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ABSTRACT

This article proposes an approach to rely on the standard
operators of relational algebra (including grouping and ag-
gregation) for processing complex event without requiring
window specifications. In this way the approach can pro-
cess complex event queries of the kind encountered in appli-
cations such as emergency management in metro networks.
This article presents Temporal Stream Algebra (T'SA) which
combines the operators of relational algebra with an analy-
sis of temporal relations at compile time. This analysis de-
termines which relational algebra queries can be evaluated
against data streams, i.e. the analysis is able to distinguish
valid from invalid stream queries. Furthermore the analysis
derives functions similar to the pass, propagation and keep
invariants in Tucker’s et al. “Exploiting Punctuation Seman-
tics in Continuous Data Streams”. These functions enable
the incremental evaluation of TSA queries, the propagation
of punctuations, and garbage collection. The evaluation of
TSA queries combines bulk-wise and out-of-order processing
which makes it tolerant to workload bursts as they typically
occur in emergency management. The approach has been
conceived for efficiently processing complex event queries on
top of a relational database system. It has been deployed
and tested on MonetDB.
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1. INTRODUCTION

Data stream management systems (DSMS) widely use
tumbling, sliding, landmark and similar kinds of windows
[4, 9, 20, 21] for handling “blocking operators” like nega-
tion or aggregation and “unbounded stateful operators” like
join [25]. All these windows have in common, that they ei-
ther have fixed bounds (tumbling/sliding windows) or last
from a fixed bound to the present (landmark windows) and
therefore are data independent. However a number of new
applications, among others temperature, traffic and network
monitoring [16, 23] require a data dependent way of detect-
ing the “episodes of interest” [23] or “windows-of-interest”
[16] within a data stream.

In emergency management applications like in metro net-
works, at airports or in power grids [30, 31] the relevant
“episode” or part of a data stream is frequently defined by the
start and the end of an emergency like a fire. Of course those
queries responsible for detecting the start of an emergency
need to be evaluated constantly and thus all or at least most
of the data stream is relevant for those rules. However ana-
lytic queries like “the maximum smoke concentration within
a room during a fire” should only be evaluated when actually
needed i. e. in the presence of the corresponding emergency.
Both the starting time as well as the temporal extension of
the analysis is determined by events (the start and end of
an emergency) and cannot’ be defined in advance. More-
over, the precise knowledge of the start and end of some
analysis period is sometimes interesting in itself, e. g. when
monitoring an evacuation. Thus data independent window
definitions are hardly suited for this kind of queries.

“Frames” [23] and “predicate-windows” [16] are two ap-
proaches towards detecting relevant parts of a data stream
in an adaptive, data-dependent way. Interestingly both ap-
proaches introduce new operators although the standard op-
erators of relational algebra® [2, 15] are actually able to
express queries like the ones sketched for emergency man-
agement applications and (apparently) also those described
in [23] and [16]. Instead of new operators we propose using
the original operators of relational algebra for data stream
processing. The challenge is that some relational algebra
queries cannot be evaluated on data streams,® i.e., are in-
valid. We address this challenge by proposing an in-depth
compile-time analysis of temporal relations which first can
distinguish valid from invalid stream queries and second en-

! Unfortunately not. Knowing the time and extent of an
emergency in advance would be great.

2 including grouping and aggregation
3 Or are not even well-defined like e. g. an infinite sum.



ables an incremental evaluation of relational algebra expres-
sions on data streams.
The contributions of this article are as follows:

e We introduce a common data model for data streams and
static relations generalizing the data model of relational
algebra.

e We define Temporal Stream Algebra (TSA) which enhances
the standard operators® of relational algebra by an mech-
anism for propagating constraints on temporal relations
between attributes and on the correlation of attributes to
the stream progress within the stream schema.

e We present an analysis for the propagated constraints that
can determine the validity of TSA queries and derives
functions similar to the invariants of [25] that define first
when results can be passed on, second how information on
stream progress is propagated and third which data needs
to be kept.

Based on these functions we finally describe an bulk-wise
and out-of-order evaluation for TSA queries reducing the
evaluation of TSA queries on data streams to a repeated
evaluation of ordinary relational algebra expressions.

The rest of this article is organized as follows: Section 2
motivates our approach based on examples from emergency
management. Section 3 presents our data model for data
streams and introduces a schema for data streams based on
constrains on temporal relations between attributes and on
the correlation of attributes to stream progress. Section 4
describes the propagation of the constraints through the op-
erators of relational algebra and gives a definition of formally
“valid” queries. Section 4 also shows that “valid” queries can
in fact be evaluated on data streams. Section 5 illustrates
how different kinds of queries can be expressed in TSA. Sec-
tion 6 describes the incremental evaluation for TSA queries.
Section 7 discusses relevant prior work and Section 8 points
to the presented achievements and future work.

2. EMERGENCY MANAGEMENT

Emergency management applications typically consist of
three major kinds of rules or queries: First detection rules
which detect the start and the end* of an emergency. Sec-
ond analytic rules which in case of an emergency gather and
analyse further information on the emergency as to provide
a comprehensive assessment of the emergency situation. Fi-
nally reactive rules are used to execute or propose® proper
reactions to an emergency [29, 30, 31]. Within this article
we focus on the interplay of detection and analytic rules.

Event-controlled aggregation. Detection queries, like
the detection of fire, need to be evaluated constantly. By
contrast analytic queries only become important in the pres-
ence of the corresponding emergency. For example, there is
hardly any use in computing the maximum smoke concen-
tration in a room in absence of a fire. However in case of a
fire, knowing the maximum smoke concentration of a room is
very important. Smoke is actually the greatest treat for the
life of people[29]. With the beginning of a fire it is there-
fore required to constantly evaluate the maximum smoke
concentration of a room as to choose and adapt safe, i.e.

4 Usually a human operator needs to confirm the end of
an emergency. However the system might propose that an
emergency could be marked as being finished.

5 Some actions will need operator approval.

smoke free, evacuation paths and an appropriate ventila-
tion regime. When the fire-fighters arrive they (manually)
take over both the further evacuation and the ventilation
regime in particular because they bring along a lot of own
equipment that is not connected to the emergency manage-
ment system.® Thus the constant evaluation of the maxi-
mum smoke concentration becomes irrelevant. However the
fire-fighter might be interested in a query like “the maximum
smoke concentration within a room from the beginning of
the fire to the arrival of the fire-brigade” giving a first im-
pression of the quality of the so far evacuation management.

Obviously neither the beginning of a fire nor the precise
time until the arrival of the fire-brigade are known in ad-
vance. Thus data-independent windows, e.g. tumbling or
sliding windows, hardly seem to be suited for this kind of
scenario. Instead the aggregation, i.e. the computation of
the maximum smoke concentration, needs to be controlled
by events indicating the start and the end of the aggregation,
i. e. the detection of a fire and the arrival of the fire-brigade.

Access to Static Relations. Both detection and ana-
lytic queries frequently need to access static or hardly chang-
ing relations for correctly interpreting the incoming events.
For example sensor messages usually carry sensor ids, but
do not necessarily carry data indicating the locations of is-
suing sensors. The location is however essential for corre-
lating messages from different sensors. So there should be
an easy way to attach the location to the incoming sensor
messages. More complex topological information is needed
for handling an emergency in a power-grid but also in case
of a fire in metro stations and airports[31] or other build-
ings. For example neighbouring rooms of a burning area,
are directly threatened by the fire. Identifying those rooms
needs to correlate the event of fire detection with the static
neighbour relation of rooms.

User-defined Timestamps for Composite Events.
In emergency management the “right” choice for the times-
tamp of an composite event is not always obvious and may
differ from query to query. Consider for example the follow-
ing two rules: Rule 1: A temperature sensor is considered
to be malfunctioning if there is an message from that sensor
which is not followed by another message within 30 seconds.
Rule 2: A precautionary fire alarm is raised if there is a
potential fire detection in an area and no report from the
responsible warden is received within 2 minutes after the
potential fire detection. Both queries have the same basic
structure, a positive event that triggers the rule if it is not
followed by another event within a certain time-frame. How-
ever for the first query, the timestamp for the “malfunction
sensor” event should probably be the time of the first missing
messages, e.g. 10 seconds after the last message from that
sensor. By contrast the time for the precautionary alarm
should be the time of the (potential) fire detection and not
the time of the missing report. Therefore the user should be
able to choose the most meaningful definition for the times-
tamps of a composite events on a query per query basis .

Multiple Time Lines. Emergency management requires
queries referring to timestamps according to multiple differ-
ent timelines. In a simple case these timelines are just ap-
plication and system time. Reconsider the rule — A precau-
tionary fire alarm is raised if there is a potential fire detec-

5 Actually we learned that the fire-fighters will not entrust
their lives to any foreign emergency management system but
prefer to do their own reconnaissance.



tion in an area and no report from the responsible warden
is received within 2 minutes after the potential fire detec-
tion. The timespan of 2 minutes is defined between the
detection of the potential fire, i.e. application time, and the
reception of the report, i.e. system time. As to ensure that
no more than two minutes will elapse between the poten-
tial detection and a reaction to that detection it is crucial
that the 2 minutes period is defined in exactly that way,
as transmission delays could otherwise block the emergency
management system.

Further timelines are introduced by simulations used for
predicting the physical evolution of an emergency, e. g. smoke
propagation, which is very important for taking the right de-
cisions, e.g. choosing safe evacuation routes. Beside appli-
cation and system time, events returned by such simulations
carry a timestamp denoting the time for which the predic-
tion is meant to hold. Multiple timelines are also useful for
first implementing slack [1] on a query per query bases and
and in a way transparent for the user and second for skip-
ping the derivation of composite events which have become
irrelevant by lapse of time e. g. due to prioritization in favor
of more important queries.

Supporting multiple timelines requires more than having
multiple timestamp attributes as different timelines impose
different orders on the events. Therefore in-order processing
is only possible for at most one of the timelines. For all other
timelines the evaluation is inevitably out-of-order. Thus,
beside other benefits, out-of-order processing [21], seems to
be almost mandatory for supporting multiple timelines.

Relational Algebra. The operators of relation algebra?
turned out be sufficient for expressing queries like the ones
described above.” Thus it seemed natural to generalize the
operators of relational algebra towards data streams. Using
the operators of relational algebra has a number of advan-
tages: The operators form a good basis for the implemen-
tation of a high-level declarative language like for example
the event, state and action language Dura [28, 26, 27]. Data
streams can be queried in the same way that is already fa-
miliar from database relations. The properties of the opera-
tors are well understood. For example the laws on operator
permutations are very important for the optimization of re-
lational algebra expressions. There exist reliable techniques
for the evaluation and optimization of relational algebra ex-
pressions, like specialized join algorithms, heuristics for op-
erator reordering or cost-models, that base on these laws
and on other properties of the operators of relational al-
gebra. Preserving the operators and their characteristics
means that these techniques and algorithms can be reused
or easily adopted for data streams.

3. STREAMS & TEMPORAL RELATIONS

A key observations on data streams made in [21] is that,
though they might arrive out-of-order with respect to any of
their attributes, data streams usually make “progress” with
respect to some of their attributes. More precisely a a data
stream is making “progress” on an attribute « if it eventually
exceeds any value v for that attribute. This lead to the def-
inition of so-called “progressing streams” [21]. However the
original definition of progressing streams is not fully suited

" This does not mean that using the operators of relational
algebra is a requirement for emergency management. It
seems to be good choice, though.

for our purposes. First the cross-product of two progress-
ing streams is not a progressing stream itself, second static
relations are not covered, and third the definition implies
a one-by-one arrival of tuples inducing some strict (though
arbitrary) order on the tuples.®

Thus, we use the more general notion of temporal streams.
In fact all progressing streams are temporal streams and a
progressing stream its corresponding temporal stream have
the same progressing attributes.” Temporal streams differ
from progressing streams as follows:

1. Prefixes of a data stream are defined with respect to time
and not to tuple count

2. Data streams may be static, i.e. all tuples are available
from the very beginning of the data stream

3. Progressing attributes are generalized to progressing sets
of attributes

DEFINITION 1. (Temporal Streams)

1. A data stream R with attribute schema </ (R) C ATTR
(ATTR is a set of attribute names) is a (possibly infinite)
relation with finite prefix R? at each point in time p € Q,
ie.

R = |J R? with p1 < p2 = RP* C RF?
PEQ and |RP| < +oo for all p,p1,p2 € Q

2. R is static iff RP = R for all p € Q

3. 0 is a progressing set of attributes for R iff R is static

4. {a1,...,ar} # 0 is a progressing set of attributes for R iff
{a1,...,ar} C &7(R) and R eventually exceeds any upper
bound si1,...,s% € Q for aq,...,ax, i.e.
JpeQ:{reR|r(a) <siA---Ar(ar) <sp} CRF

5. A data stream R is a temporal stream iff R has a progress-
ing set of attributes

Progressing sets of attributes play quite a hidden role
in the rest of the article although they are absolutely re-
quired. For input and output relations we are mostly inter-
ested in progressing sets of attributes with a single element,
i.e. the so-called progressing attributes.® Progressing sets
of attributes are important particularly for intermediate re-
sults like the cross-product of two temporal streams and
for the propagation of information on progressing attributes
through the query expression.

The approach is centered around the following observa-
tion: If the progressing attributes of the temporal input
streams of a relational algebra expression and the tempo-
ral relations specified in the expression imply at least one
progressing attribute for the output stream then the expres-
sion is valid and can be incrementally evaluated on tem-
poral streams. In fact there exists a (monotone) function
that computes the minimum achievable progress of the out-
put stream with respect to its progressing attributes based
on the progress of the input streams with respect to their
progressing attributes.

In the rest of this section we introduce the ingredients of
a schema for temporal streams that can be used to describe,
propagate and analyse information on progressing attributes
and temporal relations.

8 Assuming a one-by-one arrival of events or tuples seems to
be artificial in parallel or even distributed environments and
the implicit postulation of an order (even an arbitrary one)
seems to be inconvenient for a model of unordered streams.
9 An attribute a is called a progressing attribute of a tem-
poral stream iff {a} is a progressing set of attribute.



3.1 Temporal Relations

Temporal relations play a major role with respect to pro-
gressing attributes? (or progressing sets of attributes). For
example if an attribute a; is a progressing attribute for a
temporal stream R and attribute az is known to be greater
than a; for all tuples of R, e.g. after a selection ofa1 < a2],
then ao is also a progressing attribute for R. Even more
if neither a1 nor as are progressing attributes for R, but
{a1, a2} is a progressing set of attributes for R, then a2 is a
progressing attribute for the derived stream ofa1 < az](R).

Temporal relations are also introduced when new relative
timestamps, e.g. for a composite event, are defined from
existing ones. Consider the following definition of a new
timestamp a = max(a1,az2). In that case it is know that a
is greater than both a1 and as and therefore if {a1,a2} is a
progressing set of attributes for R then a is progressing at-
tribute for ¢[a = max(a1, a2)](R) the stream with the newly
introduced timestamp a.

In TSA new relative timestamps and explicit temporal
relations are are specified by means of temporal terms and
temporal relations formulas (TRFs). Temporal terms can
shift timestamps by a constant amount of time, they can
express the maximum or minimum of a number of times-
tamps and they can derive less precise versions of a times-
tamp, e.g. floor,,...(t) yields the last preceding full minute
for timestamp ¢. The latter can be used to specify tumbling
windows in a very elegant way (Section 5). Furthermore
temporal terms can be nested. Beside attributes temporal
terms may contain variables which are used when operators
like projection discard attributes. In that case variables help
to efficiently preserves transitive temporal relations. For ex-
ample if a1 < a2 < a3 and a2 is discarded by a projection
then a1 < vq, < a2 preserves the transitive relation a1 < az
between a; and as.*°

DEFINITION 2. (Temporal Terms)
Temporal terms are defined inductively:

1l.v € ATTRU VAR is an atomic temporal term
2. t+ c is a temporal term if ¢ is a temporal term and ¢ € Q
3. min(t1,...,tk), max(ti,...,tx) are temporal terms
if t1,...,tr are temporal terms
4. floor (t), ceil.(t) are temporal terms
if ¢ is a temporal term and ¢ € Q

where VAR is a set of variables and VARN ATTR = (.

TRFs consist of comparisons of timestamps defined by
temporal terms which can be combined by conjunction, dis-
junction and negation. During the propagation of TRFs
through the operators of TSA we sometimes need to express
that a variable is not part of the namespace of a particular
part of a formula. This is done by atoms ignore(v).!* .

10 Making the transitive relations explicit can cause a signif-
icant blowup of the formula.

11 A full explanation on that point is out of the scope of this
article. The basic reason for this is that the “variables” of
temporal terms are used with two different semantics with
respect to first order predicate logic, namely first as exis-
tentially quantified variables when the relations between at-
tributes are concerned (compare Definition 9) or second as
logic constants when the temporal distance (Definition 5) be-
tween attributes and “variables” is required. It is only when
“variables” are used in the sense of logic constants that the
formulas ignore(v) have a meaning.

DEFINITION 3. (Temporal Relation Formulas)
Temporal relation formulas (TRFs) are defined inductively:

1. T and L are atomic TRFs

2.ty op tg is an atomic TRF for op € {<, <, =, >, >, #}
if t1 and to are temporal terms

3. ignore(v) is an atomic TRF if v € VAR is a variable
4.GANG', GV G and =G are TRFs if G, G’ are TRFs

Despite of the complex specifications that are possible us-
ing general TRFs they can be normalized to TRFs with a
comparably simple structure. This is essential for the al-
gorithmic analysis of the temporal relations. Note that the
size of the normalized formula G™*™ is only linear in the
size'? of the original formula G.

DEFINITION 4. (Normalized TRFs) A TRF G can be
normalized to a TRF G™°™™ using the following equivalences
and implications in left to right direction. The normalized
TRF G™"™ is equal to T or L, or all atomic subformulas of
G™™™ have the form v < w + ¢ or ignore(v) and negation
occurs at most at literals of the form —ignore(v)."

Negl: -(GAG") & (-G V-G

Neg2: ~(GVG') & (-G A-G)

Neg3: -G < G

Negd: =(tiopta+c¢) & t1 op tta+ec
Negh: - T Land ~L & T

Top: GAN T Gand GVT & T

Bot: GANL& LlandGV.1I&G

Zero:vopw < vopw—+0

Eq:ti=te+c & (tl St2+c)/\(t1 Ztg-l—c)
Neg:t1 #£totc & (1 <ta+c)V(t1 >t2+¢)
Geq: t1 2>2tot+c & to+c<ty

Gr:t1 >ta+c & ta+c<t

Less'™ : t1 <ta+c & t1 <tz +(c—¢)
Arithl : t1+copta & tiopta+ (—c)
Arith2 : t1 op (tz +C)+d & tiopia +(C+d)
Minl: t < min{ti,...,tx} +c <
t<ti+cA...Nt<tlpx+c
Min2: min(t1,...,ts) <t+c &
t1 <t4+cV...Vixr <t+c
Mazxl: t < maz(ti,...,tx) +c &
t<ti4+cV...Vt<itp+c
Maz2: maz(ti,...,tx) <t+c &
th <t4+cAN...Ntp, <t+c
Floorl : floor, (t1) <ts = t1 —c<t2
Floor2 : ty < floor, (t1) = t2 <ti
Ceill : ceilc(tl) <ty = t1 <t2
Ceil2 : ta < ceilc(t1) = ta<t1+c
for temporal terms t1,...,tx and ¢,d € Q and TRFs G, G’
and v,w € ATTRU VAR and op € {<,<,=,>=,>,#}
and < ' >, <l > =Tl #, > g
STl £ e =

A Dbasic algorithm for the normalization of a TRF is very
simple: Whenever the algorithm finds a syntactical match
for the left side of one of the above equivalences and im-
plications, then the matching subformula is replaced by the
right side of the equivalence or implication. The algorithm
stops if it does not find any further matches for the left side

12 Size in number of terms not in number of atoms.
3Literals of the form —ignore(v) do not occur in practice.

14 Think of ¢ as an infinitely small value such that ¢ —e < ¢
butd<c—ceifd<cand (c—¢)+ (d—¢)=((c+d) —e).



of any of the equivalences or implications. The algorithm
will always terminate with normalized form of the TRF. It
is most efficient if it uses the equivalences and implications
in top down precedence.

The temporal distance'® of two variables or attributes w
and v with respect to a TRF is the maximum value that
the difference v — w can take, i.e.v — w < dist(w,v) con-
sidering the restriction imposed by the TRF. The temporal
distance is a core element of the compile-time analysis of
temporal relations and is used to construct the functions
(Definition 25) that propagate information on the progress
of the inputs streams of a query to the information on the
progress of the output stream of a query. Temporal dis-
tances can also be used for garbage collection (see end of
Section 6) for which they have been proposed first [7]. The
following definition significantly generalizes that of [7].

DEFINITION 5. (Temporal Distance) Let G be a tem-
poral relation formula and R be a temporal stream with
o/ (R) = A. The temporal distance of two attributes or vari-
ables v,w € ATTR U VAR with respect to G is

dista(wo) =, _ x| {disto(w,0))

—oo  if C is inconsistent

distc(w,v) := < —oco  if C' k= ignore(v) or C = ignore(w)
min{c | 7D,C g v < w + c} else

where u,v,w € ATTRU VAR and c¢,d,+00, —c0 € Q and

G"°™™ is the normalized form of G and C is a conjunction
of atomic TRFs of the form v < w + ¢ and 7D contains

Ref: v<w
Trans: u<v+cAv<w+d = u<w=x(c+d)
Inf: v<w++o00

The algorithmic analysis of the temporal distances is closely
related to the simple temporal problem (STP) [24] and the
disjunctive temporal problem DTP [18]. Basically the (naive)
analysis algorithm is as follows: The TRF is normalized and
converted into disjunctive normal form. Each conjunction is
an STP instance. The distance of all pairs of attributes and
variables for this instance can determined using any algo-
rithm for the all-pair shortest path problem, e.g. the Floyd
Warshall algorithm [14], or specialized algorithms for STP.
The distance of two attributes or variables for the whole
TRF is then the maximum distance of the two attributes or
variables in any of the conjunctions.

3.2 Progressing Sets of Attributes

Stream bound formulas (SBFs) are used to describe the
initial progressing sets of attributes of a temporal stream.
The stream may have further derived progressing sets of at-
tributes as illustrated in the beginning of Section 3.1. The
formulas are called stream bound formulas because they ac-
tually tell which sets of attributes have the defining property
of progressing sets of attributes, i.e. that upper bounds for
the attributes yield a (finite) prefix of the stream.

DEFINITION 6. (Stream Bound Formulas) The set of
stream bound formulas (SBFs) is defined inductively:
1. T is an atomic SBF

2. bounded(v,b) is an atomic SBF for v € ATTR U VAR
where b € BOUND is a stream bound identifier.

3. Hi AN Hy and Hy V Hs are SBFs iff H, and H> are SBFs.

15Note that the temporal distance is usually asymmetrical.

For example the SBF for a temporal stream R with pro-
gressing attributes a1 and a2 has the form bounded (a1, bq, )V
bounded(az,ba, ). The SBF for the cross-product of two tem-
poral stream R and R with progressing attributes a and o’
respectively, has the form bounded(a, bs) V bounded(a’, bar).

Given a TRF G and a SBF H we can determine all (initial
and derived) progressing sets of attributes with respect to
G and H in the following way:

DEFINITION 7. (Progressing Sets of Attributes)
{a1,...,ar} € ATTR is a progressing set of attributes with
respect to a TRF G and a SBF H iff

bounded(a1,b1),. .., bounded(ag,br), G, TD,SB = H
for any b1, ...,b, € BOUND® and SB contains

BD:v<w+ec, ¢ < +oo, bounded(w,by) = bounded(v, by,)
IG : ignore(v) = bounded (v, b,)

for v,w € ATTRU VAR, b,,b, € BOUND and c € Q

The algorithmic analysis of the stream bounds is similar
to the one for temporal distances. The TRF G is normalized
and converted into disjunctive normal form. For each con-
junction C' the following is done: First the distance between
all attributes and variables in the conjunction is computed.
Second for each atom in the SBF H, the atom is set to true
if the distance from one of the attributes of the potential
stream bound {pi,...,px} to the attribute or variable in
the atom is finite. Otherwise the atom is set to false. If

the H holds under this interpretation, then {p1,...,px} is a
stream bound with respect to C. If {p1,...,pr} is a stream
bound with respect to all conjunctions, then {p1,...,pr} is

a stream bound with respect to G and H.

3.3 Temporal Stream Schema

The schema of a relation in relational algebra is just its set
of attributes. Our schema for data streams complements the
set of attributes with a TRF describing the temporal rela-
tions between the attributes and an SBF identifying the (ini-
tial) progressing sets of attributes. Using our stream schema
we can propagate this information along the TSA operators
and use it determining the validity of a TSA expression and
for actually evaluating the expression. So the schema is key
element of our approach. Note that our schema for tempo-
ral streams covers static relations. Thus we provide common
schema for data streams and static relations.

DEFINITION 8. (Temporal Stream Schema)

1. A temporal stream schema is a triple S = (A, G, H) where
A C ATTR is an attribute schema, G is a TRF with
attr(G) C A and H is a SBF with attr(H) C A

2. S is static iff H is equivalent to T

3.{a1,...,ar} C Ais a progressing set of attributes for S =
(A,G,H) iff {a1,...,ar} is a progressing set of attributes
with respect to G and H

4. S is valid iff S has a progressing set of attributes

The definition of the matching data streams is straight
forward. A data streams matches a temporal stream schema
if it has the right set of attributes, the temporal relations are
as specified in the TRF of the schema and all progressing
sets of attributes for the schema are also progressing sets of
attributes for the data stream.

16 Actually the stream bound identifiers of atomic SBFs do
not play a role here.




DEFINITION 9. (Matching Streams) Let G be a TRF
and H be a SBF and let R be a data stream.
1. G holds in R iff for all tuples » € R the instantiation
or(Grel) of G is satisfiable in Q:

}:Q E|'U1, cea, UL Ur(Grel)
where &/ (R) = {a1,...,ar} and {v1,..., v} = vars(QG)
and o, := {a1 — r(a1),...,ar — r(ar)} and G results

from G when replacing every atom ignore(v) by T if it
occurs with positive polarity or by L if it occurs with
negative polarity.l”

2. H holds in R with respect to G, iff all progressing sets of
attributes {a1,...,a;} C &/(R) with respect to G and H
are progressing sets of attributes for R.

3. R matches a temporal stream schema S = (A,G, H) iff
o/ (R) = A and both G and H hold in R.

ProposiTION 10. If S a walid temporal stream schema
then every data stream R matching S is a temporal stream.

PrOOF. As S is valid there is a progressing set of at-
tributes Aprog C &7 (S) for S.
R matches S, therefore &/ (R) = &/ (S) and Aproqg is a pro-
gressing set of attributes for R. [

Temporal stream definitions are used to name the different
data streams (usually corresponding to event types) and to
provide a formal schema definition for the streams. We im-
pose some restrictions on the schema of temporal stream
definitions. Most notably (b) implies that each progressing
set of attributes contains at least one progressing attribute.
This significantly simplifies the definitions of the functions
(Definition 25) propagating information on stream progress
from the input streams of a query to its output stream. The
restrictions (a) and (c) are of technical nature.

DEeFINITION 11. (Temporal Stream Definition)

A temporal stream definition is a pair D = (n,S) where
n € STREAM is a name for the temporal stream definition,
S = (A,G, H) is a valid temporal stream schema and
1. G and H do not contain variables

2. H is a disjunction of atomic SBFs; i.e.
H = bounded(ay,b1) V ...V bounded(a, bi)
for some aq,...,ar € A and b1,...,by € BOUND
3. sbid” : a; — b; is an injection
with inverse attr” : b; — a;
STREAM is a set of names for temporal stream definitions.
The schema S of D = (n, S) is also denoted . (D).

4. OPERATORS RELOADED

TSA enhances the standard operators? of relational alge-
bra with a mechanism for propagating constraints on tem-
poral relations (TRFs) and progressing attributes (SBFs) to
the schema of their output relation. So the interesting part
of the following operator definitions is the definition of the
schema for the result stream, not the definition of the re-
sult stream itself. Nevertheless we also give the definition
for the output stream because first there hardly is the one
representation of relational algebra, second we ourselves in-
troduce two slight deviations from classical representations
[2, 15] and third it seems convenient to have the definition of

7 An atom occurs with positive/negative polarity in C' if it
is found below an even/odd number of negations.

the result relations aside with the schema for these relations
containing the propagated constraints. The two deviations
from classical representations of relational algebra are as fol-
lows: First the basic TSA operators include a cross-product
but no join operator. Second we separate the definition of
new attribute from the projection operator and introduce
the imbed operator ¢ for this purpose. Both deviations do
not change the overall characteristics of the operators. In
fact join, the classical projection and other frequently used
operators like semi-join and anti-semi-join can be defined
using the basic operators of TSA. However both deviations
simplify the definition of constraint propagation as the op-
erators become more orthogonal to each other, i.e., each
performing a single task.

There are two operators that introduce new information
on temporal relations namely selection o and imbed ¢. All
other operators only combine and propagate the existing
information in the schema of their input streams. The se-
lection operator o[C] seeks to extracts the maximum tem-
poral information in its selection condition C into a TRF
Ciemp and adds Ciemp to the TRF from the schema of its
input stream. Basically Ciemp results from C by replacing
all non-temporal atoms in such a way that the condition C
is fulfilled as much as possible.

DEFINITION 12. (Selection o) Let E be a TSA expres-
sion with schema . (E) = (A, G, H) and let R be a temporal
stream matching . (E) and C' a condition with attr(C) C A.

o[C](R) := {r € R | r satisfies C'}
L (o[CI(E)) := (A, (G A Cremp), H)
where Ciemp is the TRF that results from C' when replacing
every non-temporal atom by T if it occurs with positive
polarity or by L if it occurs with negative polarity.*”

The imbed operator ¢ adds the definitions of relative times-
tamps to the TRF of its input stream.

DEFINITION 13. (Imbed :) Let E be a TSA expression
with schema . (E) = (A,G,H) and let R be a temporal
stream matching .7 (F). Let o’ ¢ A be a new attribute,
t the term defining @’ and ai,...,ax € A the attributes
occurring in t.

tfa’ =t](R) :=={r' € dom(AU{a'}) | 3r € R such that
r’(a) = r(a) for a € A and
r'(a') = fi(r(ar), ..., r(ax)) }
SL(d" =t](E)) == (Au{a},G' H)
o G A (a' =t) if t is a temporal term
G else

where f; : dom(a1)X...xdom(ar) — dom(a’) is the function
of the values of a1, ...,ar € A defined by ¢. If ¢ is a temporal
term, then ¢ defines a relative timestamp.

Both the projection and the grouping operators propagate
the TRF from the schema of the input stream by replacing
the occurrences of the discarded attributes by variables.

DEFINITION 14. (Projection 7) Let E be a TSA expres-
sion with schema . (E) = (A, G, H) and let R be a temporal
stream which matches the schema of £ and A; C A the set
of retained attributes.

7[A1](R) := {r’' € dom(A1) | Ir € R such that
r’(a) = r(a) for a € A1}
F (A A)(E)) = (A1, £(G), £(H))

where £ is an injective substitution of the attributes in A\ A;
by variables that do not occur in G or H.



The simple definition of grouping might be surprising, as
grouping is one of the “blocking” operator which are usually
considered “problematic”.

DEFINITION 15. (Grouping «) Let E be a TSA expres-
sion with schema . (E) = (A, G, H) and let R be a temporal
stream matching . (E) and A; C A the set of grouping at-
tributes. Let a1,...ar € A\ Ay and al,...,a;, ¢ Ay and
Fy, ..., Fy aggregation functions like min, max, sum or avg.

YAilar = Fi(ar), ..., a, = Fi(ax)|(R) :=
{r’ Edom(Alu{al,...,a Hl3rer
such that r'(a ) r(a) for a € A;
and?“( i) = Fi((ry(ai))ryer.) }

S (v[Ai]lar = Fi(a1),. .., a), = Fi(ax)|(E)) =

(A1,€(G), &(H))
where R, = {ry, € R | ry(a) =r(a) for a € A1} and £ is an
injective substitution of the in attributes A\ A; by variables
that do not occur in G or H.

The propagated TRF for the cross-product operator is
basically the conjunction of the TRF's of the input streams.

DEFINITION 16. (Cross Product ><)18 Let E7 and E>
be TSA expressions with schema . (E1) = (A1, G1, H1) and
S (E2) = (A2,G2, H>) that have disjoint attributes (A1 N
Ay = (Z)) and let R; and Rz be temporal streams matching
Z(E1) and . (FE>) respectively.

Ri X Ry := {7”/ € dom(A1 @] Az) | Iry € Ri,72 € Ro with
r'(a) = r1(a) for a € Ay
r'(a) = r2(a) for a € Az}
S (B X E2) i= (A1 U A2,&1(G1) A §2(G2), &1 (Hr) A €2(H2))
where &1 and &; are injective substitutions, such that & (G1),
&1(H1) and &2(G2), &2(H2) use disjoint sets of variables.

The propagated TRF for the union operator is basically
the disjunction of the TRFs of the input streams. Some
details of the definition are of very technical nature,!! par-
ticularly GY and G%.

DEFINITION 17. (Union U)'® Let F; and F> be TSA ex-
pressions with equal attributes, schema . (E1) = (A4, G1, H1)
and .¥(E3) = (A, G2, Hz) and let Ry and R, be temporal
streams matching . (E1) and .%(E3) respectively.

RiURs :={r € dom(A) | withr € Ry orr € Ro}
S (E1U Es) := (A, G, (&1(H1) A &2(H2)))
G = (GLANG! NE(Gh)) V (G AGE A E2(G2))
Gh = (&u(p1) =p1) Ao A (&a(pr) = pr)
GY := N ignore(&(v))
v € attr(Hgz) Uwvars(Hga)
G5 = (&2(p1) = p1) A ... A (&2(pr) = pr)

GY == N ignore(&1(v))
v € attr(Hy) Uwvars(Hy)
where & and &2 are injective substitutions, that replace all
attributes in A by variables and substitute variables by oth-
ers such that & (v) # &(w) for any two attributes or vari-
ables v and w occurring in A, G1, G2, H1 or Ha.

The propagated TRF for the set-difference operator is
very technical nature.!’ The challenge is that the tempo-
ral relations between the attributes of the result stream are
only determined by the temporal relations of the first in-
put stream, i.e. by G1. Actually the propagated TRF G’ is
equivalent to G'1 with respect to the temporal relations be-
tween the attributes of the result stream. However G’ also

18 The definition can easily be extended to a n-ary operator.

needs to propagate the information in the TRF G of the sec-
ond input. Otherwise the relations between the progressing
sets of attributes for the result stream and the progressing
sets of attributes for the second input stream get lost.
DEFINITION 18. (Set Difference \ ) Let E; and E3 be
TSA expressions with equal attributes, schema . (E1) =
(A,G1, Hy) and . (E2) = (A, G2, H2) and let Ry and Ry be
temporal streams matching .%(E1) and .’(E2) respectively.

R, \R2 = {7‘1 c Ry | —dre € Ry with ry = 7“2}

S(Er\ Bz) = (A, G, (Hi A &2(H2)))

G' = (G1 AGY) V (G1 NG5 N E2(G2)))

Ghi= A ignore(€a(v))

v € attr(Hg) U vars(Hz)

G = (&2(p1) = p1) A... A (&a(pr) = pr)
where &5 is an injective substitution for attributes and vari-
ables, such that the substituted variants £2(G2), &2(H2) and
G1, Hi use disjoint sets of variables.

DEFINITION 19. (TSA Query)

1. A TSA query is a pair ¢ = (D, FE) such that F is a
TSA expression, D is a temporal stream definition and
the schema of E and D have the same set of attributes.

2. ¢ is valid iff the schema . (E) = (A, Gg, Hg) of E matches
the schema .7 (D) = (A,Gp, Hp) of D, i.e. G implies'®
Gp and all progressing sets of attributes with respect to
Gp and Hp are progressing sets of attributes with respect
to Gg and Hg.

A TSA query assigns a TSA expressions to the temporal
stream it contributes to. The most important property of
valid TSA queries is, that they are non-blocking, i. e. can be
evaluated incrementally.

PRrROPOSITION 20. (Non-Blocking Queries)

Let ¢ = (D,E) be a TSA query with schema (D) =
(A,Gp,Hp) and let D1, ..., Dy be the temporal stream def-
initions occurring in E and Rji,..., Rr temporal streams
matching the schema . (Dy),...,.(Dy) respectively.

If ¢ is walid then g is non-blocking. This means and any
limit s € Q for a progressing attribute’ a € A of .#(D),
there is a point in time p € Q such that for every point in
time p’ > q the prefix of the result stream up to s is fully
determined by the prefixes of the input streams at time p'.

{r € E(Ry,...,Ri) | r(a) < s} = / ,
{re E(RY,...,R} ) |r(a) <s}

PRrROOF (SKETCH). Let S (F) = (A,Gg,Hg). Without
loss of generality one may assume that the temporal stream
definitions Dy, ..., Dy use different stream bound identifiers,
as Proposition 20 and none of its indirectly referred Defini-
tions depend on the actual names of stream bounds.

As q is a valid query, any progressing attribute’ a € A for
(D) is a progressing attribute® for .7 (F).

Let GE™ be the normalized form of Gg (see Definition 4)
and the DNF of GE"™ be dnf(GE™) = C1 V- --V C, where
C4,...,C} are conjunctions of normalized atomic TRFs.

For each D;, 1 < ¢ < k and each C; there must exist
at least one®® atomic SBF bounded(v; ;,b; ;) in Hg*' where
v;,j < a4+ distc; (vi,5,a) and b; ; belongs to D;.

19Can be checked if right side does not contain variables. By
definition Gp and Hp do not contain variables.

20 1t D; describes a static relation this does not hold. But in
that case there is nothing to show. One can choose I; = 0.
21 Note that Hg is in CNF with exactly one clause per

D+, ..., Dy (Proposition 21)



However v; ; is a renamed version of the progressing at-
tribute® a;; := attr”i(b; ;) associated to b; ; in D;. Thus if
a < sin the result stream then a; ; < s; ; := s—distc; (vi ;,a)
in the input stream D;, at least for “case” C; of G&"™.

Proposition 22 allows to apply the formal results from the
definitions D; to the actual relations R;. Therefore

{r € E(Ry,...,Ri) | r(a) < s} =
{re E(P1,...,P) | r(a) <s}
where
P; = U {n- € R; | ri(ai,j) < Si,j}
1<5<1

As a;; is a progressing attribute of R; there is a point
in time p;; such that {r; € R; | ri(ai;) < si;} C RV,
Therefore with p := max pi; and R? C Rf/ iff p<p

1<5<l
s Be) [ r(a) < s} =
{re E(RY,...

{r € E(Ry,...

The proof of Proposition 20. uses the following two aux-
iliary proposition on the structure of propagated SBFs and
on the well-definedness of the propagation mechanism:

PRrROPOSITION 21. (Simple SBF's) For any TSA expres-
sion E with schema .¥(F) = (A, Gg, Hg) the SBF Hg is in
conjunctive normal form (CNF).

PrOOF. The proposition holds for temporal stream defi-
nitions (Definition 11). For each TSA operator the SBF of
the composed expression is a conjunction of the SBFs of the
subexpressions. []

PROPOSITION 22. (Well-Definedness) Let E be a TSA
expression with the wvalid schema .(E) where D1,..., Dy
are the temporal stream definitions occurring in F.

If Ri,..., Rk are temporal streams matching the schema
of D1,..., Dy respectively then the output E(R1,..., Rk) is
a temporal stream and matches the schema .7 (E).

PROOF (SKETCH). The proof is straight-forward by in-
duction over the structure of £. []

PrROPOSITION 23. (Relational Completeness) TSA is
relational complete [10] for finite (non-stream) relations.??

PROOF. On finite non-stream relations, TSA is equivalent
to relational algebra. [

S. TSA BY EXAMPLE

This section illustrates how frequent types of queries can
be expressed using the operators of TSA. As to keep the
TSA expressions more compact and readable, operators like
rename 9, join X, semi-join X and anti-semi-join X are used
in the examples. These operators can easily be composed
from the basic TSA operators. All shown queries are valid
TSA queries (Definition 19) and all but the query for frames
without fragments can be garbage collected solely based on
an analysis of temporal relations (see end of Section 6).

Stream and Static Data. The following examples shows
a rule that takes raw events from temperature sensors TRaw
and supplements them with the location (area) of the sen-
sors stored in static relation T'Loc.

22 The term “relational complete” compares the expressive
power of some formalism for querying finite relations to the
expressive power of relational algebra. A generalization to
temporal streams is, if at all possible, non-trivial.

RY)|r(a)<s} O

= ({sid, trme, temp}, T, bounded( TRaw:time, time))
S (TLoc) = ({sid, area}, T, T)
=({

Temp
d[t.x — *, l.area — area](
w[t.sid, t.time, t.temp, l.area](
olt.sid = l.sid)
O[* — t.x](TRaw) x 8[* — l.%](TLoc)

)))

Tumbling Windows. The following rule is a typical ex-

ample for tumbling windows. The rule computes the average
speed of air movement measured by a certain airflow sensor
within the last 20 seconds. This information is required as
input for the simulation of smoke propagation.
S (AFRaw) = ({sid, time, speed}, T, bounded(AFRaw:time, time)
L (Airflow) = ({sid, time, speed}, T, bounded (Airflow:time, time)
Airflow +

d[time20sec — time, avgSpeed — speed)](

v[sid, time20sec][avgSpeed = avg(speed)](
[time20sec = ceilapsec (time)](
AFRaw

)))

Lazy Aligned Sliding Windows. The following exam-
ple shows a sliding window, which is only evaluated when
actually needed (lazy), and which is aligned to the event
initiating the evaluation. The implemented query reads as
follows: From the start to one hour after the end of an fire
compute the average smoke concentration in room in the
last 10 seconds with updates every second. The implemen-
tation of the windows uses the safe, i.e., non-blocking form
of recursion provided by TSA.?*

7 (Smoke) = ({time, area, conz}, T,
bounded(Smoke:time, time)

S (FireStart) = ({fid, time}, T,
bounded( FireStart:time, time)

S (FireEnd) = ({fid, time}, T,

bounded( FireEnd:time, time)

S (Windows) = ({start, end}, start = end — 10sec,
bounded( Windows:start, start) V
bounded( Windows:end, end)})

S (AvgSmoke) = ({time, area, acgConz}, T,
bounded(AvgSmoke:time, time)
AvgSmoke +
d[s.area — area, w.end — time](
v[s.area, w.end][avgConz = avg(conz)](
olw.start < s.time < w.end](
O[x — s.x](Smoke) X §[x — w.*]( Windows)
)))
Windows <—
w[start, end](
t[start = end — 10sec](
d[time — end](
FireStart
)))
Windows <—
d[nstart — start, nend — end|(
7 [nstart, nend](
t[nstart = w.start + 1sec, nend = w.end + 1sec](
X [w.start < f.time + 1h < w.end](
O[x — w.x]( Windows),
8[x — f.x](FireEnd)

)))

Frames. The following query implements a frame [23]
starting at the beginning of a fire, lasting till the end of that
fire and computing the maximum smoke concentration in
every area during that period when the duration of the fire
is at least one minute.

23 Details on recursion are out of the scope of this article.

sid, time, area, temp}, T, bounded( TRaw:time, time))



S (MazSmoke) = ({start, end, area, mazConz},
end — start > 1min,
bounded(MazSmoke:end, end)

MazSmoke <+

d[fs.time — start, fe.time — end,

fs.fid — fid, s.area — area](
~[fs.time, fe.time, s.area][maxConz = maz(conz)](
olfs.time < s.time < fe.time,
fe.time — fs.time > 1min, fs.fid = fe.fid](
O[* — fs.*](FireStart)x
d[x — s.x](Smoke)x
S[* — fe.x](FireEnd)

)))

Frame Fragments. The following example implements
frame fragments [23] for the preceding query. The first frame
fragment is produced after one minute when it is known
that a frame exists. Each minute another frame fragment is
produced until the end of the frame, i.e., the end of the fire
is detected. Then the final result for the frame is produced.
Frame fragments increase efficiency, as smoke events only
need to be stored for and averages only need to be computed
over a period of one minute. The implementation uses the
safe, i. e., non-blocking form of recursion provided by TSA.?3
S (MazSmokeFrag) = ({start, end, area, mazConz},

end — start > 1min,
bounded(MazSmokeFrag:end, end)})

MazSmokeFrag <

t[end = start + 1min](

O[fs.time — start, s.area — area](
v[fs.time, s.area][mazConz = maz(conz)](
X [fs.time < fe.time < fs.time + 1min](
olfs.time < s.time < fs.time + 1min|(
O[+x — fs.x](FireStart)x
O[*x — s.x](Smoke)

d[x — fe.x|(FireEnd)
))))
MazSmokeFrag <
w[start, end, area, mazConz]
O[fs.start — start, fs.area — area](
tlend = fs.end + 1min,
mazConz = maz(fs.mazxConz, NMC)](
~[fs.start, fs.end, fs.area][NMC = maz(conz)](
X [fs.end < fe.time < fs.end + 1min,](
olfs.end < s.time < fs.end + 1min,
fs.area = s.area(
d[* — fs.*](MaxSmokeFrag) x
d[x — s.x|(Smoke)

d[x — fe.x](FireEnd)
)))))
MazSmoke
w[start, end, area, mazConz]
8|fs.start — start, fs.area — area](
tend = fe.time
mazConz = maz(fs.mazConz, NMC)](
v(fs.start, fe.time, s.area][NMC = max(conz)](
olfs.end < s.time < fe.time,
fs.area = fs.area
fs.end < fe.time < fs.end + 1min](
O[x — fs.x](MazSmokeFrag)x
d[x — s.%](Smoke)x
d[x — fe.x|(FireEnd)
)))))

6. INCREMENTAL EVALUATION

The incremental evaluation is obviously crucial for TSA.
It allows to derive results continuously as the data arrives on
the stream. The incremental evaluation bases on the impor-
tant property of valid TSA queries shown in Proposition 20:

Any prefix of the result stream of a query ¢ depends only on
finite prefixes of the input streams of g.

The major challenge for the incremental evaluation of
TSA queries is to pass only those results to the output
that are complete or stable, i.e. don’t change on the ar-
rival of further input data. This is realized by pass condi-
tions (Definition 27) which accept only those result tuples
that can safely be output based on the current progress of
the input streams. Pass conditions are very similar to the
“pass invariants” of [25]. Pass formulas (Definition 24) are
parametrized versions of the pass conditions which can be
derived at compile-time. The actual pass condition is ob-
tained from the pass formula by replacing the parameters
b € BOUND (formally called “stream bound identifiers”)
by their so-called progress values (Definition 26). Progress
values basically tell about the current progress of a data
stream with respect to its different progressing attributes.®
Progress values are similar to linear punctuations [21] for
the output stream of a query with the main difference that
progress values are not imbedded into the output stream.

DEFINITION 24. (Pass Formulas) Let H be a SBF. The
pass formula AH to H is defined recursively:
AT =T
A bounded(p,b) =p<b
A(Hl/\.../\Hk) =AHiAN...NAH
AHLV ...V Hy)=AH1 V...V AH

where p € ATTRU VAR and b € BOUND. AH results from
H by replacing each atom bounded(p,b) in H by p < b.

When instantiating a pass formula to obtain the pass con-
dition for the current increment computation of a query
those progress values are used that will hold after the current
increment computation has finished. The progress for the
output stream that is achievable with the current increment
computation depends on the progress of the input streams at
the beginning of the increment computation, more precisely
the progress values for the output stream at the end of the
increment computation depend on the progress values of the
input streams at the beginning of the increment computation.
The actual function that computes the progress values for
the output stream based on the progress values of the input
streams is called propagation function (Definition 25) and is
derived at compile-time. Propagation functions are closely
related to the propagation invariants of [25].

DEFINITION 25. (Propagation Functions)?*
The propagation function for a TSA query ¢ = (D, E) with
S (D) = (A,Gp,Hp) and S (E) = (A,Gg,HEg), and a
stream bound identifier b € BOUND with corresponding
attribute a = attr”(bp) € A (Definition 11) for which the
atom bounded(a,b) is contained in Hp, is

fo.q = fop.Gr.0Hg

fo.cp.aHg = min Jo.cpaHg
Cp€dnf(GTY™)

fbchaT = +00

24 Without loss of generality the definition assumes that all
temporal stream definitions of a TSA program use different
stream bound identifiers b € BOUND. This can easily be
realized if BOUND = STREAM x ATTR and for temporal
stream definition D = (n, S) and progressing attribute® p of
S the stream bound identifier b = b” (p) corresponding to p
in D has the form b =n : p.



+o0 if distc,(a,v) = —oc0

fo.cp (w<by) = —00 if distcy(a,v) = 400
b<bg —distcy(a,v) else

Jo.cp (sbp nnatig) = mMin(fo.cpabp ;- o fo.000p,)

fb,C’E,(AHElv...VAHEk) = maX(fb,CE,AHEl yeeey fb,C,AHEk)

where v € ATTRU VAR, bg € BOUND and Cg is a con-
junction of atoms of the form v < bg and ignore(v).

The idea is, to enforce v < bg in the input relation using
a and bp from the output relation and the inequation
!

v < a+ disto, (a,v) < b+ diste, (a,v) <
(b — distoy(a,v)) + distoy (a,v) < bg

The minimum in the first case results from the fact that
Hpg must hold in each case of Gg (compare with Defini-
tion 6).

The propagation function f, 4 can be normalized to be
400 or —oo or not to contain +oo or —oo at all. If f, , =
—00, then a is not a progressing attribute® with respect to
GE and Hg. This will raise a compile error, as it actually
means that the query is invalid (Definition 19). If f; ¢ = 400
then Gg and Hg belong either to a query that refers only
to static relations or to a query that has an empty output
stream as it imposes inconsistent temporal relations.

As already mentioned progress values tell about the cur-
rent progress of a data stream with respect to its different
progressing attributes.® The progress values of the output
stream of a query are computed by applying the correspond-
ing propagation functions to the progress values of the input
streams of the query. The progress value for a derived data
stream is the minimum progress value of the output streams
of all queries contributing to the derived data stream.

DEFINITION 26. (Progress Values)?*

Let P be a set of TSA Queries. For a TSA Query ¢ = (D, E)
with .#(D) = (A, Gp, Hp) let s}, € Q and €}, € Q denote the
start and end time of the ith (¢ > 1) increment computation
for q. The following is defined simultaneously:

1. Progress value of b for query ¢ at the ith increment com-
putation for ¢ and ¢ > 0
propy(b) = —c0 ¥
propg(b) = fo,q(prop; (by), ..., propy; (b))
where b occurs in Hp and f 4 is the propagation function
corresponding to q and b (Definition 25) and b1, ..., b; are
the stream bound identifiers occurring in fj 4.

2. Progress value of b for query ¢ at time p € Q

propy(b) = {

3. Value of b for temporal stream definition D at time p
proph,(b) = min {prop”, (b)}
dep 1

out(q’)=D

propg(b) for p < e}z

propé(b) for efI <p< efIH

The progress value prop’,(b) for input streams must be
provided form outside.2®

4. Progress value of b at time p

prop” (b) = prop’, (b)

25 For recursive programs the initial values have to chosen

more carefully. This is out of the scope of this article.
263ee [25, 20] for a discussion on how obtain punctuations for
input streams.

where Dy is the temporal stream definition corresponding
to b.24

The definition is well defined as sfl < ef] for i > 1.

For hierarchical programs the incremental evaluation also
works with conservative approximations of the progress val-
ues.?” This is particularly useful for a parallel or even dis-
tributed evaluation of a TSA program, as the progress values
do not need to be perfectly synchronized. Furthermore con-
servative approximations for the propagation functions f 4
could be used. The propagation functions f3 4 of Defini-
tion 25 are optimal with respect to the achievable progress
within one step, however approximate,i.e. simpler versions
of the functions, may help to reduce the computational over-
head that is potentially introduced by the computation of
the progress values.

The ith increment expression, i.e.the expression that is
actually executed for performing the i¢th increment compu-
tation of a query, consists of the pass condition (and the
negated pass condition of the last increment computation)
placed on top of the original query expression.?

DEFINITION 27. (Increment Expression)
Let ¢ = (D, E) be a valid TSA query with output schema
(D)= (A,Gp,Hp) and AHp =a1 < b1 V...Var <bg .
1. The pass condition for i > 0 is: '

AHp = a1 < propg(bi) V... Vay < prop, (bk)
2. The increment expression for i > 1 is:

AE' = o[aHH A-0Hy ' (E)

The increment expression for a TSA query can be seen as
parametrized relational algebra expression as it is only eval-
uated against finite relations (the currently buffered part of
the input streams) and the only changes from one increment
computation to the other are the progress values within the
pass conditions. This is very useful as it avoids to compile
each of the increment expressions at the run-time of a TSA
program. Instead the parametrized version of the increment
expression can be compiled only once. Furthermore an effi-
cient implementation of relational algebra on finite standing
relations can easily be enhanced to an implementation of
TSA, i.e.relational algebra on data streams .

PROPOSITION 28. (Correctness) The consecutive exe-
cution of the increment expressions AF;, AF2, AE3, ... for
a TSA query ¢ = (D, E) yields the same result as if F had
been applied to the whole stream at once.

PROOF (SKETCH). The proof is similar to the proof of
Proposition 20. The proof of Proposition 20 just uses the
fact that there must exist some “progress values”. Thus
the proof of Proposition 20 basically has to show that the
“progress values” required by the proof of Proposition 20 are
actually just those progress values computed by the propa-
gation functions of Definition 25. This is the case as Defini-
tion 25 is well aligned with Definition 7 of progressing sets
of attributes and Definition 5 of temporal distance. []

27 In the case of a recursive program this may not hold for the

progress values of queries and temporal stream definitions
in a strongly connected component of the program. It still
holds for the hierarchical parts of the recursive program.

28 The query expression can be enhaced with relevance filters

that accept only those tuples from the input streams that
could contribute to new tuples in the result stream. This
keeps intermediate results small and avoids recomputations.



Relevance & Garbage Collection

The incremental evaluation of TSA uses the fact that upper
bounds to the result stream of a valid TSA query impose
upper bounds to required parts of the input streams. For
many TSA queries the same also holds for lower bounds:
Lower bounds to the result stream impose lower bounds to
the required parts of the input streams. This observation
can be used to determine the relevance of tuples in the in-
put streams of a query for further results of the query. More
precisely, if the result stream of a query progresses beyond a
certain point, indicated by the corresponding progress val-
ues (Definition 26), then for each input stream there exist
so-called keep values such that only tuples with timestamps
greater than these keep values can contribute to further re-
sults. Analog to the propagation functions (Definition 25)
for the incremental evaluation, we can derive so-called keep
functions from the temporal relations specified in the query.
The keep functions are able to compute the current keep
values for the input streams of a query based on the current
progress values of the result stream of a query. The details
are out of the scope of this article.

7. RELATED WORK

Windows. Windows appear in the form of tumbling,
sliding or landmark windows [4, 9, 1], generalized window
operators like in the WID [20], band predicates [21, 11] and
validity intervals [19]. As shown in [23, 16] and in this article,
new applications require queries that cannot be conveniently
expressed using those data independent windows.

Pattern Matching. The (evaluation) semantics of pat-
tern matching approaches like CEDR[6], SASE+[3], AFAs|[§]
and CAYUGA [17] usually bases on some automaton model.
Inherently their semantics strongly relies on some order on
the processed tuples or events. The approach is very well
suited for applications like in financial markets where queries
are formulated against a single timeline, queries with a “trig-
gering” event at the beginning of the queried period®® and
extremely low response times are required. However it is un-
clear how automaton-based approaches could be extended to
queries referring to multiple timelines, as in the presence of
multiple timelines the order of the events is usually unclear.

Frames & Frame Segments. The motivation of frames
[23] is similar to the idea of “event-controlled aggregation”.
Generally the borders of a frames are determined by means
of changes in the arriving data. In the case of T+D frames
the value of some attribute must be above some threshold for
all tuples within the borders of a frame. The “Thresshold-
Frame” and “FillFrame” operators proposed for T+D frames
can be expressed by a composition of basic TSA operators.
As frames may have arbitrary duration [23] introduces frame
fragments for first detecting frames early, i.e. when their
existence but not their end is known, and second enabling
precomputations of subsequent operators as to reduce mem-
ory requirements and avoid workload bursts at the end of a
frame. The intentions of frame fragments can partially be
realized using the safe form recursion supported by TSA.?3

Predicate Windows.Predicate windows are an approach
towards data dependent windows. Predicate windows are

29 Queries with negation or aggregation to the past, like “Re-
turn event B if there was no event A in the past 5 minutes”,
where the “trigger” for the query is at the end of the queried
period, are problematic for automaton-based approches.

motivated by the perspective that a window defines a set
of currently valid tuples where tuples are entering into and
expiring from this set based on a predicate assigned to the
window. The approach apparently consists of two compo-
nents: First predicate windows are used to interpret a data
stream as a sequence of updates and deletes to a set of cur-
rently valid tuples and second a streamed version, i.e. no
materialization of result relations, of a view maintenance
algorithm propagates changes through subsequent operator.

Punctuations & Out-of-order Processing. Punctu-
ations have been proposed first in [25] as an alternative to
windows for unblocking operators and for limiting the state
that an operators has to maintain. The WID approach in
[20] showed that punctuation can be used to handle disor-
dered streams and introduced operators that hardly need to
reorder tuples for processing. The architecture for out-of-
order processing (OOP) proposed in [21] bases on the WID
approach and uses linear punctuations for unblocking op-
erators and propagating stream progress. [21] shows that
out-of-order processing can clearly out-perform in-order pro-
cessing The linear punctuations of OOP are almost equiv-
alent to the progress values used in the out-of-order incre-
mental evaluation of TSA expressions. DataCell [22] also
performs out-of-order processing however using (primarily
tuple-based) windows instead of punctuations.

CERA. The Complex Event Relational Algebra (CERA)
[12, 13] serves as operational semantics for the high-level
complex event processing language XChange®®. CERA uses
an analysis of temporal relations for garbage collection but
not for incremental evaluation like TSA. CERA has some
capabilities for the definition of relative timestamps but the
timestamps of composite events are mostly predefined. Ba-
sic temporal relations can be combined using conjunctions,
disjunctions and negation are missing, though. To some ex-
tend CERA can express windows with variable size. CERA
allows simultaneous events, i.e. does not need a strict order
on events, however the evaluation CERA needs to processes
the sets of simultaneous events in temporal order. Conse-
quently CERA only support a single timeline.

8. CONCLUSION & FUTURE WORK

We introduced a common data model for data streams and
static relations and define Temporal Stream Algebra (TSA)
enhancing the standard operators® of relational algebra by
an mechanism for propagating constraints on temporal rela-
tions between attributes and on the correlation of attributes
to the stream progress within the stream schema. We pre-
sented an analysis for the propagated constraints that can
determine the validity of TSA queries and derives functions
that define first when results can be passed on and second
how information on stream progress is propagated and third
which data needs to be kept. Based on these functions we
describe an bulk-wise and out-of-order evaluation for TSA
queries. In this way TSA can do without windows with
fixed, data independent, sizes.?® Outstanding features of
TSA are the support of event-controlled aggregation, user-
defined timestamps for composite events and multiple time-
lines and the smooth integration of static relations.

TSA serves as operational semantics of the event, state
and action language Dura [28, 26, 27]. A prototype imple-
mentation of TSA and Dura on top of MonetDB has been

30 Nevertheless such windows can be expressed when needed.



completed and used in prototypes of emergency manage-
ment applications for metro networks, airports and power-
grids[31, 27]. The prototype of TSA implements garbage
collection based on the analysis of temporal relations. Cur-
rently we work on further improvements on the garbage col-
lection and on the optimization of the incremental evaluation
using so-called relevance filters.

The prototype currently supports a limited but safe, i.e.
non-blocking, form of “recursion to the future”.3! We would
like to examine other forms of recursion for example how
the Flying Fixed-Point operator [23] could be generalized to
strongly connected components in a recursive TSA program.

The incremental evaluation of TSA performs a bulk-wise
out-of-order processing of events. We expect that this con-
tributes to a high throughput, though it probably does not
achieve minimum response times for single events, and helps
to cope with peaks in the event load. We currently im-
plement the Linear Road Benchmark [5] as to verify these
claims. Moreover incremental evaluation enables an asyn-
chronous query processing. We are very interested whether
this allows an easy distributed processing.

The combination of asynchronous and bulk-wise process-
ing opens a number of interesting questions with regards
to scheduling. Though any fair execution sequence for the
increment expressions of the queries will yield the correct
results, scheduling affects the efficiency and the response-
time of the evaluation. Determining a good or even optimal
sequence is another of our current research issues. The same
holds for a situation dependent query prioritization.
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