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Abstract
Previous work on moral-hazard problems has shown that, under certain conditions,
bonus contracts create optimal individual incentives for risk-neutral workers. In
our paper we demonstrate that, if a �rm employs at least two workers, it may
further bene�t from combining worker compensation via a bonus-pool contract
and relative performance evaluation. Such combination leads to saved rents under
a wide class of luck distributions. In addition, if the employer is wealth-constrained,
complementing individual bonus contracts by the possibility of pooling bonuses can
increase the set of implementable e¤ort levels. All our results hold even though
workers�outputs are technically and stochastically independent so that, in view
of Holmstrom�s informativeness principle, individual bonus contracts would be
expected to dominate bonus-pool contracts.
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1 Introduction

In a moral-hazard problem, incentives can be created by using either a carrot

or a stick. In a world where workers are protected by limited liability, only

carrots may be available. We show that the employer often can reduce rents

paid to the worker by using one big carrot in the form of a bonus pool, in-

stead of several small carrots that serve as individual bonus payments. Our

results hold even when workers perform completely independent tasks. On

the surface, this seems to contradict Holmstrom�s informativeness principle1

that bonus pools are inferior to individual bonuses because relative perfor-

mance information is noisier. When the �rm faces constraints on the size of

the bonuses it can pay out, however, the advantage of using one large car-

rot frequently outweighs the informational advantage of using several small

carrots.

Individual bonus contracts are not only frequently observed in practice

(e.g., Joseph and Kalwani 1998), but are also often optimal in a second-best

setting (e.g., Demougin and Fluet 1998, Oyer 2000, Herweg et al. 2010).

Bonus contracts specify a certain threshold or quota together with a wage

premium that is paid to a worker if his output exceeds the given quota. If

workers are risk neutral and the monotone likelihood ratio property holds, it

is optimal for the employer to create high powered incentives by combining

a very large quota with a very large wage premium.

In this paper, we analyze under which conditions a �rm that employs

at least two workers can bene�t from pooling incentives. Under a bonus

pool, the �rm speci�es a �xed amount of money to be distributed among

the workers according to relative performance. In addition to the bonus

payments, the bonus-pool contract speci�es a minimum distance or gap by

which one worker must outperform his co-workers to get a high bonus.2 This

gap works similar as the quota of an individual bonus contract because it

1See Holmstrom (1979, 1982).
2Alternatively, we can speak of a tournament scheme that is complemented by a gap;

see Nalebu¤ and Stiglitz (1983), pp. 30-32.
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in�uences both incentives and the probability with which bonus payments

are made to the workers.

Since the workers�tasks are neither technically nor stochastically related,

at �rst sight it does not make sense to pool workers�incentives: as relative

performance is less informative about individual e¤ort choice than absolute

performance, individual incentives should always work better than collective

ones according to Holmstrom�s informativeness principle. In other words,

compared to individual bonuses, a certain e¤ort level can only be imple-

mented via a bonus pool with relative performance evaluation if the bonus

pool speci�es a su¢ ciently larger wage premium. The extra money is needed

to replace missing incentives stemming from the fact that the impact of indi-

vidual e¤ort on the performance measure is less strong. Hence, bonus pools

should be too expensive and leave too much rents to the workers.

We o¤er two reasons why a bonus-pool contract can nevertheless beat

individual bonus contracts: (1) in case of an increasing hazard rate, the

employer prefers the highest possible threshold (together with large bonus

payments) under both types of contract. If the thresholds are bounded above

(e.g., due to a collective agreement between an industry wide union and an

employer association), the employer will choose this upper bound for either

contract. However, the e¤ective threshold under a bonus pool with rela-

tive performance evaluation is considerably larger than the threshold under

individual bonuses since under a bonus pool each worker has to beat the

upper bound and his opponents which leads to a lower probability of paying

a large bonus and, hence, to reduced worker rents. (2) Under a bonus pool,

several workers compete for only one large bonus payment, whereas under

individual bonuses each worker has to be incentivized by a separate bonus. If

the employer is �nancially constrained, one big bonus pool may work better

than several individual bonuses, which have to be rather small due to the

employer�s limited wealth. In addition to saving rents, pooling bonuses may

increase the set of implementable e¤orts. We show that this second feature

of bonus pools is independent of the luck distribution�s hazard rate.
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The assumption of an increasing hazard rate is a standard one in the

adverse-selection literature.3 In that work, the monotone-hazard-rate prop-

erty refers to the distribution of players�types, whereas in our setting this

property refers to the distribution of exogenous luck. However, all our results

will completely remain the same if we reinterpret the random luck variable as

the individual ability of a worker, characterizing his type and being unknown

to each player ex ante. This reinterpretation only translates the standard

moral-hazard setting into a moral-hazard model with symmetric ability un-

certainty (see, e.g., Holmstrom 1999). Furthermore, irrespective of whether

the random variable denotes luck or unknown ability in our model, the hazard

rate technically works very similar compared to the adverse-selection models

as it represents the trade-o¤ between inducing incentives and the magnitude

of expected payment (see Poblete and Spulber 2012). To sum up, accepting

the monotone-hazard-rate property for the whole class of contract-theoretic

models �including moral hazard �would imply that a bonus-pool contract

outperforms individual bonus contracts under the assumption of limited lia-

bility.

Our paper is organized as follows. The next section summarizes the

related literature. Section 3 introduces the model. Section 4 considers a

speci�c example to illustrate our main �nding on the optimality of bonus

pools over individual bonuses. In Section 5, we derive the optimal bonus-

pool contract. Section 6 compares optimal individual bonus contracts with

the optimal bonus-pool contract. Section 7 discusses the robustness of our

main �ndings. Section 8 concludes.

2 Related Literature

Our paper is related to the previous literature on individual bonuses and

bonus pools. Demougin and Fluet (1998), Wolfstetter (1999, pp. 288�294),

3See, e.g., the textbooks by Tirole (1988), p. 156, Wolfstetter (1999), p. 216, Bolton

and Dewatripont (2005), p. 87, and Hermalin (2005), p. 102.
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and Oyer (2000) investigate the optimal contract in a second-best setting.

They show that the optimal contract under risk neutral workers with limited

liability is an individual bonus contract that attaches a �xed payment to a

certain quota. Demougin and Fluet consider a setting with discrete outcomes

and assume that the monotone likelihood ratio property holds. As a conse-

quence, a bonus contract becomes optimal where the agent only receives a

positive payment under the most favorable outcome. Similar to Oyer (2000),

we assume outcome to be continuous. Of course, a contract that pays a

positive bonus only under the most favorable outcome would now get into

existence and characterization problems since the probability of the most

favorable outcome is zero. We introduce two alternatives to get rid of this

problem. First, we assume that the quota is bounded above. Alternatively,

we follow the idea of Innes (1990) and assume that the principal is wealth-

constrained. While the �rst alternative prevents tying a bonus to extremely

high outcomes, the second alternative limits the magnitude of the optimal

bonus payment.

Bonus-pool contracts have been discussed in the literature on the tradi-

tional personnel policy of Japanese �rms and in the managerial-accounting

literature. Kanemoto and MacLeod (1989, 1992) show that bonus-pool con-

tracts solve the problem of subjective performance evaluation of Japanese

�rms. Baiman and Rajan (1995) also emphasize that bonus-pool contracts

enable �rms to make use of subjective performance evaluation. Rajan and

Reichelstein (2006) and Budde (2007) analyze the optimal design of bonus-

pool contracts under subjective (and additional objective) performance mea-

sures. Contrary to these papers, we assume that output is described by a

continuous variable, which conveys cardinal information on worker perfor-

mance. Moreover, we solve for the optimal e¤ort level and show that the

optimal individual bonus contract and the optimal bonus-pool contract in-

deed lead to di¤erent e¤orts. All the previous papers on bonus pools do not

directly contrast individual bonus contracts with a bonus-pool contract.

Beside theoretical contributions, the managerial-accounting literature also
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o¤ers empirical work on bonus pools (e.g., Healy 1985; Gaver et al. 1995;

Holthausen et al. 1995; Guidry et al. 1999). These studies mainly focus

on how managers select accounting procedures to in�uence the magnitude of

the bonus pools. Murphy and Oyer (2001) use data on management com-

pensation to analyze the role of discretion in the distribution of bonus pools.

Bonus pools are not only used to incentivize managers. From 2007 to 2010,

New York City o¤ered its teachers a bonus pool of $57 million as incentive

pay in addition to standard wages (Martinez 2011). Goodman and Turner

(2013) empirically analyze the incentive e¤ects of this bonus pool. They �nd

that the bonus pool does not have a large impact on student achievement.

The lack of success can be explained by the fact that the bonus pool was dis-

tributed among the schools according to performance, but within each school

all teachers equally shared the performance pay, thus leading to possible free

riding. All the examples mentioned in this paragraph show that the respec-

tive employers were able to use individual bonus contracts but they preferred

bonus pools. The studies do not explain this preference. The advantage of

bonus pools highlighted in our paper may be one reason, but there also ex-

ist further bene�ts of bonus pools which may be decisive as well (e.g., the

commitment to an upper bound on overall labor costs).

Since the bonus-pool contract uses relative performance, our paper is also

related to the literature on tournaments (e.g., Lazear and Rosen 1981; Green

and Stokey 1983; Nalebu¤ and Stiglitz 1983). In particular, there are strong

parallels to tournaments with a gap (Nalebu¤ and Stiglitz 1983, pp. 30-32;

Eden 2007; Imhof and Kräkel 2011), because the bonus-pool contract also

uses a gap or minimum distance to �ne-tune incentives and the workers�

probability of obtaining the high payment. The gap is somewhat related

to handicaps, which are already addressed by the seminal paper of Lazear

and Rosen (1981). Handicaps are imposed on stronger players to balance

competition and, hence, to improve incentives. A gap, however, has to be

beaten by all contestants. Moreover, the gap decreases incentives under an

increasing hazard rate, but is nevertheless preferred by the employer to reduce
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worker rents.

Our paper is not the �rst one showing that an employer may prefer an

incentive scheme that appears suboptimal according to Holmstrom�s infor-

mativeness principle. Itoh (2004), Goel and Thakor (2006), Englmaier and

Wambach (2010) and Bartling (2011) analyze incentive schemes in a situa-

tion where workers have other regarding preferences. Since inequity averse

workers have to be compensated for their inequity costs under a binding par-

ticipation constraint, it can be bene�cial for the employer to base incentives

on a less informative performance measure if the resulting incentive scheme

leads to lower inequity costs. In particular, Englmaier and Wambach (2010)

point out that an employer may prefer team incentives although they violate

the informativeness principle since workers�tasks are unrelated. Paying team

bonuses to workers is optimal because they result into less unequal payments.

Weinschenk (2009, chapter IV) and Lang (2009) combine a principal-agent

setting with ambiguity aversion and show that the optimal contract can lead

to a violation of the informativeness principle. If the agent�s ambiguity aver-

sion is large enough, it will be optimal for the principal not to use an infor-

mative signal for creating incentives. Hence, the optimal contract boils down

to a constant wage.

To the best of our knowledge, there only exists one paper that also com-

pares individual incentive contracts with a bonus-pool contract, namely Koch

and Peyrache (2011). Koch and Peyrache consider a two-period model with

binary e¤orts, binary outputs and binary agent types. All players are risk

neutral and agents are protected by limited liability. In this setting, it can be

optimal for a principal to conceal information on agents�types to outsiders.

For that purpose, the principal designs an opaque organization that makes

agents�performance unobservable to the labor market so that an initially

objective performance measure becomes subjective. Such policy leads to the

following trade-o¤: on the one hand, uncertainty about agents� types cre-

ates career-concerns incentives (see Holmstrom 1999), which is bene�cial for

the principal. On the other hand, unveri�ability of individual performance
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renders individual bonus contracts impossible. However, the principal can

rely on the self-commitment property of a bonus pool to create incentives.

Under certain conditions, the principal prefers an opaque organization that

leads to a combination of career-concerns incentives and a bonus pool to a

transparent organization which allows for the use of individual bonus con-

tracts but eliminates career concerns. In our paper, we study under which

conditions a bonus-pool contract dominates individual bonus contracts even

in the absence of additional career-concerns incentives.

3 The Model

We consider a situation where an employer must hire two workers in order

to run a �rm. The three players are risk neutral. We assume that worker

i (i = 1; 2) chooses non-negative e¤ort ei to increase the employer�s pro�ts.

The employer observes the veri�able or objective performance measure4

xi (ei) = ei + �i (1)

with �1 and �2 as random variables, denoting either noise or luck. The vari-

ables �1 and �2 are independent and identically distributed (i.i.d.) with den-

sity f and cdf F , satisfying limj�j!1 f (�) = 0. We assume that
R1
�1 f

2 (�) d� <

1 to guarantee that �1 � �2 has a continuous density g with corresponding
cdf G. Both technical assumptions on f are satis�ed by all well-known den-

sities. The probability distributions are common knowledge. The employer

can neither observe ei nor �i so that we have a typical moral-hazard problem.

Exerting e¤ort ei entails costs c (ei) for worker i with c (0) = c0 (0) = 0 and

c0 (ei) ; c
00 (ei) ; c

000 (ei) > 0 for ei > 0.5 Let the workers�reservation values be

4See, e.g., Hermalin (2005), 155-156, on such a setting with an additively separable

performance measure xi (ei). In the main part of the paper, we follow this state-space

formulation; see Hart and Holmstrom (1987), 77-78, and the cited literature on this ap-

proach. In the online appendix, we switch to the parameterized distribution formulation

(Hart and Holmstrom 1987, 78) and show that our qualitative �nding still holds.
5The assumption c000 (ei) > 0 is often used in moral-hazard models with limited liability
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�u = 0. Workers are �nancially constrained so that their wage payments must

be non-negative.6 Each worker maximizes expected net income, consisting of

expected wage payment minus e¤ort costs, whereas the employer maximizes

e1 + e2 minus expected wage payments.

In the following, we will compare two di¤erent contracts that are fre-

quently used in practice. On the one hand, the employer can o¤er an indi-

vidual bonus contract (b̂Hi; b̂Li; ̂i) to each worker i (i = 1; 2). Worker i will

receive the high bonus b̂Hi if his performance measure xi (ei) exceeds a certain

quota ̂i; otherwise worker i gets the low bonus b̂Li (< b̂Hi). On the other

hand, the employer can �x a bonus pool bH + bL and o¤er both workers a

joint bonus-pool contract (bH ; bL; ) based on relative performance. In anal-

ogy to the individual bonus contract, the variable  � 0 denotes a threshold
or gap by which worker i must outperform worker j in order to get the high

bonus bH . In other words, worker i will only receive bH if xi (ei) > xj (ej)+.

In that case, the inferior worker j obtains the low bonus bL (< bH). Like

̂i in the individual bonus contract,  is used to �ne-tune incentives in the

bonus-pool contract. As mentioned before, workers are protected by limited

liability, implying b̂Hi; b̂Li; bH ; bL � 0. Recall that we assume noise to be

i.i.d.. If �1 and �2 were not independent, then bonus pools would be desirable

because they eliminate common noise (Holmstrom 1982, Green and Stokey

1983). Our story for why bonus pools may be desirable is completely di¤er-

ent. We assume �1 and �2 are independent to focus the model on our main

point.

To avoid the technical problems mentioned in Section 2, we consider two

alternative restrictions. As a �rst alternative, we impose the restriction that

the employer can only choose �nite thresholds ̂i;  2 [0; �] with � > 0 and
that f and g are strictly positive on [0; � + "] for some " > 0. In Germany,

for example, industry-wide unions negotiate collective agreements with the

employers� association concerning general conditions for employment con-

to guarantee strict concavity of the employer�s objective function; see, e.g., Schmitz (2005),

730.
6Alternatively, we can assume that legal minimum wages prohibit negative wages.
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tracts. We can imagine that such collective agreements restrict thresholds to

a certain upper bound � > 0. As a second alternative, we follow the sugges-

tion of Innes (1990) and assume that the employer is wealth-constrained and

possesses only capital K > 0 when o¤ering the workers a contract.

The timeline is the usual one in moral-hazard models: First, the employer

o¤ers the workers either individual bonus contracts (b̂Hi; b̂Li; ̂i) or a bonus-

pool contract (bH ; bL; ). Then, the workers can accept or reject the contract

o¤er. If the workers accept, they will choose non-negative e¤ort levels. Next,

the random variables �1 and �2 are realized. Finally, the employer and the

workers receive their payo¤s according to the contract.

4 An Illustrative Example

In this example, we assume each �i is normally distributed with mean zero

and variance �2, and that the employer seeks to implement a certain e¤ort

level.

The analysis in the following sections will show that the employer opti-

mally chooses b̂Li = bL = 0, since workers have zero reservation values and

are protected by limited liability. Under individual bonus contracts, worker i

exerts optimal e¤ort that equates his marginal e¤ort costs and marginal ex-

pected wage payments. Thus, the incentive constraint for individual bonus

contracts can be written as

c0 (ei) = b̂Hi � f (̂i � ei) : (2)

Under a bonus-pool contract, again worker i�s optimal e¤ort equates marginal

e¤ort costs and marginal expected wage payments. However, now wage pay-

ments depend on relative performance and, hence, the corresponding density

g, which is again normal but has doubled variance (see, e.g., Wolfstetter 1999,

306). In a symmetric equilibrium, the two homogeneous workers choose iden-

tical e¤orts so that the incentive constraint under the bonus-pool contract

reads as

c0 (ei) = bH � g(): (3)
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The comparison of the incentive constraints (2) and (3) shows why, in

agreement with Holmstrom�s informativeness principle, individual bonuses

seem to be better suited than a bonus pool to motivate workers. To imple-

ment a certain e¤ort level at minimum costs, the employer chooses ̂i = ei in

(2) and  = 0 in (3). Hence, the bonus pool boils down to a simple tourna-

ment in which the worker with the higher performance receives bH as winner

prize. Inserting ̂i = ei and  = 0 leads to

c0 (ei) = b̂Hi � f (0) and c0 (ei) = bH � g(0)

with f (0) = 1=
p
2��2 and g (0) = 1=

p
4��2 and, thus, f (0) > g (0). Intu-

itively, the relative performance measure xi (ei)� xj (ej) is less precise than
the performance measure xi (ei) due to the doubled variance so that the

density g is �atter than f . As a consequence, for the same bonus payment

b̂Hi = bH , marginal incentives are always lower under a bonus pool compared

to individual bonuses since the impact of individual e¤ort on performance

outcome is less strong under relative performance evaluation due to a larger

impact of noise.

Recall that the employer wants each worker to exert a certain e¤ort level.

Now suppose that the employer is wealth-constrained and possesses limited

capital K. Thus, the highest possible e¤ort that can be induced under indi-

vidual bonuses, ê�, is implicitly described by

c0 (ê�) =
K

2
� f (0) ;

whereas a bonus pool leads to maximum e¤ort e� of each worker being de-

scribed by

c0 (e�) = K � g(0):

Since K
2
� f (0) < K � g(0), for any �xed K, the maximum e¤ort that can

be implemented via individual bonuses is less than that which can be im-

plemented by a bonus pool. As the example illustrates, bonus pools only

use one collective payment to incentivize multiple workers which can lead to

a crucial advantage under the assumption of a wealth-constrained employer
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that dominates the disadvantage suggested by Holmstrom�s informativeness

principle.

5 The Optimal Bonus-Pool Contract

In the following, the game is solved by backwards induction: First, we con-

sider the workers�e¤ort choices for a given bonus-pool contract (bH ; bL; )

under the assumption that both workers participate. Then, we derive the op-

timal contract (b�H ; b
�
L; 

�) that satis�es the workers�participation constraints,

the incentive constraints and the limited-liability constraints.

We show in the appendix that the employer optimally withholds the com-

plete bonus pool in case of a tie, i.e., if jx1 (e1)� x2 (e2)j � , and that in

equilibrium the workers choose e¤orts e1 = e2 =: e implicitly described by

c0 (e) = (bH � bL) g () : (4)

Equation (4) shows that, in equilibrium, each worker exerts the e¤ort that

equates marginal costs and the expected marginal gain from winning the

relative performance evaluation. Intuitively, since each one gets at least bL
irrespective of whether he wins, only the additional bonus payment bH � bL
creates incentives.

At the �rst stage of the game, the employer chooses the optimal bonus-

pool contract (b�H ; b
�
L; 

�) that maximizes7

2e� 2 [1�G ()] � (bL + bH)

subject to the incentive constraint (4), the participation constraint EUi(e)

� 0 and the limited-liability constraint bL; bH � 0. To solve for the optimal
bonus-pool contract, we use the fact that the participation constraint is al-

ways satis�ed: Each worker can ensure himself a non-negative expected util-

ity �and, thus, at least his reservation value �by accepting any contract with

non-negative payments and choosing zero e¤ort. As a direct consequence, the

7We have P (jx1 (e1)� x2 (e2)j > ) = 2 [1�G ()].
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employer optimally chooses b�L = 0 since positive payments would increase

his expected labor costs and decrease workers�incentives (see (4)).

The employer thus solves

max
e;;bH

2e� 2 [1�G ()] bH
(4)
= max

e;
2 �
�
e� 1�G ()

g ()
c0 (e)

�
: (5)

According to (5), the employer faces the following trade-o¤ when choosing

the optimal gap : On the one hand, he should choose a very large  to

reduce the probability of paying out bH (implementation-cost e¤ect). On the

other hand, (4) indicates that a very large gap may also reduce incentives

(incentive e¤ect). If, for example, the convolution g is a normal density, g ()

will decrease from the mean to the tail.

Let r := g= [1�G] denote the hazard rate of the di¤erence �i � �j, and
(e�; �) the solution to problem (5), i.e., the employer chooses the gap � and

implements e¤ort e�. We obtain the following result:8

Proposition 1 The employer o¤ers the bonus-pool contract (b�H ; b
�
L; 

�) with

b�L = 0.

(a) Suppose  is bounded above by �. Then the employer chooses � 2
argmax2[0;�] r (). Log-concavity of g implies optimality of � = �. For each

worker the employer implements e¤ort e� 2 argmaxe e� c0 (e) =r (�) via the
high bonus b�H = c

0 (e�) =g (�).

(b) Suppose r is increasing and the employer has limited wealth K > 0.

De�ne �e > 0 by c0(�e) = Kg(0). Then e� maximizes e � c0(e)=r((e)) over
(0; �e] and � =  (e�), where (e) := maxf � 0 : Kg() = c0(e)g. The
employer chooses the high bonus b�H = c

0 (e�) =g (�) = K.

Problem (5) shows that the employer wants to maximize the value of the

hazard rate to trade o¤ the implementation-cost e¤ect against the incentive

e¤ect. This observation immediately leads to the results of Proposition 1(a).

The hazard rate r can have various shapes.9 If it is monotonic we will obtain

8All proofs are relegated to the appendix.
9See, e.g., Glaser (1980).
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a clear-cut result: In case of a monotonically decreasing (increasing) hazard

rate the employer forgoes a gap (chooses the maximum possible gap �).

We know that the convolution g has a peak at zero, which is also its

global maximum.10 If the convolution is single-peaked, the hazard rate r =

g= [1�G] is monotonically increasing in the negative domain up to the peak
at zero since the numerator is increasing and the denominator decreasing. To

the right of the peak the hazard rate will be still increasing if the decreasing

denominator dominates the decreasing numerator. Proposition 1(a) includes

this case, in which the implementation-cost e¤ect dominates the incentive

e¤ect. This result holds in particular for the class of log-concave densities

g (e.g., for the normal distribution).11 For these distributions, the employer

prefers � = � to minimize the probability of paying out the high bonus,

2 [1�G ()]. Since g () �and, hence, workers�incentives �become smaller
the larger the gap , the employer has to compensate for the incentive e¤ect

by choosing an appropriately large bonus bH (see the incentive constraint

(4)). Recall from the beginning of this paragraph that  = 0 maximizes

workers� incentives. In contrast, under a log-concave density the employer

minimizes incentives by the optimal gap � in order to minimize expected

implementation costs as well.

Proposition 1(b) also refers to the case of an increasing hazard rate,

but now the employer�s limited wealth K restricts the set of feasible (e; )-

combinations when solving (5). Technically, the condition limj�j!1 f (�) = 0,

which is satis�ed by all well-known densities, together with the incentive

constraint (4) makes the employer�s limited-liability condition binding at the

optimum (see (13) in the appendix):

c0 (e) = K � g () : (6)

The solution to the employer�s problem now has two steps. First, for imple-

menting a certain e¤ort level e at lowest possible cost, the employer chooses

the largest corresponding gap  = (e) that satis�es equation (6). Second,

10See Lemma 1 in the proof of Proposition 1(b).
11See Bagnoli and Bergstrom (2005), section 6, for further examples.
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among all feasible (e; (e))-combinations the employer chooses the combina-

tion that solves (5). Recall from part (a) of Proposition 1 that if the hazard

rate is increasing and the gap bounded above, the employer wants to com-

bine a very large gap with a very large bonus bH . Part (b) shows that if the

employer is wealth-constrained we will have a similar solution since for given

e¤ort e the employer still prefers the highest feasible gap (i.e., a gap that

satis�es (6)).

6 Comparison with Individual Bonus Con-

tracts

In the following, we will show that (1) although workers� tasks are com-

pletely unrelated and (2) although a bonus-pool contract in combination

with relative performance evaluation leads to a less precise measure, the

optimal bonus-pool contract can nevertheless dominate optimal individual

bonus contracts.

The optimal bonus contract for each single worker i, (b̂�H ; b̂
�
L; ̂

�),12 can

be derived in two steps. First, workers�e¤ort choice is analyzed for a given

contract (b̂H ; b̂L; ̂). Second, the employer anticipates worker behavior and

chooses the optimal contract that maximizes his expected net pro�ts. We

start with the step where each worker i (i = 1; 2) maximizes his expected

utility

b̂L +�b̂ � P (xi (ei) � ̂)� c (ei) = b̂L +�b̂ � [1� F (̂ � ei)]� c (ei)

with �b̂ := b̂H� b̂L denoting the bonus spread, and F as cdf and f as density
of the i.i.d. random variables �1 and �2. As Oyer (2000) we assume that the

worker�s objective function is well-behaved and that optimal e¤ort choice can

12Workers are homogeneous and do not interact. The employer, therefore, prefers the

same optimal e¤ort for each worker and chooses identical contracts. Hence, we suppress

the subscript "i" to simplify notation.
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be described by the �rst-order condition

�b̂ � f (̂ � ei)� c0 (ei) = 0, �b̂ =
c0 (ei)

f (̂ � ei)
: (7)

In stage 1, the employer optimally designs the individual bonus contract.

In analogy to the optimal bonus-pool contract, the workers�limited-liability

constraint implies the participation constraint as �u = c (0) = 0, and the

employer chooses b̂�L = 0 to minimize his labor costs. Thus, for each worker

the employer solves

max
�b̂;̂;ei

ei � b̂H � P (xi (ei) � ̂) s.t. (7)

= max
̂;ei

ei �
1� F (̂ � ei)
f (̂ � ei)

c0 (ei) : (8)

Problems (5) and (8) look similar because in each case the employer wants

to maximize a hazard rate: for the bonus-pool contract the hazard rate

r = g=(1 � G) of �1 � �2, and for the individual bonus contract the hazard
rate r� = f=(1� F ) of �i. For an intuitive explanation of why the employer
seeks to maximize the hazard rate consider worker i evaluating e¤ort level

ei under an individual bonus contract (b̂H ; b̂L; ̂). To obtain the high bonus,

the worker must have some amount of luck: �i � ̂ � ei. Assuming he

has the required amount of luck, the worker is interested in the conditional

probability that his performance will exceed the threshold signi�cantly, say,

xi(ei) > ̂ + � with some small � > 0. The probability is related to the

hazard rate by P (xi(ei) > ̂ + �j�i � ̂ � ei) � 1 � �r�(̂ � ei). The larger
this probability, the weaker the incentive for the worker to increase his e¤ort.

This e¤ect explains why a large value of r�(̂ � ei) is in the interest of the
employer. A similar argument applies in the case of a bonus-pool contract.

A comparison of individual bonus contracts and bonus-pool contracts

leads, in view of (5) and (8), to a comparison of the hazard rates r� and

r. Given that the thresholds of both contract types are equally constrained

(i.e., ; ̂ 2 [0; �]), the optimal bonus-pool contract will dominate individual
contracts if r(�) � r�(�) for all � � 0, that is, if �1� �2 is smaller than �1 in
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the hazard rate order, see e.g. Shaked and Shanthikumar (2007). A su¢ cient

condition for this to be the case is that �i has an increasing hazard rate.

Proposition 2 Suppose the density f is log-concave or, more generally, the

hazard rate r� of �i is increasing.

(a) Suppose �1 and �2 are non-negative and the thresholds are bounded

above (i.e., ; ̂ 2 [0; �]). Then the optimal bonus-pool contract will dominate
all individual bonus contracts. If r� is strictly increasing, using the optimal

bonus pool instead of two bonus contracts will lead to a strict improvement.

(b) Suppose the employer has limited wealth K > 0. Suppose further that

the hazard rate r of �1 � �2 is increasing as well and that e¤ort �e > 0 is

implementable by either contract. Let

(�e) := max f � 0 : Kg() = c0(�e)g ;

and ̂(�e) := max

�
̂ � 0 : K

2
f(̂ � �e) = c0(�e)

�
:

Then the bonus-pool contract implementing �e at minimal costs sets (�e), the

individual bonus contract implementing �e at minimal costs sets ̂(�e), and the

bonus pool is less costly if and only if r ((�e)) > r� (̂(�e)� �e).

Proposition 2(a) deals with the scenario considered by Kim (1997), Oyer

(2000), Poblete and Spulber (2012) and others who assume that the �i can

only take non-negative values. The authors motivate their setting by assum-

ing that the performance measure xi describes physical output or realized

sales so that the exclusion of negative realizations seems reasonable. Part (a)

points out that for a wide class of probability distributions, including trun-

cated normal and uniform distributions, the optimal bonus contract can be

strictly improved by combining workers�incentives via a bonus-pool contract.

Whereas this result holds for exogenously constrained thresholds, Proposi-

tion 2(b) refers to endogenous thresholds and does not restrict the possible

realizations of the �i. According to (b), a �nding similar to part (a) will hold

for thresholds that are endogenously constrained by the employer�s limited

wealth if the optimal thresholds for the two contract types do not di¤er too
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much. Then, the hazard-rate-order result of part (a) (i.e., r (�) > r� (�) for

all � � 0, see the proof in the appendix) is still decisive for the comparison
between the bonus pool and individual bonus contracts and the employer

can implement a certain e¤ort level at lower expected costs by using a bonus

pool instead of two individual bonus contracts.

Against the background of Holmstrom�s informativeness principle, the re-

sults of Proposition 2 seem surprising as the workers�tasks are neither tech-

nically nor stochastically related.13 A bonus-pool contract uses relative per-

formance evaluation, and the relative performance measure x1 (e1)�x2 (e2) is
less precise than the measure xi (ei) used by an individual bonus contract.14

Correspondingly, it is plausible that the implementation of a given e¤ort level

requires a bonus pool, bH , that is larger than the total bonus, 2b̂H , o¤ered

under two individual contracts.

However, for implementing a certain e¤ort level e, it is not the size of

the bonus, but the expected costs, that the employer is primarily interested

in. The probability that the bonus pool is paid out is 2[1 � G()] and the
probability that the individual bonus is paid out is 1�F (̂�e). The expected
costs under the bonus-pool contract and under the individual contracts are

therefore 2bH [1 � G()] and 2b̂H [1 � F (̂ � e)]. As argued above, given

e¤ort e, the corresponding bonus pool bH should be larger than total bonus

2b̂H . However, the implementation-cost e¤ect mentioned in Section 5, which

focuses on the probability of paying out bH or 2b̂H , respectively, works into

the opposite direction. Especially, if the �i are non-negative, 1 � G() <
1 � F () � 1 � F ( � e). Hence, the probability of paying out the bonus
pool tends to be smaller than the probability of paying the high bonuses to

both workers under individual contracts. Proposition 2 provides conditions

under which the implementation-cost e¤ect is strong enough to dominate the

incentive downside so that the employer prefers a bonus pool to individual

13See Holmstrom (1982) and Mookherjee (1984) for the multi-agent case.
14V ar (�1 � �2) = 2V ar (�i), so that the relative performance measure is half as precise

as the absolute performance measure for a single worker, xi (ei).

18



bonuses.15 Since workers are protected by limited liability and earn positive

rents, a dominance of the bonus-pool contract over individual bonus contracts

implies that the employer bene�ts from reduced worker rents when pooling

incentives.

Less technically, the advantage of a bonus pool in connection with rela-

tive performance evaluation can be explained as follows. The previous results

have shown that, due to the increasing hazard rate, the employer wants to

combine a large threshold with large bonus payments under both individual

bonuses and a bonus pool. The latter one has two advantages in this situa-

tion. First, if the quota for individual bonuses is exogenously constrained to

̂ = �, the employer will strictly bene�t from using � as minimum distance

and letting the workers compete against each other via relative performance

evaluation. Competition implies that each worker now has to beat � and his

opponent which leads to an extension of the original threshold and, thereby,

a reduction of worker rents via the implementation-cost e¤ect. Second, un-

der a bonus pool several workers compete for only one large bonus payment,

whereas under individual bonuses each worker has to be incentivized by a

separate wage premium. If the employer is wealth-constrained, one big bonus

pool may work better than several individual bonuses, which are rather small

since the employer is �nancially constrained.

In Proposition 2 we did not address the possibility that the employer

may be unable to implement certain e¤ort levels under one of the contracts.

However, if the employer is wealth-constrained it may be the case that com-

bining a large threshold with a high bonus payment is not feasible since the

employer�s amount of liability is too small. Considering the implementability

of e¤ort under the two types of contracts leads to the following results, which

do not impose restrictions on the hazard rates:

Proposition 3 Suppose the employer has limited wealth K > 0.

15An example with a speci�c distribution can be used to illustrate the previous argu-

ments and the magnitude by which the bonus-pool contract may outperform the bonus

contract; see the online appendix.
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(a) Let �1; �2 2 [0;1). There exists e0 2 [0;1], which depends only on f
and K, but not on c, such that the following holds: (a1) Every nonnegative

e¤ort level e < e0 that can be implemented by individual bonus contracts

can also be implemented by a bonus-pool contract. (a2) Every �nite e¤ort

level e > e0 that can be implemented by a bonus-pool contract can also be

implemented by individual bonus contracts.

(b) If an e¤ort level e satis�es

max
̂
f (̂ � e) K

2
< c0 (e) � g (0)K; (9)

this e¤ort will be implementable by a bonus pool but not by individual bonus

contracts.

According to Proposition 3(a), there exists a critical e¤ort level, e0, so

that some smaller (larger) e¤ort levels may be implementable by a bonus pool

(individual bonuses) but not by individual bonuses (a bonus pool).16 Part

(b) of Proposition 3 does not restrict the possible realizations of the �i. It

shows how the employer�s limited wealth, K, favors the implementability of

e¤ort by a bonus pool compared to individual bonuses and gives a su¢ cient

condition for an e¤ort level to be only implementable by a bonus pool.

The intuition for our �ndings is the following. The incentive constraints

(4) and (7) show that, under either contract, both the bonus payment in case

of success (i.e., bH and b̂H , respectively) and the marginal winning probability

(i.e., g () and f (̂ � e), respectively) have to be su¢ ciently large for the
implementation of a certain e¤ort level. The bonus payment in case of success

is restricted by the employer�s limited-liability constraint, which depends on

K under a bonus pool and on K=2 under individual bonuses. Since the

amount of liability per worker is twice as high under a bonus pool than under

individual bonuses, the employer may implement certain e¤orts solely via the

bonus pool if this liability advantage is not outweighed by a su¢ ciently larger

marginal winning probability.17

16An illustrating example can be requested from the authors.
17g (0) = max� g (�) < max� f (�) since under the convolution the total probability mass

is now distributed over the doubled support.
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Part (b) of Proposition 3 captures the main idea of the example in Section

4, which deals with normally distributed �i, leading to max̂ f (̂ � e) K2 <
g (0)K. Thus, for small values of K, many e¤orts are not implementable by

either contract. For larger values of K, there exists a range of e¤ort levels

that are implementable via a bonus pool but not via individual bonuses. If

K is su¢ ciently large, many moderate e¤ort levels can be implemented by

either using a bonus pool or individual bonuses.

To sum up, the results of Section 6 have shown that complementing indi-

vidual bonus contracts by the possibility of pooling incentives may not only

save rents for the employer but also increase the set of implementable e¤ort

levels.

7 Discussion

We have shown under which conditions a �rm that employs two workers

prefers a bonus pool to individual bonus contracts. This dominance of a

bonus-pool contract will still hold if we extend our setting to the case of

more than two workers. In that case, the employer can divide the set of

workers into pairs of two workers whose incentives are combined by a bonus-

pool contract. If the number of workers, say n, is even, there will be n=2

bonus pools; if n is odd, the employer can design (n� 1) =2 bonus pools and
one individual bonus contract. If pooling of more than two workers does not

lead to worker discouragement when competing for the bonus payments, the

outcome of optimal bonus-pool contracts can be even further improved.

In the paper, we often refer to the case of an increasing hazard rate. This

assumption holds for many well-known distributions like the normal distrib-

ution and the uniform distribution. Less clear-cut results can be derived for

non-monotonic hazard rates. However, not all �ndings are based on an in-

creasing hazard rate. In particular, Proposition 3 on the implementability of

given e¤ort levels does not impose any restriction on the shape of the hazard

rate.
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Condition (9) shows that a bonus pool can be less e¤ective if the convo-

lution g becomes very �at compared to the initial density f . In that case,

incentives are rather small under a bonus pool for given bonus payments.

Hence, the bonus pool will only dominate individual bonus contracts if the

comparative advantage of �nancing incentives for all workers together via K

exceeds the disadvantage of a small g (0).

Throughout the paper we assumed that the performance measures xi (ei)

are veri�able. Skipping this assumption without adding supplementary as-

sumptions like repeated interaction or third-party contracting would render

the use of individual bonuses impossible whereas bonus pools still work due

to their self-commitment property, which has been highlighted by Malcomson

(1984).

Finally, one can ask whether our results are robust to the formulation of

the moral-hazard problem used in this paper. As a robustness check, we can

switch from the state-space formulation to the parameterized distribution for-

mulation, where e¤ort choice shifts probability mass over possible outcomes

(e.g., Hart and Holmstrom 1987, 78).18 We can show that the advantage of

pooling bonus payments in situations with a �nancially constrained employer

also holds under this alternative modeling of our moral-hazard problem.19

Bonus contracts have the bene�cial characteristic that the performance

target or threshold can be used by the employer as an e¤ective instrument

to �ne-tune incentives. Since the threshold does not only in�uence workers�

incentives but also the probability that a bonus payment occurs �and, hence,

the magnitude of worker rents �the employer has to trade o¤ both e¤ects

when choosing the optimal threshold. In case of a bonus-pool contract, the

employer faces a similar optimization problem. The central result of this

paper has shown that �for a wide class of probability distributions �a bonus

pool o¤ers a better solution to the trade o¤ than individual bonus contracts.

18We thank a referee for pointing to this alternative.
19See the online appendix for details.
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Appendix

Workers�equilibrium e¤orts under the optimal bonus-pool contract:

Suppose the employer uses a bonus pool in combination with relative-perfor-

mance evaluation. That is, worker i receives payment w (xi � xj) with w :
R! [0;1) being non-decreasing and xk � xk (ek) (k = i; j) according to

(1). For a given scheme w (x1 � x2), worker 1 maximizes

EU1 (e1) = E[w (x1 � x2)]� c (e1)

=

Z 1

�1
w (e1 � e2 + t) g (t) dt� c (e1)

where g denotes the density of �1��2. Using integration by substitution and
symmetry of g (recall that the �i are i.i.d.) we obtain

EU1 (e1) =

Z 1

�1
w (v) g (e1 � e2 � v) dv � c (e1) :

Similarly, worker 2�s objective function reads as

EU2 (e2) =

Z 1

�1
w (v) g (e2 � e1 � v) dv � c (e2) :

We assume that an equilibrium in pure strategies exists and is characterized

by the �rst-order conditions20Z 1

�1
w (v) g0 (e1 � e2 � v) dv = c0 (e1)

and
Z 1

�1
w (v) g0 (e2 � e1 � v) dv = c0 (e2) :

Since workers are homogeneous, we concentrate on the characterization of

symmetric equilibria,21 leading to e1 = e2. Inserting the symmetry condition
20Pure-strategy equilibria will exist if the cost of e¤ort function is su¢ ciently steep

and the density g su¢ ciently �at so that the workers� objective functions are concave

in the relevant range; see, e.g., Lazear and Rosen (1981), p. 845, Nalebu¤ and Stiglitz

(1983), p. 29. See Wolfstetter (1999, p. 305), Schöttner (2008) and Gürtler (2011) for

su¢ cient conditions that guarantee existence. Of course, existence can be proved for given

speci�cations of the noise distribution.
21Symmetric equilibria seem to be most plausible since workers are completely homoge-

neous. The symmetric equilibrium is unique. However, in our general setting we cannot

exclude the existence of additional asymmetric equilibria.
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e1 = e2 =: e into the �rst-order conditions yields22

c0 (e) = �
Z 1

�1
w (v) g0 (v) dv: (10)

In the next step, we will show that the employer can at least weakly

improve the relative-performance scheme w by switching to the alternative

scheme

w� (v) =

(
0 if v � 0

w (v)� w (�v) otherwise,
(11)

which is non-negative, non-decreasing and, moreover, satis�es w� (v) � w (v)
for all v. Integration by substitution and the symmetry of g yieldZ 1

�1
w� (v)g0 (v) dv =

Z 1

0

w (v) g0 (v) dv �
Z 1

0

w (�v) g0 (v) dv

=

Z 1

0

w (v) g0 (v) dv +

Z �1

0

w (v) g0 (�v) dv

=

Z 1

0

w (v) g0 (v) dv +

Z 0

�1
w (v) g0 (v) dv =

Z 1

�1
w (v) g0 (v) dv:

Hence, from (10) and the fact that w� (v) � w (v) we see that replacing

scheme w by scheme w� leads to the implementation of the same e¤ort level

e at weakly lower costs for the employer. This useful result sheds light on the

optimal distribution of a bonus pool: the best an employer can do is paying

zero to a worker that is weakly outperformed by his co-worker.

The result also gives clear advice to the employer how to behave in case

of the bonus-pool contract (bH ; bL; ) de�ned in Section 3 if a tie occurs, i.e.,

if jx1 (e1)� x2 (e2)j � . If the performance measure xi (ei) is unveri�able,

the employer has to pay out the full bonus pool even in case of a tie in order

to meet Malcomson�s (1984) self-commitment property; otherwise he would

opportunistically claim that state of the world that leads to the lowest labor

costs. Following the equal-sharing rule of Nalebu¤ and Stiglitz (1983), pp.

22g0 (�v) = �g0 (v) due to the symmetry of g.
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30-32, the payment to worker i would read as

w (v) =

8>><>>:
bL if v < �

bL+bH
2

if � � v � 
bH if v > 

(12)

with v = xi � xj. However, in the given setting with measure xi (ei) being
veri�able, relative performance pay need not satisfy the self-commitment

property. Instead, the employer should replace incentive scheme (12) by

the alternative scheme (11) to implement equilibrium e¤ort e at lower costs.

Thus, we obtain

w� (v) =

(
0 if v � 

bH � bL if v > 

and

c0 (e) = �
Z 1

�1
w� (v) g0 (v) dv = (bH � bL) g () :

Proof of Proposition 1:

(a) Objective function (5) shows that the employer prefers the gap �

that maximizes r () in order to minimize expected implementation costs for

a certain e¤ort level e. Then for given �, the employer implements optimal

e¤ort e� that solves (5) by �ne-tuning incentives via bH according to (4). If r

is monotonically increasing, then � = � is optimal. An (1998) and Bagnoli

and Bergstrom (2005) show that log-concavity of a density function implies

that this density has an increasing hazard rate, leading to � = �.

(b) The proof uses the following auxiliary result:

Lemma 1 The global maximum of the convolution g is attained at zero.

Proof Recall that �1 and �2 are i.i.d. with density f . In view of the assump-

tion that �1 � �2 has a continuous density g, g() =
R1
�1 f(�)f(� � ) d� for

every  2 R, see, e.g., Mood et al. (1974), pp. 185-186, for the convolution
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formula. Applying the Cauchy-Schwarz inequality leads to23

g () =

Z 1

�1
f (�) f (� � ) d� �

sZ 1

�1
[f (�)]2 d�

sZ 1

�1
[f (� � )]2 d�

=

Z 1

�1
[f (�)]2 d� = g (0) for all . �

If the employer has limited wealthK he will face the additional constraint

bH � K, which, by (4), is equivalent to

c0 (e) � Kg () : (13)

Since c0 is strictly increasing, there exists  � 0 satisfying (13) if and only if
e 2 [0; �e] where �e with c0(�e) = Kg(0) de�nes the maximally implementable
e¤ort level according to Lemma 1. Since r() is increasing and the employer

has to solve (5), for any e¤ort level e 2 (0; �e] that he wants to implement
he chooses, if possible, the largest corresponding  that satis�es (13). The

condition limj�j!1 f(�) = 0 implies that lim!1 g () = 0 and, hence, that

the right-hand side of (13) goes to zero as  ! 1. It follows that for every
e 2 (0; �e], there exists a largest  satisfying (13), and for this , (13) must
be binding, so that  coincides with (e) as de�ned in Proposition 1(b). In

view of (5), the optimal e¤ort e� maximizes e� c0(e)=r((e)). �

Proof of Proposition 2:

According to An (1998) and Bagnoli and Bergstrom (2005), r� will be

monotonically increasing if f is log-concave.

(a) We show strict improvement for the case of a strictly increasing haz-

ard rate r�; proving weak dominance for an increasing hazard rate proceeds

analogously. According to (5) and (8), any e¤ort level e 2 (0; �] can be

implemented at a lower cost under a bonus-pool contract compared to an

individual bonus contract if24

max
0���

g ()

1�G () >
f (� � e)

1� F (� � e) , max
0���

r () > r� (� � e) :

23The step from line 1 to line 2 uses the fact that
R �x
x
y (x� �) dx =

R �x��
x�� y (x) dx.

24(5) describes the employer�s maximization problem for both workers.
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Let � := supfx 2 R : F (x) < 1g. Using the convolution formula g (�) =R1
0
f (�+ �) f (�) d� (e.g., Mood et al. 1974, p. 185) we obtain for all � 2

[0; �)25

r (�) =
g (�)

1�G (�) =
R1
0
f (�+ �) f (�) d�

1�
R1
0
F (�+ �) f (�) d�

=

R ���
0

r� (�+ �) [1� F (�+ �)] f (�) d�R ���
0

[1� F (�+ �)] f (�) d�

>

R ���
0

r� (�) [1� F (�+ �)] f (�) d�R ���
0

[1� F (�+ �)] f (�) d�
= r� (�)

where the inequality follows from the strict monotonicity of r�. Thus, com-

bining e¤ort e with the gap  = � � e under a bonus pool leads to strictly
lower implementation costs compared to individual bonus contracts.

(b) It was shown in the proof of Proposition 1(b) that the bonus-pool

contract implementing �e at minimal costs has the gap (�e) as de�ned in

Proposition 2(b). Under two individual bonus contracts, the employer can

use wealth K=2 for paying the bonus b̂H to each worker. Combining the

employer�s limited-liability condition K=2 � b̂H and incentive constraint (7)
yields that c0 (�e) � f (̂ � �e)K=2must hold for implementing �e under individ-
ual bonus contracts. Since r� is increasing and limj�j!1 f (�) = 0, objective

function (8) shows that the optimal quota for implementing �e at lowest cost is

given by ̂(�e) as de�ned in Proposition 2(b). In view of (5) and (8), the bonus

pool has lower implementation costs if and only if r((�e)) > r�(̂(�e)� �e). �

Proof of Proposition 3:

(a) De�ne � and �(e) by

� := Kg(0); �(e) := max
̂�e

K

2
f(̂ � e):

It was shown in the proof of Proposition 1(b) that e¤ort e can be implemented

by a bonus-pool contract if and only if c0(e) � �. It was shown in the proof
25See Miravete (2005), p. 1358, on a similar proof for the sum of two random variables,

�i + �j .
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of Proposition 2(b) that e¤ort e can be implemented by individual bonus

contracts if and only if c0(e) � �(e). The function � is increasing. To see

this let 0 � e1 < e2 and let ̂1 � e1 be such that K
2
f(̂1 � e1) = �(e1). Let

̂2 = ̂1 � e1 + e2. Then ̂2 � e2 and since e2 > e1, ̂2 > ̂1. Therefore,

�(e2) �
K

2
f(̂2 � e2) =

K

2
f(̂1 � e1) = �(e1):

It now follows that there exists e0 2 [0;1] so that �(e) � � if 0 � e < e0,

and �(e) � � if e0 < e <1. This proves (a1) and (a2).
(b) The claim directly follows from the considerations in the proofs of

Propositions 1(b) and 2(b). The thresholds that solve both sides of condition

(9) are �nite due to limj�j!1 f (�) = 0. �
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Online Appendix

An Illustrating Example on the Dominance of Bonus Pools

To illustrate the arguments of Proposition 2 and the magnitude by which

the bonus-pool contract may outperform the bonus contract, we consider

a speci�c distribution with strictly increasing hazard rate. We concentrate

on the case of ̂;  2 [0; �] to condense our arguments. Suppose that the
�i (i = 1; 2) are uniformly distributed over [0; 1], so that f (�) = 1 and

F (�) = �, and let � 2 [0; 1). Furthermore, we assume that c (ei) = �e3i =3

(� > 0) with � being su¢ ciently large to guarantee interior solutions.

For the optimal bonus contract (b̂�H ; 0; ̂
�), the employer maximizes

2 �
�
ei +

1

2
� �e2i (1� ̂ + ei)

�
;

leading to ̂� = �. The employer implements e¤ort

e� =
1

3�

�q
�
�
� (1� �)2 + 3

�
� (1� �)�

�
for both workers via

b̂�H =
1

9�

�q
�
�
� (1� �)2 + 3

�
� (1� �)�

�2
;

yielding expected pro�t

�� =
4

27

�
1

�2
�
�
�
� (1� �)2 + 3

�� 3
2 � (1� �)

�
9

2
+ (1� �)2 �

��
+ 1;

which is strictly positive.26

In order to compute the optimal bonus-pool contract (b��H ; 0; 
��),

we �rst have to construct the density g. The composed random variable

� := �1��2 can be either negative with�1 � � � 0 or positive with 0 < � � 1.
Furthermore, recall that 0 � �1 � 1 and 0 � �2 � 1, � � �1 � 1+ �. Thus,
26� > 1=[� (2 + �)] guarantees that � � e� 2 (0; 1).
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0 � �1 � 1 + � if �1 � � � 0, and � � �1 � 1 if 0 < � � 1. Applying the

convolution formula yields

g (�) =

8>>>>><>>>>>:

1+�R
0

f (�1) f (�1 � �) d�1 if �1 � � � 0
1R
�

f (�1) f (�1 � �) d�1 if 0 < � � 1

0 otherwise

=

8>><>>:
1 + � if �1 � � � 0
1� � if 0 < � � 1
0 otherwise.

since f (�1) = 1;8�1. The cdf G is obtained by integrating g and using the

fact that G (�1) = 0 and G (1) = 1:

G (�) =

8>>>><>>>>:
0 if � < �1

� + �2

2
+ 1

2
if �1 � � � 0

� � �2

2
+ 1

2
if 0 < � � 1

1 if � > 1:

The employer thus maximizes

2 �
�
ei +

1

2
� �e2i

1

2
(1� )

�
;

which gives �� = �,

e�� =
1

(1� �)� and b��H =
1

(1� �)3 �
;

leading to expected pro�t

��� =
1

(1� �)� + 1:

(At the second stage, given � = � and b�H = 1=
�
(1� �)3 �

�
, worker i�s

reaction curve, ei (ej), is implicitly described by

�e2i =

8<:
1

(1��)3� � (1� ei + ej + �) if ei > ej + �

1
(1��)3� � (1 + ei � ej � �) if ei � ej + �;
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which leads to

ei (ej) =

8>><>>:
1
2�

�r
1

(1��)3�

�
1

(1��)3� + 4� (1 + � + ej)
�
� 1

(1��)3�

�
if ei > ej + �

1
2�

�r
1

(1��)3�

�
1

(1��)3� + 4� (1� � � ej)
�
+ 1

(1��)3�

�
if ei � ej + �:

In the upper case, ei (ej) and ei = ej + � intersect at ~ej = 1
�

q
1

(1��)3 � �. In
the lower case, an intersection between ei (ej) and ei = ej + � will exist if

and only ifs
1

(1� �)3 �

�
1

(1� �)3 �
+ 4� (1� (� + ej))

�
= 2� (ej + �)�

1

(1� �)3 �
> 0:

(14)

In addition, we need

1

(1� �)3 �
+ 4� (1� (� + ej)) � 0: (15)

Combining both conditions yields

1

2 (1� �)3 �2
< � + ej �

1

4 (1� �)3 �2
+ 1; (16)

which requires that � > 1=[2 (1� �)
3
2 ]. Condition (16) is satis�ed for ej = e��

if � is su¢ ciently large. Thus, we assume � to be su¢ ciently large so that

an intersection is guaranteed. Solving ei (ej) = ej + � (described by (14)) for

ej gives ej = 1
�

q
1

(1��)3 � � � ~ej.
To sum up, the reaction curve ei (ej) starts with a positive slope at ej = 0

(see the upper case). It intersects with ei = ej+� at ej = ~ej and then proceeds

with a negative slope (see the lower case).27 The reaction curve ends where

condition (15) holds with equality (i.e., at ej = 1
4(1��)3�2 + 1� �). Mirroring

27The shape of the workers�reaction curves is typical of contest or relative-compensation

games. First, it re�ects strategic complements and then switches to strategic substitutes.

See, e.g., Wärneryd [Games and Economic Behavior, vol. 33 (2000), 145�158]; Yildirim

[Games and Economic Behavior, vol. 51 (2005), 213�227]; Konrad [Strategy and Dynamics

in Contests. 2009. Oxford University Press, New York], p. 46.
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ei (ej) against the 45-degree line gives worker j�s reaction curve, ej (ei). Both

reaction curves intersect in the symmetric equilibrium with ei = ej = e��.)

Comparing the solution under the optimal individual bonus contracts

with the solution under the optimal bonus-pool contract leads to the following

results:

Example Suppose noise is uniformly distributed over [0; 1] and workers have

cubic costs c (e) = �e3=3. Then r (�) = 2 � r� (�), 8� > 0, and we obtain

b��H > 4b̂�H and e�� > 2e�. Moreover, ��� > ��. The probability that both

b̂�H are paid out under the optimal bonus contract, (1� F (� � e�))
2, is larger

than the probability that b��H is paid out under the optimal bonus-pool contract,

2 � (1�G (�)).

Proof Using the expressions for the optimal e¤ort levels, we have

e�� � 2e� = 3 + 2�(1� �)2 � 2(1� �)
p
�2(1� �)2 + 3�

3�(1� �) > 0;

showing that e�� > 2e�. Hence, by (7) and (4),

4b̂�H = �(2e
�)2 < �(e��)2 = b��H g(�) < b

��
H :

To prove that ��� > ��, we only have to compare

�� = 2 �
�
ei +

1

2
� �e2i (1� � + ei)

�
with

��� = 2 �
�
ei +

1

2
� �e2i

1

2
(1� �)

�
:

The two expressions show that under a bonus-pool contract the employer

can always implement the same e¤ort level at lower cost compared to the

bonus contract. As e�� > 2e� points out, the employer is even better o¤ by

implementing much more e¤ort under a bonus-pool contract.
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We have

2 � (1�G (�)) = (1� �)2

=
1

9�

�
5� (1� �)2

�
+
4

9�
(1� �)

q
�
�
� (1� �)2

�
<
1

9�

�
5� (1� �)2 + 3

�
+
4

9�
(1� �)

q
�
�
� (1� �)2 + 3

�
= (1� F (� � e�))2 : �

The example shows that the major idea of creating incentives via a bonus

contract and a bonus-pool contract is very similar. In both cases, the em-

ployer chooses a large threshold to minimize expected implementation costs.

In order to restore worker motivation, the employer has to combine this

quota with a su¢ ciently high bonus payment. Under the optimal bonus-pool

contract, incentive pay is considerably higher than under individual bonus

contracts (i.e., b��H > 4b̂
�
H). Since the production technology is the same un-

der either contract but expected implementation costs are lower under the

bonus pool due to r (�) = 2 � r� (�), 8� > 0, the optimal bonus pool yields
implemented e¤ort that is more than twice as high as that under the optimal

bonus contract (e�� > 2e�).

When choosing the optimal threshold for the bonus pool, the employer

faces the following trade-o¤: A large threshold minimizes (i) the probabil-

ity of paying out the bonus pool (implementation-cost e¤ect) but also (ii)

the workers� incentives, since g (�) decreases in � > 0 (incentive e¤ect).

However, this trade-o¤ is absent under a bonus contract in this example

since f is a constant so that a large quota does not in�uence workers� in-

centives. Consequently, the employer chooses the maximum possible quota

under the optimal bonus contract. He chooses the same threshold under the

optimal bonus-pool contract because the implementation-cost e¤ect strictly

dominates the incentive e¤ect. Despite the trade-o¤, the optimal bonus-pool

contract outperforms the optimal bonus contract, which is indicated by the

large implemented e¤ort and the relatively low probability of paying out the

bonus pool (i.e., (1� F (� � e�))2 > 2 � (1�G (�))).28
28We have disregarded the fact that, under the optimal bonus contract, the employer
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The comparison of the pro�ts clearly shows the superiority of the bonus

pool (i.e., ��� > ��). Inserting numbers for the parameters of the example

demonstrates the magnitude of this superiority. If, for example, � = 0:3

and � = 1:5, then �� � 1:33 and ��� � 1:95, that is, the optimal bonus-

pool contract is more pro�table than the optimal bonus contract by about

47 percent. If � = 0:5 and � = 2:7, then �� � 1:25 and ��� � 1:74

and, hence, the bonus-pool contract still outperforms the bonus contract by

about 39 percent. These examples point out that switching from the optimal

bonus contract to the optimal bonus-pool contract can increase an employer�s

expected pro�ts considerably.29

Parameterized Distribution Formulation

We consider a scenario in which the employer has only limited capital K

and show that a bonus-pool contract can again strictly outperform individual

bonus contracts.

Let the two workers choose binary e¤orts e 2 feL; eHg with eL < eH . The
corresponding e¤ort costs are c (eL) = 0 < c := c (eH). We assume that it

always pays for the employer to implement eH instead of eL.30 The veri�able

performance measure xi follows a probability distribution that depends on

the worker�s e¤ort choice. Let P (xjjek) = Pjk with j = 1; : : : ;m and k =

L;H denote the probability that the performance measure of a worker leads

to realization xj given that the worker chose e¤ort ek. We assume that

x1 < x2 < � � � < xm and PjH < PjL for all j 6= m; and PmH > PmL so

has to pay out one of the two bonuses with probability 2F (� � e�) [1�F (� � e�)], which
even strengthens our argument.
29For the case of an increasing hazard rate, Poblete and Spulber (2012, Proposition 2)

suggest to compensate each worker according to maxfxi (ei) � r; 0g for some r � 0. We
can show for our example that the optimal bonus-pool contract also leads to higher pro�ts

compared to this contract.
30This simplifying assumption is often made to get rid of further cases that do not really

add to the analysis.
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that the distribution P (xjjeH) dominates the distribution P (xjjeL) within
the meaning of �rst-order stochastic dominance.31 As before, we assume

that workers are protected by limited liability (i.e., negative wages are not

feasible) and that each worker has a zero reservation value so that we can

ignore the workers�participation constraint in the following. To sum up, in

the given setting the employer wants to choose the incentive scheme that

implements eH at minimal costs.

We start with the analysis of the optimal individual bonus contracts.

Since both workers are identical, we can focus on the decision problem of one

of them. Let b̂j � 0 denote the bonus payment to a worker if his performance
measure takes the value xj (j = 1; : : : ;m). The incentive constraint for

implementing eH reads as32

mX
j=1

b̂j � PjH � c �
mX
j=1

b̂j � PjL ,
mX
j=1

b̂j (PjH � PjL) � c:

Hence, the optimal individual bonus contract (b̂�1; : : : ; b̂
�
m) that implements

eH at lowest costs is described by

b̂�j = 0 for all j 6= m; and b̂�m =
c

PmH � PmL
:

The maximal payment to both workers, 2b̂�m, is not allowed to exceed the

employer�s capital, K, so that the optimal individual bonus contract will

only be feasible if the employer�s limited-liability condition

c

PmH � PmL
� K

2
(17)

is satis�ed.

If the employer is allowed to pool the bonus payments for the two work-

ers, individual payments can be made contingent on the realizations of both

workers�performance measures. Again, we can focus on the situation of one

31Skipping the assumption PjH < PjL;8j 6= m; would only strengthen our results.
32As usual we assume that the worker chooses the higher e¤ort level when being indif-

ferent between eH and eL.
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of the workers. Let bij denote the bonus payment to a worker if his perfor-

mance measure has the realization xi and that of his co-worker the realization

xj, i; j 2 f1; : : : ;mg. The incentive constraint for implementing eH for each
worker �i.e., the Nash equilibrium condition that the worker does not want

to deviate from eH given that his co-worker chooses eH �is given by

mX
i=1

 
(PiH � PiL)

mX
j=1

bij � PjH

!
� c:

Thus, a bonus-pool contract given by (bij) leads to high e¤ort by each worker

at minimal expected costs if and only if bij = 0 for all i < m and all j, and

mX
j=1

bmj � PjH =
c

PmH � PmL
: (18)

A wealth-constrained employer must be able to pay the bonuses bmj to the

workers under any pair of realizations xi and xj. Even in the worst case the

employer must have enough capital to pay the respective bonuses. Hence, to

minimize the maximal possible cost, it is optimal to choose b�mj such that total

labor costs are identical for any pair (xi; xj). The bonus b�mm has to be paid

twice if both workers�performance measures take the highest realization xm,

whereas in all other situations we have at most one positive bonus payment.

It is, therefore, optimal for the employer to choose, for some b�, b�mj = b
� for

all j 6= m, and b�mm = 1
2
b� at the left-hand side of equation (18), leading to

m�1X
j=1

b� � PjH +
1

2
b� � PmH =

c

PmH � PmL
, b� =

c

(PmH � PmL)
�
1� 1

2
PmH

� :
This optimal bonus pool will only be feasible under a wealth-constrained

employer if

b� � K , c

PmH � PmL
� K

�
1� 1

2
PmH

�
(19)

The comparison of (17) and (19) shows that 1 � 1
2
PmH > 1

2
, PmH < 1

is true. Hence, there exist values of the employer�s capital K for which the

optimal bonus-pool contract is feasible and implements eH whereas the opti-

mal individual bonus contract is not feasible, but the opposite case that the
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individual bonus contract is feasible and the bonus-pool contract is infeasible

can never happen.33

33The employer�s expected labor costs are identical under both contracts as the two

incentive constraints are binding.
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