

)\ t
Cy = (—)/ Gy o2dM,
0/ Jos

and since M, is a locally square integrable martingale, with mean zero as a result of our
assumption that [, #°II; (dz) = 0 we see that C; has expectation 0. Taking expectations
in (5.7) thus gives E(e XtI) = fo e X:1,)ds, implying E(e *I;) = 0.

Write the B-component in (5.6) as

t t t s
15} </ eX“_Xtdu> </ Gs_ades> — 5/ Gs_o, </ eX“_Xtdu> dL,.
0 0+ 0+ 0+

After integration by parts this equals

t S
B / < / GuaudLu> e~ (Xe==X)qs 4+ BC,, (5.8)
0 0+
where

AC, = <A(6—Xt /0 t eX“du)> (Gro ALy = <%> X < /0 t eX“du> Grou( AL

Here C, has expectation 0 again as a result of Jg @ (dz) = 0, so (5.8) has expectation
0. Thus the last term in (5.5) contributes 0 to the expectation.
To deal with the other integral in (5.5), use (4.6) to write

E(ojoy) = Var(ag)e!™"W + (E(07))%,

since we are using the stationary version. Thus, from (5.5),

¢
<§> E(G20}) = FEoy — ftEo) — logd/ (Var(og)e™=¥ " 4 (E(03))?) ds — (Eog)* + 0
0

o (1)

= Var(oj) — BtEos — log§ Var(oy) <1__W> —tlogd (Eod)®.  (5.9)
Note that (A/§)EL? = ¥(1) —logd (see (4.1)). Thus from (5.2)
A v o _ ABtEL}Eoj , [Btlogd Eo}
<5> EG;Eo;, = e ptE ()
= —ptEo; —tlogd (Eoj)?

(using (4.8)). Subtracting this from (5.9) gives

<%> Cov(G2, 02) = Var(o2) <1 —logd <+Z;U>> ,
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which is positive. O
In Figure 2 we show the simulated autocorrelation functions of o, and of the increment
GEI), and of their squares, for the same process simulated in Figure 1. A feature of the

2 autocorrelations is their very slow decrease with increasing lag. As expected,

o and o
the sample autocorrelation functions of the increment GEI), and its square, are zero, and

positive, respectively, within sampling errors.
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Figure 2: Sample autocorrelation functions of oy (top left), o2 (top right), G\ (bottom left) and (GIM)?
(bottom right), for the process simulated in Figure 1. The dashed lines in the bottom graphs show the
confidence bounds +£1.96/1/9999.
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