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1 Introduction

Nonlinear time series models such as ARCH and GARCH models introduced by Engle
[En] and Bollerslev [Bo] are widely used to model financial time series, since they allow
the conditional variance to depend on past information. As pointed out by Black [Bl],
there is empirical evidence that stock returns are negatively correlated with changes in
returns volatility, i.e. volatility tends to rise in response to "bad news” and tends to fall

in response to "good news”. In order to model this asymmetry, Nelson [Ne| introduced
the exponential GARCH model (&)cz, shortly EGARCH, defined as

ft = UtZta tGZ,

logo? = u—l—Zakg(Zt_k), teZ. (1)
k=1

Here p and ag, k € N, are real numbers, (Z;)icz is an iid (0,1) noise with symmetric
distribution, and the function ¢ is suitably chosen to model the asymmetry in the reaction

to bad and good news. Nelson suggests to use

where 6 and 7 are fixed parameters such that 62 + 2 # 0.

For the iid noise sequence (Z;);cz he takes the generalized error distribution GED(v)

for v > 0, the density of which is given by

v exp(—|z/A["/2)

feen(e) = —oRRT ()

Tz €R,

where

= (27T (1/v) /T (3/v))"*. 2)

With these choices, the process & = 0,74;, t € Z, as well as its conditional variance
process (07)icz are strictly and weakly stationary, provided > 7 |ax| < oo and v > 1.
In fact they have finite moments of all orders under these conditions, see [Ne], [Me,
Prop. 2.20]. Note that the choice v = 2 corresponds to the standard normal distribution.
Also note that for arbitrary v > 0, the absolute first moment of 7 is given by E|Z;| =

L(2/v)/(T(1/v)T(3/v))"/2.
EGARCH models are mainly used by economists to model stock returns volatility. He
et al. [HTM], He [He] and Karanasos and Kim [KK] consider the moment structure of

EGARCH models. In this paper we shall be concerned with the extremal behavior of the
finite EGARCH process. We shall assume that v > 1. By "finite” we mean that the sum



in (1) is a finite sum. For simplicity we also assume that ;1 = 0. More precisely, we shall
deal with the following model:

& = oy, teL, (3)
(Zi)tez iid GED(v), v>1, (4)
p
logo? = Zakg(Zt,k), teZ, (5)
k=1
9(z) = Oz+9(lz[ - ElZ]), zeR (6)
where p € N, ay,...,a, are real coefficients, not all 0, and ¢ and ~ are real parameters,

not both 0. We shall determine the asymptotic tail and density behavior of all the con-
sidered processes (logo?), (log&?), (€2) and of (&) itself. In addition, we shall show that
these processes lie in the domain of attraction of the Gumbel distribution and obtain
the corresponding norming constants. It turns out that the processes behave like the cor-
responding associated iid sequences. In particular, exceedances of high tresholds do not
occur in clusters. This is different from the behavior of ARCH(1) processes, as examined
by de Haan et al. [HRRV]. A comparison will be given in Section 6.3.

We will only treat the (logo?) process for arbitrary v > 1. Although it seems likely
that our methods also work for the processes (log&;), (£2) and (&) for arbitrary v > 1,
we shall restrict to v = 2 for these processes, corresponding to a standard normally
distributed noise sequence (Z;). This makes calculations much easier. Furthermore, our
results depend on the signs of § + v and of # — . For the cases that # + v and 6 —
have the same sign (referred to as cases 1 and 4 in Section 3), our results apply for any
real coefficients a4, ..., a,. In the case of opposite signs, the results only apply if all of the

coefficients are positive or all negative, depending on the particular case.

The paper is organized as follows: In the next section we will give some of the basic
definitions and facts of extreme value theory which we shall need. In addition, in Theo-
rem 2.1 we state a result of Balkema et al. [BKR] on the convolution of certain light tailed
density functions. We shall make heavy use of this result in the sequel. In Sections 3 to 5
we will derive the tail and density behavior of the processes (logc?), (log&?), (&) and (&)
and show that they lie in the domain of attraction of the Gumbel distribution and large
values do not cluster. In the last section, we compare our results to existing ones in the lit-
erature. In Section 6.1 we state the results of Settimi [S2] on the extremal behavior of the
logvariance of an EGARCH(1,1) process. In Section 6.2, the similarity of EGARCH and
stochastic volatility models is considered. Extreme value theory for stochastic volatility
models has been developed by Breidt and Davis [BD] and been further extended by Diop
and Guegan [DG]. We shall compare the results for stochastic volatility models to the



results for EGARCH processes derived in this paper. In Section 6.3, the extremal results
for ARCH and EGARCH processes will be compared. Finally, in Section 6.4, we consider
the Log-ACD model of Bauwens and Giot [BG|, a variant of the ACD model of Engle
and Russell [ER]. The latter were introduced to model duration times between randomly
occuring trading times, and the Log-ACD process has a structure similar to EGARCH

processes. A few extreme value results for the Log—ACD model are indicated.

Many of the results of this paper are part of the second named author’s diploma

thesis [Me]. There also detailed calculations can be found.

2 Preliminaries

Detailed introductions to extreme value theory can be found in Embrechts et al. [EKM],
Leadbetter et al. [LLR] or Resnick [Re|, for example. Let us recall some of the basic
definitions and facts we shall use: Let (Y});ez be a strictly stationary sequence of random
variables defined on a common probability space. The associated iid sequence (?t)tez is
defined to be an iid sequence with distribution Y;. Let H be a distribution function. Then
(Yy)tez is in the domain of attraction of H, if there are positive constants (¢,)nen and
real constants (dy,)nen such that (max(Yy,...,Y,) — d,)/c, converges in distribution to
H, as n — oo. The constants ¢, and d,, are called norming constants. The distribution
function H is unique up to affine linear transformations. If (Y};);cz is an iid sequence,
then H is (up to affine linear transformations) a Fréchet distribution with parameter
a > 0, a Weibull distribution with parameter a > 0, or the Gumbel distribution, given by
A(z) = exp(—e™®), z € R For an arbitrary strictly stationary sequence the same holds
if the condition D(u,) of Leadbetter, Lindgren and Rootzén given below is satisfied for
sequences of the form u,, = ¢,z +d,, v € R, see [LLR, Th. 3.3.3]. If furthermore condition
D'(uy,,) is satisfied, then (Y});cz exhibits the same extremal behavior as its associated iid
sequence (i)teZ; with the same norming constants, see [LLR, Th. 3.5.2]. In that case,
exceedances of (Y})iez of high tresholds cannot occur in clusters. This may be different
if D'(uy) is not satisfied, as for example for GARCH processes. By definition, (Y})ez

satisfies condition D(u,) for the sequence (uy)nen, if for every ¢i, go, n € N and integers
I1<n<... <ig<n<...<Jp<n

such that j; — 4, > [, it holds

‘P( max Y; gun> —P<maxY1 SUH>P<H1&XY; gun>‘ < ayy,

i€A1UA i€ Ay i€ Ay ’



where Ay = {i1,..., i}, Ao ={j1,...,Jg} and a,  tends to 0 as n — oo for a sequence
I =1, =o0(n). (Yi)ez satisfies condition D'(uy) if

ln/k]
khi&hglﬁs;ip n ]Z; P(Y1 > up, Y; > u,) =0. (7)

For the study of the extremal behavior of (Y;):cz, one often starts with the associated
iid sequence (Y;);ez and then investigates conditions D(u,) and D'(u,). The extremal be-
havior of (}N/t)tez is completely determined by the tail behavior of the distribution function
of Yi: Defining
Fy(z) =P, >7), 7€R

one studies the behavior of Fiy () as o approaches the upper endpoint z,, := sup{z € R :
Fy(z) > 0} < oo of the distribution of Y;. Here it is desirable to find a "nice” function
h(z) such that Fy(z) ~ h(z) as x 1 2, where by definition

f(z) ~ h(z)asx Tz if and only if ml%g)lo % =1

for functions f and h.

A crucial ingredient in our proofs will be the following result by Balkema et al. [BKR],
showing that the class of densities with Gaussian tails is closed under convolution, and

giving an expression for the tail of the convolution.

Theorem 2.1. [BKR] Let Yi,...,Yy be independent random variables, such that each
has a strictly positive density f; in a neighborhood of its upper endpoint x;, satisfying the
asymptotic equality

fz(x) ~ 'Yi(x)e_wi(x)a asx T Tico,
where the functions ; are C* and ! 1is strictly positive. Suppose that with o; :== 1/\/9!
it holds

7i(z + yoi(x)) — 1 as well as M — 1, asx 7T Tiso, (8)
oi(x) i)
uniformly on bounded y-intervals. Furthermore, suppose that sup, Yi(z) =: T < 00 s

independent of 1. Then Yy := Y1 + ... + Y, has a strictly positive density fo in a left

neighborhood of its upper endpoint Too = Tioo + ... + Tioo- It is of the same form
fo(x) ~ yo(x)e™@ a5 x — 2o,

where 1)y is C? with strictly positive second derivative. Explicit formulae for vy and 1)

!

can be given in terms of the inverse functions ¢;(7) := (¢}

N (7) to the strictly increasing

5



derivatives 1 as follows:
Write ©(17) = qi(7) + ... + qa(7). Then z(7) is a strictly increasing function of T and

Z(T) = oo S T — Too. For 7 in a left neighborhood of 7o, one can choose

bo(e(r)) = Pu(qu(r)) + -+ + a(ga(r)),
o5(x(r)) = of(q(r) + -+ 0qlqa(7)).

V2 oo(2(7)) v (x(7)) = H\/%Ui(Qi(T))’Yi(qi(T))'

Then oq = 1/+/9f, sup, ¥}(x) = Teo, and o¢ and 7y satisfy (8).

The left hand limit in (8) means that o; is self-neglecting, and the right hand limit

means that 7; behaves roughly like a constant on intervals of length o(z).

3 Extremal behavior of logo?

In this section we derive the upper tail and density behavior of logc? and show that
(log 07):ez as well as its associated iid sequence belong to the domain of attraction of the
Gumbel distribution. Consider the model (3) — (6) and set

=logo? = Zakg (Zy k), teL. 9)

To start with, we need the density fy,) of g(Z;). This can be easily calculated from the
density f; of Z;. Its general form depends on the parameters # and ~. In the case that
0+~ >0and § —~ >0 (referred to as case 1 in the following), we obtain

0i7f2<%EfLZl|>, x+~E|Z)| >0

foz)(x) = (10)
Hify Z<%Ef|yzl|>, x+vE|Z| <0,

and in the case § + v > 0 and 6 — v < 0 (referred to as case 2),

1 fZ<x+7E|Zl|>+ 1 fZ<x+'yE|Z1|>, v+ 7E|Z] > 0

fg(Z)(.’E): 0+’}/ 9+’}/ 7—0 7—9
0, $+7E|Zl|<0.

The case 8 + v < 0 and 6 — v > 0 (referred to as case 3) is similar to case 2, namely

0, r+~vE|Z)| >0

fg(Z)(x) = 1 $+7E|Zl| 1 $+7E|Zl|
. + +~vE\Z 0.
9+’yf 6+~ L 0—~ , T+E|Zy] <




Case 4, namely when 6 +~ < 0 and 6 — v < 0 is obtained from (10) in a similar manner,
by replacing 6 + v by v — 6, and replacing 6§ — v by —(6 + 7). The cases where § +~v =0
or # — vy = 0 will not be considered here. In the following, we shall concentrate on case 1,

and indicate what happens for the other cases.

Theorem 2.1 can be applied to obtain the tail behavior of X; = logo?:

Theorem 3.1. Let the model assumptions (3) — (6) be satisfied and (Xi)iez as in (9).
Suppose 0 +~v > 0 and § — v > 0. Define

+0 Y , > 07
ay = (v + B)aw, if i 2 (11)

(v—0)a, if ap <0,

and the constants

1
v and s

= 12
2\ 12)

DT AT (1))

where X is the constant appearing in (2). Denote by p* the number of k in {1,...,p} such
that ar, # 0. Then X, has a density satisfying

p 14
fx(z) ~ Cp 2@ ~Da=/2) oy {—W <x + vE|Z| Zak> } ,  asT — 00,

k=1
where

p 1-v
e () 1s)

k=1

: * —(w=1)/2-p"(1=1/2)
- - ACCRVN B PARIGE
@ (sv(v — 1)) =D/ 1] (@)
k=1 k=1

ap#0

The tail Fx of the distribution of X, satisfies

P 14
Fx(z) ~ Coa? ~P /2 oxp {—W (.’E + vE|Z]| Zak) } ,  asT — 00,

k=1
where
. . (v=1)/2-p*(1~v/2)
. (27-‘-)(10 71)/274) 4 1\(2—v)/(2(rv—1 - 1\v/(r—1
2 = N TRy — 1) |G DB C
k=1 k=1
ap#0



Proof. Tt is an easy matter to check that for large = the density of a summand ayg(Z;_y)
for a; # 0 is given by
fi(@) = i (w)e ),

where v, (x) :=r/aj, and

( 2 +~E|Z
s a’“—|1| ,  if ap >0
v+0
Ur(x) =
T +E|Z Y
s ’“—0|1| , if ap <0.
\ T

Then a direct application of Theorem 2.1 yields the asymptotic of the density fx as given
(see [Me, Th. 3.7] for detailed calculations). The assertion on the tail F'y then follows by
I’Hospital’s rule. O

The Theorem shows that the tail of the distribution of X; is Weibull-like. Hence, for
the associated iid sequence we obtain immediately (cf. [EKM, Table 3.4.4]):

Corollary 3.2. Let the assumptions and notations of Theorem 3.1 be satisfied and let
(X,)iez be the associated iid sequence with (X})icz. Then (X,)wez is in the domain of

attraction of the Gumbel distribution. Possible choices for the norming constants are given

= (W) (W logn)/" ™, (14)

p
dY = (W 'logn)'"" —=yE|Z1|>  a
k=1
1 —(pt+1r/2
_*__(Wfllogn)l/ufl <p (p + )V/
14

Wv

1
log(W ™ tlogn) + O%VCZ> . (15)

Example 3.3. The formulae for the tail and the norming constants become considerably
easier for v = 2, i.e. when the (Z;);cz are standard normally distributed. In that case we
obtain asymptotically as © — oo,
p —1/2 p 2 p
Ifx(z) ~ (2% Z(a;f) exp { — (m + 7\/2/7r2ak> / <2 Z(a;f) ,
k=1 k=1 k=1

p

= ey (a})? V2 1 _ ¢ i ¢ 12
Fx(z) ~ =5 ——] o lew x+’y\/2/72ak /12 (a)

k=



For the norming constants we obtain

» 1/2
= ()

k=1
P 1/2 p
dy = (Z(GW) (2logn)!/* = y\/2/7 > " ay
k=1 k=1
e 1/2
—3 (Z(a;cf) (2log n)~'/%(log(47) + loglog n).
k=1

We now show that Corollary 3.2 holds for the process (X;);cz, too. In particular, large

values of (X});ez do not occur in clusters.

Theorem 3.4. Let the assumptions of Theorem 3.1 be satisfied. Then (X,)ez lies in the
domain of attraction of the Gumbel distribution with the same norming constants as its

associated iid sequence. These constants are given by (14) and (15).

Proof. Since the convergence of P(max(kvl, X)) < cXr+dY) to A(x) is equivalent
to lim,, o nFx(cXz + d¥) = 7%, it suffices to show conditions D(u,) and D'(u,) for
sequences 1, such that nF x(u,) converges to some 7 € (0,0c), as n — oc. The condition
D(uy,) here is trivially satisfied since X; and X, are independent for h > p. It remains
to verify condition D'(u,), i.e. (7). Observe that

[n/k]
”Z P(Xy > up, Xj > uy)
71=2

= nP(X; > up, Xo > up) + -+ nP(Xy > uy, X, > up) +n([n/k] — p)(P(X; > uy))?
= nP(X1 > up, Xo > uy) + -+ nP(Xy > uy, X, > uy,) +7°/k +0(1), asn — oo.

Thus, it remains to show that for 2 < j < p,
nP(Xy > up, Xj >u,) -0 as n— oc.
Since nP(Xy > up, X; > u,) < nP(X; + X; > 2u,) and since nP(X; > u,) — 7, it

suffices to show that
P(X1 + Xj > 2un)

— 0 — 16
P(X, > uy) as o (16)
for 2 < 7 < p. Set
p+j—1
G .= X1 +X] = Z 6kg(Z]—k);
k=1



where the coefficients a; are defined by

ag, for 1<k<j-—-1,
ap =S ap_ji1+ap, for j<k<p,
Qf—j+1, for p+1<k<p+j—1.

Set
-, (v +0)ag, if ap >0,

a/k =
(’)/ — G)Ek, if Eik < 0.

From Theorem 3.1 follows that G has distribution tail
_ N ptj—1 v
Fg(2x) ~ Ca(22)% exp {—W (23& +vE|Zy| Z Ek) } , as T — 00,
k=1
with some constants 52 > (0 and ¢ € R and

p+j—1

Wi=s ( > (a;)"/@l)) ,

k=1

where s is as in (12). Then (16) will follow if 2“W > W can be shown, with W as in (13).
With p:=v/(v — 1) > 1, this is equivalent to

p+i—1 p
D (@) < (20" (17)
k=1 k=1
To show (17), observe that (aj)" = (a})¥ for k € {1,...,j—1}, and (a})" = (aj_; )" for

ke{p+1,...,p+j—1}. For k€ {j,...,p}, 1tholds

(@) < 27N (@) + (a—;41)") (18)

with equality if and only if ay = ax_j41. If ax and a1 have different signs, this follows
from the fact that |a; + ap_;j+1| < max(|ak|, |ag—;+1]). If, for example, both are positive,
then (18) follows from the fact that for fixed ¢ > 0 the function [0,¢] = R, a — ¢*/(a* +

(c — a)")) attains its maximum value 271 if and only if a = ¢/2. Thus it follows

p+j—1 Jj—1 p p+j—1 p
(@) <Y () + D) 2 (@) (g )+ Y (@ )t < Y (20,
k=1 k=1 k=j k=p+1 k=1

and at least one of these inequalities is strict if not all of the aj are 0 (which is a trivial
case and we have excluded). This is (17). O

10



Remark 3.5. We have done all the calculations for the case §# + v > 0 and 8 — v > 0
(case 1). In case 4, the same results hold by replacing 6 4+ v by v — 6 and replacing 6 — ~y
by —(0+ 7). In the second case, if all coefficients are nonnegative, then if § > 0 we obtain
exactly the same results as in case 1, and if # < 0 the same results as in case 4. If some
of the coefficients are negative, we cannot apply Theorem 2.1 and we do not get results.
In case 3, similar statements to case 2 hold. However, here we only get results if all of the

ay are nonpositive.

4 Extremal behavior of log 5}2

We now consider the process
Ly :=log&: =logo? +log Z2, te€ L.

We derive the asymptotic tail and density of L; and show that (L;);cz as well as the asso-
ciated iid sequence show the same extremal behavior and lie in the domain of attraction
of the Gumbel distribution. Norming constants will be given. As already noted in the
introduction we shall restrict ourselves to the case where v = 2, i.e. the (Z;);ez are iid

standard normally distributed. We then obtain:

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied with v = 2. Define aj, as
in (11) and set

» » 1/2
V= —7\/2/72% and w = (Z(a%)Q) : (19)

k=1

For x > 0, define

1 x —logz)?  (log2 —logw? —1+v)x
e = g e st
WA/ 2w w
(log?2 —logw? +v)logz  log® w?
w? 2w?
log2logw? (v+1log2)? wvlogw?
_ 20
+ w2 2uw? w2 ’ (20)
2
— w
Foale) = = fulo). (21)

Then the density fi, and the tail Fy of Ly = log&? behave asymptotically like

(@) ~ fow(x), Fr(z)~F,u(x), asz— cc.

11



Proof. Let f; be the density of log Z? and f, be the density of log o?. Define
1 1

ni@) = Jor hi(z) = 5 (" — ), oi(z) = 1/¢)(z) = 2¢77,
Ya(x) = L o(x) == ﬁ(m —v)? and o3(z) = 1/¢4(x) = w?

Vorw?

Then a straightforward calculation and an application of Theorem 3.1, respectively, show
that as © — oo,

fi(x) ~ fyl(x)e_% (%) and fo(z) ~ 72(55)6—%(30)'
To obtain the density of f;, we can apply Theorem 2.1, and obtain
fr(x) ~ ’YL($)€7wL($), as T — 00,

where the functions 7 and v, can be calculated as follows: Set

a(r) = (Y1) () = log(27 + 1),
0(1) = ()7 (1) =wT + v,
(1) = q(7)+q(r) =log(2T + 1) + wr +v. (22)
Then
V() = Pi(qi(7)) + 2(ga(7)) = % (27’ +1—log(2r+1) + w27'2) , (23)
2 2

oi(z) = of(a(r) +03(ax(r) = +w”,

21+ 1
() = = VI o3 ()0 0 (P)V2R 02 (1)) ()
" L e (24)

V21

Approximative inversion of equation (22) results in

oz 11 2z ) 11 2z 1 ) 1
T =m el Tt am e\ T tem o\ )

Inserting this in (23) and using (24) then shows fr(z) ~ fyw(z) as x — oo. Detailed
calculations are given in [Me, Th. 3.22]. The assertion on F';(x) follows from I’'Hospital’s
rule. 0

Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied. Let (Zt)teZ be the asso-
ciated iid sequence with (L;)cy. Then (Zt)tez is in the domain of attraction of the Gumbel
distribution with norming constants

¢k = w(2logn)~!/? (25)
log(logn)*/?

dt = ei(logn)'? + ey log(logn)/? + e + €4 (logn)'/? e (logn)'/2’

(26)

12



where

3 1
er=V2w, e=1, 632510g2—§logw2—1+v, €4 = —

9

14+ w?log(2m)

2\/§w ’

€5 —
and v and w are as in (19).

Proof. Since the derivative f; () of f,. is negative for all z in a left neighborhood of

oo and since o
- fow(@)F ()
lim —/——~

w0 (fr(2))?

it follows that (Zt)tGZ is in the domain of attraction of the Gumbel distribution, see e.g.

=1,

Resnick [Re, Prop. 1.18]. Furthermore, pairs of normalizing constants ¢,, and d,, are given

by the equations

Tl Fv w(dn)
log Fy(dy) +1logn =0 and ¢, = ——F—.
(@) fow(dn)

From this and (21) follows
dn, = V2w(logn)? + o((logn)Y?), as n — oo,

and hence

L
Cy ™~ Cp, ASTL — 00,

Inserting (26) into (21) shows
log Fy i (dY) =log Fy 0 (dy) +0(1), n — oo.

From this it can be deduced that (d% —d,,)/c, = o(1). This shows that (cZ),en and (d%),exn

are pairs of norming constants. U
Again, the maxima of the process (L;);ez behave in the same way as those of the

associated iid sequence, in particular, no clustering occurs.

Theorem 4.3. Let the assumptions of Theorem 4.1 be satisfied. Then (Ly)ez lies in the
domain of attraction of the Gumbel distribution with the same norming constants as its

associated iid sequence, which are given by (25) and (26).

13



Proof. The idea of the proof is similar to the proof of Theorem 3.4, by showing that for
sequences 1, such that lim, o nFr(u,) =7 € (0,00) conditions D(u,) and D'(u,) hold.

Here however, the verification of D’(u,,) turns out to be more elaborate.

Again, D(u,,) is satisfied by independence of L; and L, for h > p+ 1, and D'(u,,)

follows if
P(L, + L;> 2uy,)

P(L1 > Un)
for 2 < j < p+ 1. To show (27), we need the tail behavior of

—0 as n— oo (27)

p+j—1
H:=Ly+Lj=1log Z; + (log Z + a;19(Z1)) + > ag(Zj—r),
k=1
where the coefficients a; are defined by
(a, if 1<k<j-2
~ 0, if k=j—1,
a/k = < . .
ap—ji1+ag, if j<Ek<p,
L Bk—j+15 if p+1§/~c§p+]—1

Let fi be the density of log Z7, fs the density of ii{_lakg(Zt_k), and f4 the density of
log Z% + aj_19(Z1). Then

1
fl(x) ~ \/%

and by Example 3.3,

1 1 /2—wv3\>
fg(l')rv\/%w% exp<—§< w33>>’ as r — 00,

exp(—(e® —x)/2), asx — oo,

where
pti—1 pti—1 1/2
vy 1= —y\/2/m Z ar, and wj:= ( Z (5;6)2) :
k=1

with
(’)/ — G)Ek, if Eik < 0.

~I

ay, ==
To obtain the density f4, define for z > 0,

5(2) log 22 + a;_19(z) =log2®> + aj_1(0 + 7)z — const., if a;_; >0,
z) =
log 22 + a;_19(—z) =log 2> + a;_1(y — 0)z — const., if a; 1 <O.
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We shall assume that a;_; # 0. For a;_; = 0 similar proofs hold with slight modifications.
For large z, the density f4(z) is given by

- ! L —(0 @) /2 1 —(0(x)?)2
fa(x) 2 Y, Vi e Vira e ., as .z — 0o.

Here, aj , is defined as in (11). Now we can again apply Theorem 2.1 to obtain the

asymptotic behavior of the density fy as fu(z) ~ vy (z)e™¥#® as 2 — co. We have

fi(z) ~ 71(35)6_%(76), fa(z) ~ 73($)€_w3(x); fa(z) ~ 74(:5)6—1&4(31:)7 as r — 00,

where
nlx) = 1/Vm, hi(z) = (" — 2)/2, q(7) =" (1) = log(27 + 1),
(@) = 14/2rwi,  ¢s(@) = (@ —vs)/ws)?/2,  as(7) = ¥ (1) = wiT +vs,
n(z) = 1/(V2rd; ), a(z) = (6 ())*/2, au(r) = ¥5 (1),
T = q(7) +qs(7) + ql7),
vr(z) = Uia(r)) + vs(as(7)) + Yalaa(r)) = % (6 (aa(7)))” +w37? + o(7%)] .

Since, as + — oo and T — o0,

1
6 (z) = s +o(z) and ¢ () = (a] D)7 +o(1),

-1

it follows that . .
2 2
== +

7vDH(x) 9 (a971)2 + w? x O(x )

Similar calculations show yg(x) ~ \/LQ—Wx_l/Q as x — oo. Having now the asymptotic

density fy(z) ~ yu(z)e %@ and the density of L; given by Theorem 4.1, (27) will
follow if

pt+j—1

(df0)* + D (@) <) (2q)°

for 2 < j < p+ 1. This however has already been shown to be true in (17) for j <2 <p
(note that there @, was defined in a different manner), and for j = p + 1 it is obvious.
This shows that (27) and thus D’(u,,) holds. O

Remark 4.4. As in Remark 3.5, one obtains similar results for the other cases 2, 3 and

4, where exactly the same changes have to be made as in Remark 3.5.
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5 Extremal behavior of & and &

In this section we shall show how the results of the previous section imply similar results
on the extremal behavior of (£2);cz and (&)iez. In particular, (£2);ez and (& )iz lie in the
domain of attraction of the Gumbel distribution and exceedances of high tresholds do not

occur in clusters. More precisely we have the following result:

Theorem 5.1. Let the assumptions of Theorem 4.1 be satisfied. Then with the notations
of Theorem 4.1, the densities fe> and fe as well as the tails ng and fg of & and & satisfy

as x — oo the asymptotic relations

1 — w?
2 ~ = fowl(l ) Fe ~ —— fow(l )
fer() ~ — fow(logz) (@) ~ ey foullog )

’U)Z

- 4logx

fe(w) ~ % fro2logz),  Fe() Frw(2log).

The sequences (£2)iez and (&)iez as well as their associated iid sequences lie in the domain
of attraction of the Gumbel distribution. Norming constants 2 and d? for (£3)iez and

its associated 1id sequence are given by

¢? = clexp(d:) and dP? :=exp(d:),

n

where ¢t and dL are given in (25) and (26). Norming constants & and dY for (&) tez

and its associated 1id sequence are given by

(2) (2)

cg) = En and d,(ll) = de) _ & 082 log2'
21/ d? 21/ d?

Proof. The assertions on the asymptotic behavior of fe and ng follow directly from

Theorem 4.1. For F.g note that for positive x
_ 1
Fe(z) = P(& > 2) = P(ojZ7 > 2,7, > 0) = 5P(afzf > 1?),

since Z; is symmetric and independent of o;. This then immediately implies the assertions
on f¢ and F¢. That the iid sequences associated with (£2),cz and (&;),ez are in the domain
of attraction of the Gumbel distribution follows as in Corollary 4.2 by application of
Proposition 1.18 in [Re]. That AP and dY) are norming constants for the associated iid
sequence with (£2);cz can be shown in a similar manner to the derivation of norming

constants for the lognormal distribution, see e.g. [EKM, Ex. 3.3.31]. Thus, for any = € R,
nﬁg(cg)x + d?) converges to exp(—z) as n — oo, implying that nFe(y/ P+ dP)
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converges to (exp(—z))/2 = exp(—z — log 2). Using

(2)
\/cnw+d \/ 2y o , as mn — o0,
1/ v/ dt )

it follows that ¢\ and d” as defined are norming constants for the iid sequence associated

with (&);ez. The proof that the maxima of (£2);cz and (&);ez behave as the maxima of
the corresponding associated iid sequences follows from the proof of Theorem 4.3. In
particular, for the verification of D'(u,) for the & process, suppose that nFe(u,) — 7 €
(0,00) as n — oo. Then

P(log&f > loguy,) = nP(& > u,) = 7 as n — oo.

But then it follows

P& > up, & > u,)  P(log&} > loguy, log&: > loguy)
= —0 as n— oo,

P(& > uy,) P(log&? > loguy,)

as was shown in the proof of Theorem 4.3. That D'(v,) holds for the process (&;)iez for
sequences (v, )nen such that nFe(v,) — 7 € (0,00) as n — oo then follows from the fact

that ) ) )
P(fl > vnagj > vn) < P(fl > Umgj > Un)

P& >va) 7 P >07)/2

—0 as n— oo.

O

As in the previous section, the same remarks as in Remark 3.5 hold for the other cases.

6 Connections to other results

In this section we discuss connections between the results of this paper and other results

in the literature.

6.1 The logvariance of the EGARCH(1,1) process

In [S1, S2], Settimi derives the extremal behavior of the logvariance of an EGARCH(1,1)
process. An EGARCH(1,1) process is given by (3), (4), (6), and

logo? = ag+ a1 g(Z;1) + Bilogol |, tEZ, (28)
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where |1| < 1. Settimi considers the case where oy > 0,0 < ) <1, v =2in (4) and y =1
and 0 € (—1,0) in (6). This corresponds to case 2 in our classification given in Section 3.
Rewriting (28) as an infinite moving average process as in (1), with positive coefficients,
she obtains that the logvariance process (logo?)scz is in the domain of attraction of the
Gumbel distribution, and she gives explicit norming constants. While in [S2] she mainly
states her results and ideas, proofs are given in [S1]. Her proofs are based on a result
of Rootzén on the extremal behavior of infinite moving average processes [Rol| and its
companion paper [Ro2]. It should be noted that an application of the results in [Ro2]

would have given the tail behavior of Fx in Theorem 3.1, too.

6.2 Stochastic volatility models

Consider a process given by
& =0, logo; =) aZi, tEL (29)
k=0

where (Y})ez is iid N(0,1), (Z;)iez is iid N(0, 1) independent of (Y})sez, and (a)ken, is a
sequence of real parameters such that Y, a7 < co. Then this defines a certain stochastic
volatility (SV) model. The extreme value behavior of the process given in (29) has been
studied by Breidt and Davis [BD]. Some of their results have been generalized by Diop and
Guegan [DG] to allow the sequence (Z;)i ez to be iid GED(v) with some v > 0, however
still assuming an iid N (0, 1) sequence (Y});ez independent of (Z;);cz. The SV model (29) as
studied by Breidt and Davis has certain similarities with the EGARCH model considered
in this article. For the SV model, the logarithm of the conditional variance o} is expressed
as an infinite sum of independent Gaussian random variables, while in (5) it is expressed
as a finite sum of independent random variables g(Z;_x). Here, g(Z;_x) is Gaussian only
if 7 = 0. In the general case however, the tail of g(Z;_) behaves like a Gaussian tail,
as noticed in the beginning of Section 3. The next difference is that in the SV model
the process (Y})iez is assumed to be independent of the whole process (Z;);cz and hence
independent of (0y)icz. In the EGARCH model (3) — (6), where & = 0,7, Z; is only
independent of o;,04_1,..., but not of 0441, ...,0.4,. For the study of the tailbehavior of
& and its transforms such as log &2 this makes no difference. However, the dependence
structure of the sequence (&)cz is different for the SV and the EGARCH model.

Breidt and Davis derive the upper tail behavior for log&? in model (29), and show
that (log&?)iez is in the domain of attraction of the Gumbel distribution, provided the
correlation function of (&)icz decays faster than 1/(logh) as h — oo. They also give

norming constants. Via a point process argument they show that the untransformed (&;)cz
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lies in the domain of attraction of the Gumbel distribution, too, and they give norming

constants.

As already pointed out, if (ax)ken, is a finite sequence in (29) with ag = 0, and if y =0
and § = 1 in the EGARCH model (3) — (6), then the distributions of the & coincide. In
particular, the tails of log &% in both models must be the same. Furthermore the norming
constants for the associated iid sequences must be the same. A comparison of the results
of Breidt and Davis and the results of this article shows that this is in fact the case.
Furthermore, for neither of the processes (& );cz large values occur in clusters. This latter

similarity is not obvious, since both processes have different dependence structures.

6.3 ARCH-processes

It is natural to compare the extremal behavior of EGARCH processes with the extremal
behavior of GARCH processes. In [HRRV], de Haan et al. studied the extremal behavior
of an ARCH(1) process, given by

ft = UtZt, 0152 =w + a10't2_12t2_1, t e Z,

where w > 0 and a; € (0,2exp(7y)), where 7 is Euler’s constant. They obtained that the
tail of the ARCH(1) process behaves asymptotically like cz=2% /2 with positive constants
k and c¢. In particular, the associated iid sequence with (&;);cz lies in the domain of
attraction of the Fréchet distribution ®,, with parameter 2x and norming constants given
by ¢, = (en)'/?®) d, = 0. The ARCH process (£)cz however does not satisfy the
D'(u,) condition, and maxima scaled with ¢, do not converge to the same limit as for
the associated iid sequence. Rather do they converge to ®5_, where § € (0,1) is the
extremal index. This means that exceedances of certain high tresholds of the ARCH(1)
process occur in clusters with an average cluster length of 1/6. All this is different from
the results obtained for the finite EGARCH process (&;)icz as defined in (3) — (6). Here,
the tail behaves like exp(—2(logz)?/w? + o(log x)?), as © — oo, which is heavier than
exponential, but lighter than polynomial. As seen, the EGARCH process (& )z as well
as its associated iid sequence lie in the domain of attraction of the Gumbel distribution,

and subsequent maxima of (&;);cz do not cluster.

6.4 Log—ACD models

Engle and Russell [ER| have introduced the class of ACD models to model durations x;
between the (¢ — 1)’th and ¢’th event (such as trades) that occur randomly during the
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market hours of stock exchanges. A variant of these models is the logarithmic ACD model
as given by Bauwens and Giot in [BG] or by Bauwens et al. [BGG] in the Log-ACD(p,q)-

form:
Ty = UtZty tGZ,

p q
logat2 = w+ Zakg(Zt_k) + Zbk logaf_k, t e,
k=1 k=1

with constants w, a and b, a deterministic function ¢ and an iid sequence (Z;);cz with
support of distribution on the positive axis and with finite variance. A priori there are not
made any further restrictions on the distribution of Z;. In [BG] however, it is assumed that
the Z; follow a Weibull distribution with parameter o« > 0. The Log—ACD model is very
similar to the EGARCH(p,q)—model, the latter which is a straightforward generalisation
of the EGARCH(1,1)-model given in (28). The main difference between the two models
is in the assumption of the distribution of the Z;, which are symmetric in the EGARCH
case and concentrated on the positive axis in the Log—ACD model. In case that ¢ = id in
the Log—ACD model (referred to as Log-ACD,-model in [BG, BGG]), that ¢ = 0, that the
Z; are Weibull distributed with parameter o« > 1, and that a4, ..., a, are all nonnegative,
the same methods as in Section 3 show that the (logo?) process lies in the domain of
attraction of the Gumbel distribution. Its extremal behavior is the same as the one of the
associated iid sequence, implying that large values do not occur in clusters. It seems likely
that, under these restrictions on the distribution and the model parameters, the extremal
behavior of the duration process x; itself can be treated with methods similar to the ones

applied in Section 4.
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