LUDWIG-

MAXIMILIANS- | | INSTITUT FUR STATISTIK
e SONDERFORSCHUNGSBEREICH 386

Schneeweiss:

Estimating the endpoint of a uniform distribufion under
normal measurement errors with known error variance

Sonderforschungsbereich 386, Paper 339 (2003)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Estimating the endpoint of a uniform

distribution.under normal measurement
errors with known error variance

H. Schneeweiss

Department of Statistics,
Ludwig-Maximilians-Universitat Miinchen,
Akademiestr. 1/I, D-80799 Miinchen, Germany
email: Schneeweiss@stat.uni-muenchen.de

Discussion Paper 339, 2003

Abstract

The paper studies the problem of estimating the upper end point of
a finite interval when the data come from a uniform distribution on this
interval and are disturbed by normally distributed measurement errors
with known variance. Maximum likelihood and method of moments
estimators are introduced and compared to each other.



1 Introduction

The problem of estimating the end point a of a uniform distribution on the inter-
val [0, ] has a long-standing history in statistics, mainly because it served as an
important counterexample in the theory of maximum likelihood (ML) estimation,
showing that certain regularity conditions - in particular that the support of the
distribution should not depend on the unknown parameter - are necessary in or-
der to guarantee the well-known optimality properties of ML, see, e.g., Lehmann
(1983), in particular Example 6.9, p.452. The ML estimator of «, which is the
maximum of the sample values, is not asymptotically normal. The likelihood func-
tion is not differentiable at the point of its maximum.

This picture changes drastically when the data are measured with normally dis-
tributed errors. In some sense, this complicates the estimation procedure. On
the other hand, the likelihood function now satisfies the regularity conditions (the
support does not depend on the unknown parameter) and the ML estimator has
the usual optimality properties. It is asymptotically normal and efficient and its
asymptotic variance can be computed from the likelihood function.

The model of a uniform distribution has not only its merits as an example in the
theory of statistics. It is also useful in a number of applications, in particular in
the field of image processing, e.g., Vosselman and Haralick (1996), Werman and
Keren (2001). Recently Davidov and Goldenshluger (2003) studied estimators of
the end-points of a line segment in a plane, where the observations are error-ridden
measurements of a stochastic variate varying on the line with a support that is
identical to the line segment. Because of the measurement errors the observed
points will not be exactly on the line. But if the measurement error variance is
known, the end-points can nevertheless be estimated. Davidov and Goldenshluger
accomplished the estimation by a method of moments (MM). They compare its
accuracy to that of the ML estimator, however without actually introducing the
ML estimator. Werman and Keren (2001) compute ML estimators, but they skip
all the details. Chan (1982) introduced a pseudo ML estimator for a line segment
with a uniform distribution. His approach is a mixture of ML and MM.

The ML estimator is certainly more difficult to compute than the MM estimator.
In the simpler case of a line segment on the real line with only one endpoint to be
estimated, ML is easier to handle and yields reasonable estimates which compare
favorably to the MM estimates. This case will be the main focus of the present

paper.



In Section 2 we introduce the model, in Section 3 we study its likelihood function,
and we investigate the ML estimator in Section 4. In Section 5 we compare ML to
MM. Section 6 has some simulation results. The conclusion is in Section 7. Details
are relegated to an extensive appendix.

2 The model

Let & be uniformly distributed on the interval [0, a] with unknown end point a > 0.
The variable £ cannot be observed directly. Instead we observe a variable x, which
is related to & through

r=¢{+0,

where ¢ is the measurement error. The error variable § is supposed to be normally
distributed with expectation 0 and variance o? > 0. It is independent of £&. We
assume o2 to be known.

The density function of x, given the parameter «, can be computed as
flaia) = [ halohlg a)de,

where k(z|¢) is the density of N (&, 0?%) and

oy é for 0<é<a
h&a) = 0 otherwise. (1)
Thus
11 [ —£)?
flasa) = 2 [Cewl= o e
1 x T —«
= ~[e5) -2, @)

where ®(-) is the c.d.f. of the standard normal distribution.

It can be shown that for o — 0 the density function (2) leads to (1), see Appendix
Al.

In the sequel we will use, most of the time, a different parameterisation of the
model, which will render the subsequent formulas much simpler than otherwise.
To this end, we introduce the new parameter

P

g



and at the same time rescale the variable z by letting

x
y=—.
o
The density of y, then, becomes
1
9(5:0) = 5|20) — 2y~ 5). (3)
3 The likelihood
Suppose we have a sample (x1,-- -, x,) of i.i.d. realisations of the random variable
x. If we transform it to a sample (y1,---,yn) via y; = Z, then, due to (3), the

log-likelihood function of § is given by

1n(8) = —nlog B+ Y log | @(:) — 2(yi — ). (4)
i=1
Its first and second derivatives are
P PN ewi=B) .
QG AP OF Ton e Ty )

and

" % n zn: {[®(ys) — (v — B))(yi — B) — p(yi — B) }(yi — B) (6)
=1

lL(B) = [@(yi) — Py — B)]?

where ¢(-) is the density function of the standard normal distribution.

It is interesting to see how the log-likelihood behaves at the extreme values § — 0
and  — oo. By using L’Hospital’s rule (see appendix A2) one can verify that

n

10(0) = ~nlog(v3m) — £ 3" 47 7)
=1
L) = 5> 0



and

It is possible, especially when [ is small, that numerical problems will arise in
computing /() and its derivatives, in particular for large y. In such a case it
might be helpful to approximate the individual terms of these functions by Taylor
expansions at § = 0, see appendix A3. Denoting the contribution of an individual
observation to the log-likelihood (4) by /() and dropping the index i, we have by
an expansion up to the order of 43, 32, and 3, respectively, for 3 — 0;

2 3
1) = 5By + P~ )~ Ty] - 22— Sl v O (10)
2
[0 =g [v+ B -0~ 2] + o) (1)
()= ¢ [507 4 - py] + 0. (12

4 Maximum Likelihood

Both derivatives of [,,(/3) may be used to construct the iterative Newton algorithm
for finding the ML estimate of 3:

[ (Bx)
ﬂ 1:5_2 /i:0717”'
B
with a starting value 3y, which may be taken to be max(y1,- - ,yn). Another pos-

sible starting value is Gy = 27, as this is a consistent estimate of 3, see Section 5.

As 1,,(08) is bounded from above (because 1,,(0) is finite and [, (c0) = —o0), 1,(5)
has a finite maximum which will typically be unique. In principle, the maximum
may be attained at 8 = 0, but this will hardly ever happen if n is large. It
can happen if n is small and (3 is small (i.e., o is large relative to a)). However, in
most cases the maximum is a stationary point of ,,(3), when n is sufficiently large.

For n = 1, it can be shown that [;(3) has an unique local (and global) maxi-
mum,which is 0 for y; < 0 and positive for y; > 0, see appendix A4. For n > 1,



however, the likelihood function may have several local maxima. An extensive
simulation study, not documented in this paper, has shown that this will occur
only with extremely low frequency, even at small sample size (e.g., n = 10).

As the likelihood function satisfies the usual regularity conditions (see Appendix
A6,7), we can claim consistency and normality for the ML estimator 3:

V(B = B8) — N(0,v)
with v = —[El" (8)]~!, for which we find, see appendix A7,

"

1 —B)
BU(6) = 3 ﬂ/ P(y) <I>y 6)) - (13)

For large n, the variance of ﬁA can be estimated by

1
%_—”A
L (B)

or by
2 - %
8 nEl(B)

~
X
04 )

where the integral in (13) has to be computed numerically.

For small 3 the asymptotic variance v can be approximated by a simple quadratic
function in  (see appendix A8):

v—4—|—ﬁ—2+0(ﬁ4). (14)

Note that the remainder term in (4) is of order 3%, which renders the approximation
very precize for small 3.

5 Method of moments estimators

As an alternative to ML, estimation by the method of moments (MM) suggests
itself. MM estimators are much easier to compute. Davidov and Goldenshluger
(2003) based their investigation exclusively on MM estimation.



In our simple problem of estimating just one endpoint of an interval, it suffices to
use the first order moment Z to construct an MM estimator of «, but as the error
variance o2 is supposed to be known, a second order MM estimator is also feasible.
The first order MM estimator of « is given by

a1 = 27.
It is obviously unbiased as EZ = 5, and due to the fact that

2

i % + 02, (15)
its variance is )
l /[«

Uél = E <§ +40’2) . (16)

This estimator does not depend on knowledge of the error variance, and it is also
valid if ¢ follows any symmetric distribution on [0, a]. However, if o2 is known, we
can also construct a second order MM estimator using (15):

a1 = /12(s2 — 0?),

il

where s2 is the empirical variance of the sample. This estimator is asymptotically
normal:

Vn(és — a) — N(0,V5)

with asymptotic variance (see appendix A9)

2 4
(6] ) g

A comparison with the corresponding asymptotic variance of &y, i.e.,

o2
Vi :naé1 = ?4—402

shows that V; > V5 as long as

0% < (30 +12V10)'a? = 0.0147a2.

For o2 larger than this bound, G; is the more efficient estimator. It is only for
2 . . .
very small Z5 that the second order MM estimator is more efficient.

The corresponding estimators for the transformed parameter § are

B =27



By = /12(s2 — 1) (18)

with asymptotic variances

vg=—+124+ — (19)

and vy > vy if, and only if, 3% > 30 + 12v/10 = 67, 95.

According to ML theory both variances should be larger than the asymptotic
variance, v, of the ML estimator B To see how much they differ, a simulation
study was run. However, for small 3 we can compare the variances analytically.
According to (14) the difference of v; and v is

v —v = 23>+ 0(pY),

and, of course, vo — v is much larger for small (.

6 Simulation

In a small Monte Carlo simulation study estimates for the variance of & were
computed and were compared to the variance of &; see (16).(The variance of és
is quite a bit larger than the variance of &; for the values of o chosen, see (17),
and was therefore not included in the comparison). The value of the parameter
a was kept fixed at a = 1, and o varied from 0.05 to 4. A rather small sample
size, n = 25, and a medium sample size, n = 100, were chosen, so that also small
sample properties could be studied.The number of replications was N=1000. The
results of the Monte Carlo study are shown in the following two tables:

Table 1: Expectation and variance of estimators for n = 25

o| Ea |Va Va  Valappr) | Va
0.05 | 0.98 | 0.002 0.003 0.005 0.014
0.1 0.99 | 0.004 0.005 0.006 0.053
0.2 097 [0.01 0.011 0.011 0.020
0.5 ] 0.96 | 0.04 0.044 0.044 0.053
1]1.01]015 0164 0.164 0.173
21096 | 044 0.644 0.644 0.653
41126145 2564 2.564 2.573




Table 2: Expectation and variance of estimators for n = 100

o| Ea | Va Va Véa(appr) | Vg
0.05 | 1.00 | 0.001 0.0006 0.0012 0.0034
0.1 1099 | 0.001 0.0012 0.0015 0.0037

0.2 | 1.00 | 0.003 0.0028 0.0027 0.005
0.5]1.00| 0.012 0.011 0.011 0.013
111.00|0.042 0.041 0.041 0.043
2] 1.01 | 0.157 0.161 0.161 0.163
411.03 | 0.510 0.641 0.641 0.643

The second and third columns give the Monte Carlo estimates of the mean and
variance of &, respectively. The latter can be compared to the asymptotic variance
of &, V&, presented in the fourth column and evaluated with the help of (13). The
approximation of V& according to (14) is presented in the fifth column, and the
last column has the variance of &; according (16)

It turns out that there is hardly any bias in & even for large values of o, and even
if the sample size is rather small. The variance of & (estimated from the Monte
Carlo study) is very close to its (theoretical) asymptotic value V& when n = 100,
except when o is extremely large (o > 4). But for the smaller sample size, n = 25,
V'é is considerable smaller than Vé& when o > 2. For these values of o the sample
size n = 25 seems to be much too small for any asymptotic properties to hold. The
fact that, for n = 25, asymptotics is not applicable when o > 2 is reflected by the
observation that in many of the Monte Carlo runs the maximum of the likelihood
function was found to be at & = 0. For large enough n this should happen only
very rarely, and only then can we expect asymptotic theory to apply.

It is interesting to note that the approximate formula (14) for V&, which is valid
only for large values of o, seems to give good results even for values of o as small
as 0.2, see columns four and five.

The variance of & is always smaller than the variance of &;. The difference is
particularly noticeable for small o, whereas for large o the relative difference tends
to decrease.

7 Conclusion

Estimating the endpoint « of a uniform distribution on the real line is a simple
task: just take the maximum of a sample as the estimate. This is, in fact, the



ML estimator. However, conventional ML-theory does not apply to this model.
The usual regularity conditions are not satisfied. The maximum of the likelihood
function is located at a discontinuity point.

If a normally distributed measurement error with known variance o2 is added to
the uniformly distributed random variable, the resulting model meets all the reg-
ularity conditions of ML theory. But the ML estimator is now more complicated
to compute.

In this paper the ML procedure is fully developed. The maximum of the likelhood
function is typically a stationary point unless it is situated at the border of the
parameter space, a = 0, a rare case in practice. Special attention is paid to the
case when /o becomes small and approaches zero, as in this case the likelihood
function tends to the form 0/0 and its computation meets numerical obstacles.
The same is true for the asymptotic variance of the ML estimator & when «/o
is small. However, in this case a particularly simple approximation formula, (14),
for the asymptotic variance can be derived, which comes very close to the true
variance formula, even if «/c is not so small.

One can also estimate o by the method of moments. Here we studied two such
estimators: a simple first order MM estimator and a second order MM estimator,
which used the measurement error variance o supposed to be known. Interesting
enough, the first order estimator is almost always more efficient, although it does
not use the extra information 2. Only for very small o/a do we find the second
order MM estimator to be more efficient.

Finally we can compare the relative efficiencies of the ML and the MM estima-
tors. It turns out that - at least for small o/a - the asymptotic variance of the
ML estimator & is a good deal smaller than the asymptotic variance of the (first
order) MM estimator. Only when o/a becomes larger than 0.5 does the difference
between these two variances become negligible.

These analytic results were corroborated by a simulation study, which also shed
some light on the small sample properties of the estimators.

Acknowledgement: T want to thank Thomas Augustin and Ori Davidov
for helpful discussions.



Appendix

Al Density function for ¢ — 0

Let z > «, then

lim &(2) = lim o(2—2

o—0 g c—0 o

and so by (2)
lin% f(z;a,0) =0.

Now let 0 < x < «, then

lim &%) =1, lim (%) =0,
o—0 o oc—0 g
and so by (2)
lim f(z;0,0) =
lim f(z;0,0) = —.
Finally let < 0, then
. x ) T—«
sy P = ) =0

and so by (2)

lim f(z;,0) = 0.

o—0

These three parts of the limit density function correspond to the density (1) of the
error-free model.

A2 1(0) and 1(c0)

Select an individual contribution to the log-likelihood (4) and denote it by I(53),
dropping the index i. Then

1(B) = —logB+log[®(8—y)—2(—y)]. (20)



Introduce the abbreviations

L=1(3), d=2(B-y)—2(-y), ¢=v(B-y)

and let the prime denote the derivative with respect to 3. Then

d =
o =(y—P)p
¢ =1y 01

We can now write

d
[ = log—
5
1 ¢ —d+ Py
l = —_— _——= —
3 + d od
" 1 d(,Ol —@2
L= et
d? + 2 (dp — ¢%)
3242

Using L’Hospital’s rule, we have for § — 0

/

Lt =)
and therefore
y?
li =1 = ——log(2m) — =.
ﬁlggl(ﬁ) 0g py) = —5 log(2m) —
Similarly,
l/ By ¢ + B¢
- 19
d+ B 20+ By
and so
o o(-y) vy
lim [ = ==
B0 () 20(—y) 2
Finally,

o, 12dp+28(d¢’ —¢?) + B(de” — o)

—_— —

2 Bd? + 32dyp



_, 14de +4p(de” — p¢) + B2(de” — ¢?)
2 d? + 4Bdp + (2 (p? + dy')

/ "

_ 18de" +68(de” — ¢) + B2 (e +dp™ — 290"

2 6dp + 65(% + do') + (2 (3pp’ + de")

189" — 697 +14dp” + (- - )
2 127 +dg’) + ()

and so

o B 4@«,0” — 3g0/2 _ y2 —4
It =—Hs =~ 1

The limits for § — oo are found directly from (21) to (24) by noting that ¢ — 0,
¢ — 0, and d — ®(y) for B — oo.

A3 The likelihood near 3 =0

We have the following Taylor series expansion of ®(y — f3) for 8 — 0:

T ;
Dy — B) = @(y) — Be(y) + oY (y) — i (y) + 51 (y) +O(8°),
and therefore
_ — / 2 " 3 "
() E(y h _ w(y)—gw (y)+%so (y)—§—4<p (y) +O(3")
2 3
T+ Dy 22 1)+ Dy - )] ol) + 0(5)25)

where we used the following formulas for the derivatives of ¢(z):

/ "

o () = —zp(x), ¢ (x)=(2"—1)p(),

"

o (@) =23 - 2")p(), ¢W(2)=(3-62"+a")p(2).

Using the Taylor series

1 1
log(l+2)=2— 522 + §z3 + 0(2Y),



we get

B 3

18) = 5 (9-+ 550~ )~ Do) +10geto) + 0(6)

which is (10). Differentiating (10) with respect to 3 results in (11) and (12).
Letting 5 — 0 we receive, once again, (7) to (9).

A4 Maximum of the log-likelihood

Consider first a sample with n =1 and let [1(3) = I(3). We consider two cases.

Case 1: y < 0. In this case, [ (8) < 0 for all 3 > 0. Indeed, I'(8) < 0 is equivalent
to

o(y) — P(y—0)
B

and this is true if y < 0 and 8 > 0, because ®(y) is concave for y < 0. Note that
the left hand side is the slope of the secant of the graph of ® at the points y and
y — B and the right hand side is the slope of the tangent at y — 4. Thus in this
case, the maximum of () is at = 0 and there are no other local maxima.

> oy — 0),

Case 2: y > 0. In this case, [ (8) > 0 for all 0 < § < y. Indeed, I'(3) > 0 is
equivalent to

P(y) — Py —06)
B

and this is true as long as y > 0 and y — 3 > 0, because ®(y) is convex for y > 0.
On the other hand, [(c0) = —oo. Therefore /() has a maximum at some 3, > y.

<y —p),

Let (y be a stationary point of [(3). As I'(8) > 0 for § < y including 8 = 0 (for
which /'(0) = £ > 0), we must have Sy > y. At By, '(B) = 0, which implies

d:=®(y) — ®(y — o) = Bop(y — Bo)- (26)

Consider the second derivative of [ at By. According to (24) and substituting d
from (26), we find
7" 1 —_ — — 2 —
UGy = 4 50)<P2(92 o) = ¢*(y — o)
0 Bap?*(y — Bo)
vy — Bo
— < 0.
Bop(y — Bo)




Thus any stationary point of [(3) is a local maximum. Suppose there were two
distinct local maxima, then there would be a local minimum in-between, which
would be a stationary point, contradicting the previous statement. It follows that
there is only one local maximum f[,,, which is the absolute maximum of [((3), and

Bm > y.

For samples with n > 1, no such statement can be made. Indeed, [,,(5) may have
several local maxima. An example is n=165 with y; = 0.2 for s = 1,...,155 and
y; = 8 for i = 156,...,165. In this (artificial) example, [(3) has two local maxima
at around (1 = 2.1 and B2 = 4.8, B2 being the absolute maximum.

A5 Moments of y

Asy = g + g and £ and § are independent, the moment generating function of y

is just the product of the moment generating functions of g and %, ie. :
1 5. exp(tp) —1

Eexp(ty) = exp(=t?) —————

exp(ty) = exp(5t°) 05

It follows that all the moments of y exist and therefore, by the Schwarz inequality,
that

—o0 < t < 0.

E(lyfexp(ty)) < oo, k=0,1,...,—00 <t < 0.
The first four moments of y are
p B
Ey== =—+1
V=3 Tt
gt B
m3(y) ’ m4(y) R0 + 92 + 9,

where ms and my are third and fourth central moments.
A6 Local uniform boundedness of the derivatives of the log-likelihood.

There are several alternative sets of sufficient ”regularity” condition that guarantee
the asymptotic properties of the ML estimator ﬁ . Among these, the requirement
of local uniform boundedness of the first and second derivatives of [(() is quite
common. By way of example, we here consider the first derivatives [’ (8). Fix an
interval (1, 32), #1 > 0, which contains the true parameter point 3y, say, and let

B € (B1,B2). Then I'(8) = =4 +m(y; B) with

oy — )
y) — @y —p)’

m(y; ) = B



and m(y; #) can be bounded by

' q(y) _.
R e VA

where
oy —p1) for y<p
q(y) =1 »(0) for B <y<po
oy —B2) for y> B

We want to show that
EQ(y) < oo,

where here and in the sequel the expectation is always understood to be taken at
the true parameter value (3.

To prepare for the proof, we state the following properties of m(y; 3) and of the
ratio (y — B)/¢(y):

L m(y; 8) =y — B +o(y) asy — oo

2. m(y; 8) > 0as y — —o0

3. £y = exp(~36%) exp(By).

Statement 1 and 2 can be proved with the help of L’Hospital’s rule; statement 3
follows directly from computing the ratio.

Now,

EQ(y) = E[Q)I(y < B+ E[QWI(A1 <y < o)l + E[QY)I(y > B2)] -

The middle term is finite due to the continuity of Q(y). The first term on the right
hand side equals (with ¢ from (3))

B1 . 5
/— ‘P(y;O(—yé(fl—) ﬁl)g(y; Bo)dy :/_ m(y; $1)9(y; Bo)dy,

which is finite because of property 2 above. The last term equals

* oly—PB) .
/2 D(y) — Oy — ﬁl)g(yvﬁo)dy

= OOm M .

B /2 (yjﬂl)@(y _ ﬁl)g(y7ﬂ0)dy




and is finite because of properties 1 and 3 above and because of the existence of
E(Jy| exp(ty)), see AS.

AT El' (8) and E1"(5).

Although it follows, under regularity conditions, from general likelihood theory
that El'(3) = 0 and El"(8) = —E[l'(3)]?, these equations can also be derived
directly from the model.

Indeed,

!

BI(B) =

ﬁ ﬁ/ Tt m[@() By — B dy =

and

’ 2 i_i y ﬂ)
B @I = ,62 62/ - M‘”ﬂ/ 3(y) oy )"

ﬁ2 /3/ (y) <I>y ﬁ)dy

In the same way El” () can be computed and is seen to be equal to —E[l'(8)]2.
A8 Variance of B for small 5.

In order to derive (14), we have to take the expansions of {() and its derivatives
in (10) to (12) one step further. The next term in the expansion of (25) is

4
g, (3= 6y> + y")e(y).

From this and by using a further term, —%24, in the expansion of log(1 + z), we

get with some algebra, the next term of () in (10) as follows:

1 g Ly 1o

S (s

2180 ( g/ ¥ T
The next terms in the expansions of I (8) and I"(8) in (11) and (12), then are,
respectively,



and

1 32/ 1
Z . 1—5 (—Zy4—y2+8>. (28)

We can now compute El" (8) up to the order of 2. Using (12) with the further
term (28) and the expansion (25) up to the order of 3%, we have

17 1 1
Elw>:éﬁ/Iwﬁ—20—HWy+ﬂ%—ﬂﬁ—y2+&] (29)
2
vt G 02 - 0] et + o)
Multiplying both terms and computing the integral results in
B'(8) = —+(1 - 2+ o) (30
4 36 '

" -1
From this we find (14), as v = — [El (ﬁ)} , but with O(3) instead of O(3%).

If we go even one step further in the expansion of [(3), we see that the remainder
term in (14) is not O(3%), but actually O(3%). To see this, we need not expand [(3)
in any detail. It suffices to note that the next term of order 3° in the expansion of
1(83) has a coefficient which is a polynomial in y with only uneven powers: 3,4, y°.
The corresponding term in ! is 3 with the same polynomial as its coefficient. An
evaluation of the integral in (29) with this further term and with the full expan-
sion (25) shows that there is no term of order 32 after the main term of (30) because
the expected values of odd powers of y are all zero. Thus the term O(3?) in (30)
can be replaced with O(3%), and consequently the remainder term in (14) is O(84).

Another way to derive (14) is to start from

v=—[8'@)"

and use (13):

v=r V <I>(yS§2—(y‘I>_(yﬁz B) - %] i

Owing to (5), for n = 1, or (22) this reduces to

vzﬁL/mew—ﬁm4_3 (31)



Now we can use the expansion of I' () in (11) with the further term (27) and get
for the integral in (31), after some algebra,

[1@ets-may=5a

62

25) T0BY

and from this again (14), albeit with the remainder term O(3%)
A9 Asymptotic Variance of Bg.

First note that
Vi(st —02) = N(0,V;)

with
Vy =ma(y) — oy

According to A5, this is

4 2 2 2
(A SN

With ag —-1= % this reduces to (19).
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