
Search for More Declarativity

Backward Reasoning for Rule Languages Reconsidered

Simon Brodt, François Bry, and Norbert Eisinger

Institute for Informatics, University of Munich,
Oettingenstraße 67, D-80538 München, Germany

http://www.pms.ifi.lmu.de/

Abstract. Good tree search algorithms are a key requirement for infer-
ence engines of rule languages. As Prolog exemplifies, inference engines
based on traditional uninformed search methods with their well-known
deficiencies are prone to compromise declarativity, the primary concern
of rule languages. The paper presents a new family of uninformed search
algorithms that combine the advantages of the traditional ones while
avoiding their shortcomings. Moreover, the paper introduces a formal
framework based on partial orderings, which allows precise and elegant
analysis of such algorithms.

1 Introduction

The foremost advantage of rule languages is their declarativity. It allows problem-
solving by specifying a problem’s “what” without bothering about its “how”.
This separation of concerns makes it easy for rule authors to add or modify rules,
thus supporting rapid prototyping, stepwise refinement, adaptation and evolu-
tion in application areas with unknown solution algorithms and/or frequently
changing prerequisites.

Such unburdening of rule authors from control issues depends on a well-
designed inference engine. Assuming that the underlying logical system features
reasonable soundness and completeness properties, which it usually does, the
most tricky design decision is to combine it with a search method that preserves
all or most of these properties while still ensuring an adequate degree of efficiency.

The exact criteria for such design decisions are subject to several fundamental
assumptions about the reasoning process, such as tuple-oriented vs. set-oriented
or forward vs. backward reasoning. But we need not place special emphasis
on those assumptions for the purpose of this paper. Although our motivation
examples will use backward reasoning with definite rules, our concern is not the
evaluation of this particular kind of rules, but a complete and space-efficient
search method for rule engines in general. Such a search method is not only
applicable to backward reasoning with and without memoization [13,15], but
also to forward reasoning approaches using some goal guidance [3,4,6].

Given the wealth of research results on search [1,10,11,12,16, among many
others], soberingly few actually come into consideration as candidates for rule

http://www.pms.ifi.lmu.de/
Simon Brodt (Admin)
Schreibmaschine
The original publication is available at www.springerlink.com (http://www.springerlink.com/content/079518j5163061l6/)

http://www.springerlink.com/content/079518j5163061l6/

2 S. Brodt, F. Bry, N. Eisinger

inference engines. Their bulk has been on informed search methods, on incorpo-
rating domain-specific knowledge into the search. But this is at odds with the
very idea of rule-based systems: rules may represent domain-specific knowledge,
but the inference engine evaluating them needs to be applicable to arbitrary
rule sets and is therefore, for better or worse, generic and domain-independent.
The same holds all the more for rules used in reasoning on the Web, where
domain-specific knowledge is hardly available.

This narrows down the choice to uninformed search methods, of which there
are barely a handful: breadth-first and depth-first search [7], iterative-deepening [8],
iterative broadening [5]. All of them have weak points: storage requirements for
breadth-first search can become prohibitive already for medium-size problems,
depth-first search is incomplete in search spaces with infinite branches, the iter-
ative variants re-evaluate parts of the search space over and over again.

Under these circumstances a sensible compromise seems to be the one chosen
for Prolog: to use depth-first search and to give rule authors some control to avoid
infinite dead ends, for example by ordering the rules. However, this compromise
wreaks havoc on declarativity.

Assume a term representation for natural numbers where zero represents 0
and succ(X,Y) can provide the predecessor X to any Y representing a nonzero nat-
ural number. Consider the straightforward rules defining for this representation
the predicates nat, nat2 and less, together with four queries:

nat(zero) ←
nat(Y) ← succ(X,Y) ∧ nat(X)
nat2(X,Y) ← nat(X) ∧ nat(Y)
less(X,Y) ← "reasonably defined"

1 ← nat(X)
2 ← nat2(X,Y)
3 ← less(zero ,X) ∧ nat2(X,Y)
4 ← nat2(X,Y) ∧ less(zero ,X)

Problem 1: Incomplete Enumeration. Query 1 results in an enumeration of N,
which is fine. One would expect query 2 to result in an enumeration of N×N, but
it only enumerates {0} × N. The reason is that depth-first backtracking search
never reaches branches to the right of the first infinite one. Note that reorderings
of rules or literals would not affect the problem.
Problem 2: Non-Commutativity of Logical Connectives. Assume single-answer
mode1 for queries 3 and 4. Then both queries ask about the existence of an
X > 0 with (X,Y) ∈ N×N for some Y . The two queries are logically equivalent,
but query 3 results in an affirmative answer and query 4 in a nonterminating
evaluation giving no answer at all.

Such blatant infringements on declarativity are sometimes wrongly attributed
to SLD-resolution, although it is perfectly sound and complete with any literal
selection function [9]. The only cause of the problems is depth-first backtracking
search. With a complete search method the problems would not arise.

Consequently, one way to avoid them is to replace depth-first search by
iterative-deepening [14]. Unfortunately, this approach introduces a new problem.

even(zero) ←
even(Y) ← succ(X,Y) ∧ odd(X)
odd(Y) ← succ(X,Y) ∧ even(X) 5 ← constant(X) ∧ even(X)

1 Single-answer mode in Prolog can be achieved by a cut at the end of each query.

Search for More Declarativity 3

Problem 3: Inefficiency on Functional Rule Sets. Let constant(X) bind X to
the term representation of some fixed, large number n ∈ N. The rules define
relations that are functions. Evaluation of query 5 ought to require O(n) steps,
and so it does with depth-first backtracking search. Iterative-deepening, on the
other hand, needs O(n2) steps.

Search should not slow down the evaluation of functional rules, which do not
need any search in the first place. Some functional rules escape being slowed down
thanks to the compiler’s tail recursion optimisation. But this sidestepping the
problem fails in “quasi tail recursive” cases like the above, which do not match
typical tail recursion patterns but nevertheless induce almost linear search trees.

Desiderata for Search Methods. A search method for rule inference engines
usually has to be uninformed, as discussed earlier. It ought to meet the following
requirements, which are essentially a collection of all advantageous properties
from traditional methods.

– Completeness (or exhaustiveness/fairness) on both finite and infinite search
trees. It visits every node in the search space after finitely many steps. Recall
that we want to apply it also for finding all solutions to a query, and if there
are infinitely many, the method must be capable of a fair enumeration.
Depth-first search and iterative broadening violate this requirement on infi-
nite trees. Depth-bounded backtrack search and credit search [1] violate it
even on finite trees.

– Polynomial space complexity O(dc) where c is a constant and d the maximum
depth currently reached during the search (or of the entire tree, if it is finite).
Breadth-first search has exponential worst-case space complexity O(2d).

– Linear time complexity O(n) where n is the current number of nodes that
have been visited at least once (or of the entire tree, if it is finite).
Note that any non-repetitive method, which visits every node at most once,
meets this requirement. Iterative-deepening does not, see problem 3 above.

Note that space and time complexity here depend on different variables. The
desired space complexity O(dc) is polynomial in depth d. The desired time com-
plexity O(n) is linear in size n, and often O(n) = O(bd) for an upper bound b of
the branching factor. Linear in size bd is much larger than polynomial in depth d.

This paper introduces D&B-search, a new uninformed search method, which
integrates depth-first and breadth-first search. It meets these desiderata, the
basic algorithm even with space complexity linear in depth. D&B-search can
be parameterised to turn it into a family of algorithms with breadth-first and
depth-first search as its extremal cases. The parameter also allows to control the
amount of storage provided for completeness.

The paper is organised as follows. Section 2 presents D&B-search. A formal
framework for the analysis of search methods follows in Section 3. Then Section 4
analyses D&B-search with this framework showing that it meets the desiderata
above. Finally, Section 5 reports about the current state of development and
plans for improvements.

4 S. Brodt, F. Bry, N. Eisinger

2 D&B-Search and its Family of Algorithms

Let us abbreviate depth-first and breadth-first search by D-search and B-search,
respectively. The idea of D&B-search is to alternate D-search with B-search,
controlling their rotation by a sequence f0, f1, f2, . . . of depth bounds. These are
defined by a function N→ N, i 7→ fi with i < fi < fi+1 for i ∈ N.

D-search starts, but may expand nodes at depth fi+1 or beyond only if all
nodes at depth ≤ i have been expanded. If they haven’t, B-search takes over.
It may expand nodes at depth i + 1 only if some node at depth fi+1 has been
expanded before. If none has, D-search takes over again. And so on.

In this way no node is ever re-expanded, D&B-search is non-repetitive. Its
principle bears some resemblance to the principle of A∗-search [10,11], which
combines a heuristic estimate for fast advances into promising parts of the search
space with a path-cost function ensuring a minimum degree of B-search be-
haviour and thus completeness. Likewise, D&B-search, which is uninformed and
has no heuristics for “promising”, combines fast D-search advancement with a
minimum degree of B-search behaviour to ensure completeness. The following
diagrams illustrate how D-search and B-search interact for fi = 2i.

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

f0
f1

f2

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

f0
f1

f2

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

f0
f1

f2

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

f0
f1

f2

D-search advances exponentially faster than B-search. Hence the total num-
ber of nodes to be stored at any time (those on the branch traversed by D-search
together with those at the deepest level reached by B-search) depends polyno-
mially (for fi = 2i even linearly) on the maximal depth reached up to that time.
More details on space complexity will follow on page 6.

From an algorithm-oriented point of view it is better to focus not on the
depth-bounds fi, but on the nodes that serve as synchronisation points between
D-search and B-search. Let us call a node “earlier” than a given one, if (unre-
stricted) D-search would expand it before expanding the given one.

For each depth-bound fi its pivot-node si is the earliest (i. e., left-most) node
at depth fi. It is undefined if there are no nodes at depth fi.

All other nodes are partitioned into finite sets. The pre-pivot-set S0 is the set
of nodes earlier than the pivot-node s0. For each other pivot-node si+1 let Di be
the set of nodes earlier than si+1 and Bi the set of nodes at depth i. All nodes
in these two sets must be expanded before expanding the pivot-node si+1, but
some have already been expanded before earlier pivot-nodes. So the inter-pivot-
set, i. e., the set of nodes expanded in-between si and si+1, is Si+1 = (Di∪Bi)\Xi

where X0 = S0 ∪{s0} and Xi+1 = Xi ∪Si+1 ∪{si+1}. Finally, the post-pivot-set
R is empty if the tree is infinite. Otherwise there is a maximal imax for which
simax is defined, and R is the set of all remaining nodes of the tree except Ximax .

Search for More Declarativity 5

Using these notions, reconsider the behaviour of D&B-search2 for fi = 2i:

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

S0

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

s0

{s0} ∪ S1

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

s1

{s1} ∪ S2

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

s2

{s2} ∪ S3

The general pattern is best seen for the last transition (the others are some-
what special). The third diagram shows the snapshot where all nodes inX1∪S2 =
S0∪{s0}∪S1∪{s1}∪S2 have been expanded (indicated by shading) and D-search
is ready to expand the pivot-node s2.

Next, D-search expands s2, at which point the set of expanded nodes is X2,
and then continues until its next step would be to expand the pivot-node s3.
During this continuation it expands all nodes in D2\X2 ⊆ S3. At this point
control passes to B-search for expanding the remaining nodes in B2\X2 ⊆ S3,
the as-yet unexpanded nodes at depth 2. When done, all nodes in S3 have been
expanded and control passes back to D-search, which is now ready to expand
the pivot-node s3. This is the snapshot in the last diagram, the darkest shade
indicating X2\{s2}, the medium shade indicating S3 with D2\X2 on the left-
most branch and B2\X2 at depth 2.

Let us now turn to the initial stages. D&B-search starts with D-search ex-
panding all nodes in the pre-pivot-set S0 (which contains only the root node for
f0 = 1, but would contain more for f0 > 1). D-search is ready to continue with
pivot-node s0. The first diagram shows the snapshot at this point.

Then D-search expands s0, then all nodes in D0\X0 ⊆ S1 (of which there
aren’t any for f1 − f0 = 1). Its next step would be to expand s1. Now control
passes to B-search for expanding the remaining nodes in B0\X0 ⊆ S1 (of which
at depth 0 there aren’t any). D-search is ready to continue with pivot-node s1.
This is the snapshot in the second diagram.

Altogether, D&B-search expands the nodes of the search tree in the order
S0, s0, . . . , Si, si, . . . , R. For finite trees this has interesting consequences:

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

s2

R

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32
0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32
0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

R

2 The pivot-nodes explain the behaviour of D&B-search, but not its implementation,
where they are not directly available. They play an important role indirectly, though.

6 S. Brodt, F. Bry, N. Eisinger

In a finite tree there are imax pivot-nodes and imax−1 inter-pivot-sets as well
as sets Bi, part of whose nodes is all B-search ever expands. But imax is small
(O(log d) for fi = 2i) compared to the maximum depth d. So B-search stops quite
soon. The overall behaviour is dominated by D-search in the post-pivot-set R.

In an infinite tree D-search cannot leave the left-most infinite branch. Ev-
erything “to the right” of this branch, the largest part of the search tree as it
increases in size much faster than in depth, is therefore handled by B-search.

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

s1

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

s1

{s1} ∪ S2

0

1

2

3

4

5

6

7

8

-32-8 -2 0 2 8 32

s2

{s2} ∪ S3

Although the merits of B-search for infinite trees are debatable, it is at least
complete. So D&B-search has a kind of built-in adaptivity. Depending on the
search tree it behaves essentially like the uninformed search method that best
suits the tree, taking “best” with a pinch of salt.

This adaptivity effect would also apply to D&I-search (Section 5), a suggested
combination of D-search with iterative-deepening search instead of B-search.

The D&B Family. Furthermore we can parameterise the function fi with
c ∈ N ∪ {∞} to define a family of algorithms.

Assume3 that the tree’s branching factor is bounded by b ∈ N. An obvious
idea is to let fc,i := bb ic c with i

∞ := 0, i
0 := ∞ and b∞ := ∞. However, these

functions do not satisfy i < fc,i < fc,i+1 for c 6= 1. Therefore4 let fc,i := bb ic c+ i.
For this family of functions and algorithms we get:
– For 1 ≤ c ≤ ∞ the algorithm is complete (for c = 0 it is not).
– For 1 ≤ c <∞ its space complexity is O(dc), which is polynomial in depth.
– For c = 0 it corresponds to D-search because f0,0 =∞.

The pre-pivot-set S0 contains all nodes of the whole tree.
– For c = ∞ it corresponds to B-search because f∞,i = i + 1, the slowest

function with i < fi. All sets Di\Xi are empty, thus Si+1 = Bi\{si}.

The parameter c is a means to express how much storage one is willing to invest
into completeness. Between the two extremes “none” (c = 0, D-search) and “un-
limited” (c =∞, B-search) we now have available an almost arbitrary gradation
of algorithms in-between, each of them with space complexity polynomial in
depth and time complexity linear in size (since the algorithm is non-repetitive).

Moreover, the parameter c can easily be turned into a parameter of a single
implementation for the whole family. It is even possible to adapt the parameter
dynamically, i. e., during the traversal of the search tree.
3 This assumption can be dropped for the implementation [2, Sec. 5.2].
4 Alternatively, the requirement could be weakened to non-strict monotonicity. While

possible in principle, this would make the formal analysis more complex.

Search for More Declarativity 7

3 A Framework for Analysing Tree Traversal Algorithms

Most of the definitions and theorems below refer to their counterparts in a techni-
cal report [2, http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7],
which works out the formal framework in full detail.

An uninformed search algorithm cannot anticipate which parts of the search
space contain or don’t contain solutions. In order to be able to find all solutions it
has to visit all nodes in the search tree, just like a traversal algorithm. Therefore
our framework formalises traversal algorithms, gaining the advantage that it
does not need to consider whether or not a node is a solution.

Let b be an upper bound for the out degree of trees under consideration. Let
Σ = {0, . . . , b− 1} and Σ∗ the set of all words over Σ.

Definition 1 (Traversability [2, Def. 2.1.1]).
A set Ω ⊆ Σ∗ is called traversable, iff u ∈ Ω holds for all uv ∈ Ω. The set of all
traversable Ω ⊆ Σ∗ is denoted by TravΣ .

Definition 2 (Tree [2, Def. 2.1.2]).
Let E := {(w,wi) | w ∈ Σ∗, i ∈ Σ}. Then (Σ∗, E) is a complete infinite tree with
out degree b. Any tree with maximum out degree b can be obtained by choosing
a traversable Ω ⊆ Σ∗ and restricting the edge set E to Ω. The resulting tree
(Ω,E|Ω) = (Ω, {(w,w′) ∈ E | w,w′ ∈ Ω}) is simply written Ω from now on.

Notation 3. Ωk := {w ∈ Ω | |w| = k} = Ω ∩Σk

ΩN := {w ∈ Ω | |w| ∈ N} =
⋃
i∈N

Ωi for N ⊆ N

Ω≥k := Ω{≥k} where {≥ k} := {i ∈ N | i ≥ k}

Notation 4. In the following we often talk about an α with α 4 ω. Such an
ordinal number α may be considered just the set N in the infinite case (α = ω)
and some set of the form {0, 1, . . . , n} or ∅ in the finite case (α ≺ ω), each
together with the common (well-)ordering on natural numbers.5

The next three definitions model tree traversals at different levels of abstrac-
tion, each building on the former. A traversal-sequence assigns to each number
corresponding to a “time point” the node of the tree visited at that time point. A
traversal-run enriches a traversal-sequence by associating with each time point a
subset of the nodes of the tree. This subset represents the nodes kept in memory
at this point for later processing (one can reasonably assume this to be almost
the only use of memory by a tree traversing algorithm). A traversal-algorithm
can then be specified by assigning a traversal-run to each tree Ω ∈ TravΣ .

Definition 5 (Traversal-sequence [2, Def. 2.2.3]).
Let a : α → Ω be a finite or infinite sequence of nodes in Ω. Then a is called
traversal-sequence iff for each w occurring in a also its parent occurs in a and
the first occurrence of its parent is located before the first occurrence of w.
5 The notation was chosen for two reasons: (1) it calls attention to the “succession”

of the numbers and (2) it covers finite and infinite cases in a uniform way.

http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7

8 S. Brodt, F. Bry, N. Eisinger

Definition 6 (Traversal-run6 [2, Def. 2.2.4]).
A traversal-run is a sequence A : α→ Ω×P (Ω) of pairs (node, node set) with:
1. The first node set contains exactly the root of the tree Ω.
2. For each pair the node is a member of the corresponding node set.

For all successive pairs (noden, setn) and (noden+1, setn+1)
3. the children of noden are included in setn+1 (modelling expansion of noden).
4. from setn to setn+1 an arbitrary number of nodes may be dropped.
5. for any node w in setn+1, either it is member of setn or its parent is noden.

A traversal-run induces the traversal-sequence obtained by omitting the sets.

Definition 7 (Traversal-algorithm6 [2, Def. 2.2.4]).
A traversal-algorithm is a family (AΩ)Ω∈TravΣ

of traversal-runs. In other words,
the algorithm assigns to each tree Ω ∈ TravΣ a traversal-run over this tree.

As an example of a traversal-run, consider a typical queue-based implemen-
tation of B-search. For each time point n and pair (noden, setn) the setn consists
of all nodes in the queue at this time point (they are the nodes needed for future
expansion) and noden is the first in the queue (the node to be expanded in the
step from n to n + 1). This node is not a member of setn+1 because B-search
removes the expanded node from the queue when inserting its children.

Modelling a stack-based implementation of iterative-deepening, each setn
consists of all nodes in the stack at this time point and noden is the top of stack.
This node is not a member of setn+1 unless it is the root ε, which needs to be
kept in the stack as the bottom element for later re-expansion when starting
another iteration.

Definition 8 (Completeness [2, Def. 2.2.9]).
– A traversal-sequence a : α→ Ω is called complete, iff it is surjective.
– A traversal-run is complete, iff its induced traversal-sequence is.
– A traversal-algorithm is complete, iff its runs AΩ are for all Ω ∈ TravΣ .

Definition 9 (Weak completeness [2, Def. 2.2.14]).
A traversal-sequence a : α→ Ω is called weakly complete, iff |a [α]| = |Ω|.
The definition of weak completeness for traversal-runs and traversal-algorithms
is analogous to the definition of their completeness.

Obviously completeness implies weak completeness, but conversely only in
the finite case. In the infinite case weak completeness intuitively means that
traversal does not artificially stop when there are still unexpanded nodes in the
search space. Weak completeness follows from some simple criteria [2, Lem. 2.2.16
& 3.3.3], which are easier to test than the condition defining (full) completeness.

When analysing tree traversals, it is in most cases sufficient to know whether
some node is visited earlier than another one, comparing only their first visits.
Time points of revisits, though represented in traversal-sequences, are usually
irrelevant. This observation leads to the final abstraction level in our framework.
6 The definition does not depend on any computability requirements. They are not

needed for the framework and would not simplify anything either.

Search for More Declarativity 9

Definition 10 (Representing ordering [2, Def. 2.2.12]).
A partial ordering C onΩ is called representing ordering of a traversal-sequence a,
iff all nodes occurring in a are
1. ordered by their first occurrence.
2. smaller than any node that does not occur in a, but is C-comparable to the

root ε of Ω.7

If the representing ordering of a is unique, it is referred to as Ca.

Definition 11 (Traversal-ordering8 [2, Def. 2.3.2]).
A partial ordering C on traversable Ω ⊆ Σ∗ is called traversal-ordering, iff

1. it is compatible with the tree structure of Ω, i. e., for all uvw ∈ Ω
u 6 . uvw and u E uvw ⇒ u E uv E uvw hold.

2. all nodes C-comparable to the root ε are totally ordered by C.7

3. no node not C-comparable to ε is smaller than any node C-comparable to ε.7

At least one of the representing orderings of any traversal-sequence is a
traversal-ordering. Those that are not, can be disregarded. [2, Rem. 2.3.3]

Notation 12. For a partial ordering (Ω,C), sets M,N ⊆ Ω and w ∈ Ω define
M C N :⇔ ∀m ∈M ∀n ∈ N : m C n

C (w) := {w′ ∈ Ω | w′ C w}

Definition 13 (Completeness of an ordering [2, Def. 2.3.1]).
A partial ordering C onΩ ⊆ Σ∗ is called complete, iff (Ω,C) ∼= α for some α 4 ω.

Theorem 14 (Characterisation of completeness [2, Thm. 2.3.5]).
A total ordering (Ω,C) is complete iff ∃f : N→ N with Ωk C Ω≥f(k).

Theorem 15 (Characterisation of completeness [2, Thm. 2.3.8]).
A partial ordering (Ω,C) is complete, iff it is isomorphic to a finite sum of com-
plete ordinal numbers, where only the last9 summand may be infinite (i. e., = ω).
Equivalently, (Ω,C) is complete iff (Ω,C) is isomorphic to a countably infinite
sum of finite ordinal numbers.

The main result now is that these criteria essentially characterise also the com-
pleteness of traversal-sequences and thus of traversal-algorithms.

Theorem 16 (Equivalence of completeness definitions [2, Thm. 2.3.13]).

1. A traversal-sequence is complete in the sense of Definition 8 iff all its (travers-
able) representing orderings are complete according to Definition 13.

2. A weakly complete traversal-sequence is complete in the sense of Definition 8
iff its representing ordering is complete according to Definition 13.

7 This requirement is mainly due to technical reasons. It excludes irrelevant but po-
tentially troublesome cases that could otherwise be formally construed.

8 A total traversal-ordering is a topological ordering of Ω.
9 Recall that addition is generally not commutative in ordinal number arithmetic.

10 S. Brodt, F. Bry, N. Eisinger

4 Analysis of Tree Traversal Algorithms

In this section we first analyse some well-known algorithms in order to illustrate
that the proofs of their (in)completeness are significantly more concise when
based on our framework than the proofs found in the literature. The main part
of the section is then devoted to the analysis of D&B-search, which would be
hardly possible without the framework.

4.1 Known Algorithms

This subsection demonstrates the expressive and analytic power of our frame-
work and the degree to which it makes (in)completeness proofs more concise. It
shows by the example of D-search and of B/A∗-search how Theorem 14 and 15
may be used to prove (in-)completeness.

In both cases we define some total traversal-ordering characterising the de-
sired algorithm. Then we show the (in-)completeness of the traversal-ordering.
The algorithm itself can be obtained by means of the induced algorithm of the
ordering, which mainly traverses the nodes in order, i. e., starting with the min-
imum of the ordering and then moving to the next greater node each step.10

D-Search. In the representation introduced by Definition 2 each node w of a
tree Ω can be considered a word over the alphabet Σ. Seen this way D-search
traverses the nodes of Ω in lexicographical order. So we define Cdepth := Clex.

Obviously D-search is incomplete on most infinite trees. This can be shown
easily even without the framework by some counterexample. But if you want to
explain why D-search is incomplete, things become more complicated. Probably
one would say something like “D-Search will never return from the first infinite
branch”. This statement is based on the reader’s common understanding of an
algorithm’s behaviour. How to make it more precise beyond intuition, however,
is not obvious. Our framework allows to formulate the statement precisely.

Let Ω contain an infinite number of nodes and thus an infinite branch
(lemma by König). Let t ∈ Σω be the lexicographically first infinite branch
in Ω. The set of prefixes T ⊆ Ω of t is just the set of nodes on t. Define
S := {w ∈ Ω | T Bdepth w} and U := {w ∈ Ω | T Cdepth w}. Intuitively, S con-
sists of all nodes “to the left” of the first infinite branch T and U of all nodes
“to the right” of T . If U 6= ∅ then Cdepth is incomplete on Ω:
Possibility 1: ∃w ∈ Ω∀n ∈ N∃w′ ∈ Ωn : w′ Cdepth w since ∃w ∈ Ω : T Cdepth w
and T ∩Ωn 6= ∅ for all n ∈ N. Consequently ∃k ∈ N∀n ∈ N : Ωk 6depth Ωn holds
(set k = |w|). Incompleteness follows by Theorem 14.
Possibility 2: S Cdepth T Cdepth U holds. The smallest β that fulfils this
condition11 is β = |S|

∼=k≺ω
+ |T |
∼=ω

+ |U |
∼=α�0

� ω. Incomplete12 by Theorem 15.

10 “minimum” and “next greater node” are well-defined, see [2, Def. 2.3.9, Proof].
11 An ordinal number β fulfils the condition S Cdepth T Cdepth U , if there is an

isomorphic well-ordering (Ω,C) that fulfils the condition.
12 Clex is generally not a well-ordering. Particularly (Ω,Cdepth) � β in general. But

even if (Ω,Cdepth) were well-ordered it would still be incomplete as shown above.

Search for More Declarativity 11

B-Search and A∗-Search. The informed A∗-search uses an optimistic cost
estimation function13 F (w) = G (w)+H (w) to prioritise more promising nodes.
With G (w) = |w| and H (w) = 1 we obtain B-search as special-case.

A∗-search prefers nodes with smaller estimated costs and takes the lexi-
cographically smaller one first if the estimated costs are equal. Consequently
w CA∗ w

′ :⇔ F (w) < F (w′) or F (w) = F (w′)∧w Clex w
′ defines the order

in which A∗-search traverses the nodes.
To prove the completeness of A∗-search we apply Theorem 14 using the func-

tion k 7→ max< (F [Ωk]) + 1. We must show that Ωk CA∗ Ω(max<(F [Ωk]) + 1) ,
meaning w CA∗ w

′ for w ∈ Ωk and w′ ∈ Ω(max<(F [Ωk]) + 1) . This is true because
F (w′) ≥ G (w′) ≥ |w′| = max< (F [Ωk]) + 1 > max< (F [Ωk]) ≥ F (w) .

In the special case of B-search completeness can be proved even faster us-
ing Theorem 15. One only has to convince oneself that the following is true:

Cbreadth
∼= |Ω0|+ |Ω1|+ |Ω2|+ . . . ∼=

+∞∑
i=0

|Ωi| 4 ω

Compared to the proofs in [10,11] the argumentation above is extremely
short and precise. Due to its formal character it doesn’t even need a deeper
understanding of the concrete procedure of A∗-search. At this point we benefit
from the abstract level of our analytic framework.

4.2 D&B-Search

The analysis of D&B-search is based on its traversal-ordering Cd&b too. First
we give a constructive definition of Cd&b which corresponds directly to the de-
scription of D&B-search in Section 2. Second an alternative axiomatic definition
of Cd&b is presented. We show the equivalence of the two definitions and then
alternate between them when proving completeness and space complexity.

Definition 17 (pivot-nodes & pre/inter/post-pivot-sets [2, Def. 4.1.1]).

imax :=


−1 if Ω = ∅
max ({i | Ωfi 6= ∅}) if |Ω| <∞
∞ if |Ω| =∞

si := min lex (Ωfi) for 0 ≤ i ≤ imax
Di := Clex (si+1)
Bi := Ωi

S0 := Clex (s0) X0 := S0 ∪ {s0}
Si+1 := (Di ∪Bi) \Xi Xi+1 := Xi ∪ Si+1 ∪ {si+1}

R := Ω\Ximax Ximax :=
imax⋃
j=0

Xj

The pivot-nodes and pre/inter/post-pivot-sets should look familiar from page 4.
By means of these nodes and sets the next definition constructs Cd&b.

13 G denotes the cost incurred so far on the path to w, and H denotes the optimistically
estimated cost remaining for the path from w to a goal.

12 S. Brodt, F. Bry, N. Eisinger

Definition 18 (D&B-ordering, constructive [2, Def. 4.3.1]).
1. S0 Cd&b s0 Cd&b S1 Cd&b s1 Cd&b · · · Cd&b Simax Cd&b simax Cd&b R
2. ∀w,w′ ∈ S0 : w Cd&b w

′ ⇔ w Clex w
′

3. ∀w,w′ ∈ Si+1 ∩Ωi : w Cd&b w
′ ⇔ w Clex w

′

4. ∀w,w′ ∈ Si+1\Ωi : w Cd&b w
′ ⇔ w Clex w

′

5. ∀w,w′ ∈ R ∩Ωimax : w Cd&b w
′ ⇔ w Clex w

′

6. ∀w,w′ ∈ R\Ωimax : w Cd&b w
′ ⇔ w Clex w

′

Condition 1 already appeared on page 5. It defines the order between the pivot-
nodes and sets and can be read as D&B-search expands all members of the
pre-pivot-set S0 before expanding the pivot-node s0, and it expands s0 before
expanding all members of the inter-pivot-set S1, and so on.

The rest affects the inner order of the sets. All equivalences can be read
as D&B-search expands w before w′ iff depth-first search would. Condition 2
matches exactly the description of D&B-search on page 5. Conditions 3 to 6 are
a little bit less restrictive than the informal description. There D-search always
had to finish work on some inter- or post-pivot-set before B-search could start,
the nodes in the subset Si+1\Ωi had to be expanded before the nodes in the
subset Si+1∩Ωi. Here the two may interleave their work on such a set, the order
between the two subsets is not restricted by the conditions above.

Recall the original view of D&B-search as introduced at the very beginning
of Section 2. It was the view of alternating D-search and B-search, controlling
their rotation by a sequence f0, f1, f2, . . . of depth bounds. For the axiomatic
definition of Cd&b we reuse this view.

Definition 19 (D&B-ordering, axiomatic [2, Sec. 4.3 (D&B)]).

(Ax1) Ωk Cd&b Ωfk+1

(Ax2) ∀w,w′ ∈ Ωk : w Cd&b w
′ ⇔ w Clex w

′

(Ax3) ∀w ∈ Ωk : Clex (w) Cd&b w︸ ︷︷ ︸
(Ax3a)

∨ ∃w′ ∈ Ωfk : w′ Cd&b w︸ ︷︷ ︸
(Ax3b)

(D&B)

(Ax1) signifies that none of the nodes in Ωfk+1 is expanded before all nodes of Ωk
have been expanded. Therefore it limits the depth of the depth-first-traversal.

(Ax3b) disjunction concerns the breadth-first-traversal. It means that a node
may only be expanded if some node at sufficient depth has been expanded (by
depth-first-traversal) before. This implies a depth limit for breadth-first-traversal
because (Ax3) requires (Ax3b) or (Ax3a) to hold for each node.

(Ax2) and (Ax3a) are less interesting. (Ax3a) says that a node may be ex-
panded if all lexicographically smaller nodes have been expanded before. This is
the specification of D-search. If at some time (Ax3a) becomes false because of
(Ax1), i. e., (Ax3b) is true, (Ax2) enforces exactly B-search because it requires
every level to be traversed in lexicographical order.

We have to show that the two definitions of Cd&b are equivalent. Though
our framework is a great help when formulating the arguments, the proof is still
more extensive than can be presented within the space limitations of this paper.
Without the framework it would be quite impossible. The results are as follows.

Search for More Declarativity 13

Theorem 20 (D&B-ordering, constructive⇒ axiomatic [2, Thm. 4.3.8]).
If C satisfies Definition 17 and 18 then C is a model of (D&B).

Theorem 21 (D&B-ordering, axiomatic⇒ constructive [2, Thm. 4.3.9]).
If C is a model of (D&B) then it satisfies Definition 17 and 18.

Thus, the two definitions are equivalent. But what does this help? In par-
ticular, why do we need the axiomatic definition? We will see one reason14 in
the next theorem. Moreover the theorem emphasises again the power of our
framework for completeness proofs as the proof uses one of its main results.

Theorem 22 (D&B-ordering, completeness [2, Thm. 4.3.10]). If C satisfies
Definition 17 and 18 or is a model of (D&B), then C is complete.

Proof. Follows immediately from (Ax1) and Theorems 14 and 20. ut

Finally, we are interested in the space complexity of D&B-search. In this con-
text we find the constructive definition to be very helpful. Let us start with the
general result for any function f with i < fi < fi+1. This result is independent
from the family defined in Section 2.

Theorem 23 (D&B-search, general space complexity [2, Cor. 4.3.15]).
The space complexity M(d) at depth d ∈ N of the algorithm induced by Cd&b is

M (d) ≤

{
b · (d+ 1) if d < f0

b ·
(
d+ 1 + bi

)
else

where i := argmax
j
{fj | fj ≤ d}.

But of course we are most interested in the space complexity of the family
defined in Section 2. We obtain their complexity from Theorem 23 by specialising
fi to the corresponding functions:

Theorem 24 (D&B family c = 0, linear space complexity [2, Thm. 4.3.17]).
Let c = 0, fi = f0,i = bb i0 c+ i =∞ and C0 be the corresponding ordering. The
space complexity of the induced algorithm is M0 (d) ≤ b · (d+ 1) .

Theorem 25 (D&B family, polynomial space complexity [2, Thm. 4.3.16]).
Let 1 ≤ c <∞, fi = fc,i = bb ic c+ i and Cc be the corresponding ordering. The
space complexity of the induced algorithm is Mc (d) ≤ b · (d+ 1 + dc) .

5 Conclusion

In this paper we have presented D&B-search, a new uninformed search method
based on integrating depth-first and breadth-first search into one. We have shown
that the ratio of depth-first to breadth-first search can be balanced by a param-
eter, thus defining a family of search methods with depth-first and breadth-first
search as its borderline cases.
14 The second reason is that the axiomatic definitions provide the invariants for our

implementation [2, Sec. 5.1].

14 S. Brodt, F. Bry, N. Eisinger

We have also introduced a formal framework for analysing informed or unin-
formed search methods, which is based on partial orderings and uniformly covers
finite and infinite search trees. We have illustrated its analytic power by giving
very concise, yet formally precise proofs for well-known (in)completeness results
on depth-first search, breadth-first search, and A∗-search.

Finally, we have analysed D&B-search using the formal framework. In the
borderline cases the results are the known ones for depth-first and breadth-
first search. In all non-borderline cases D&B-search is complete (exhaustive),
it is non-repetitive and thus its time complexity is linear in size, and its space
complexity is polynomial in depth. The polynomial is of degree c for the very
parameter defining the D&B family, which therefore allows to control the amount
of storage to be spent for the sake of completeness.

It should be noted that D&B-search is intrinsically better than running
depth-first and breadth-first search in parallel, be it by round robin schedul-
ing or more advanced time-sharing techniques or physically parallel on different
processors. With all of these approaches the space complexity is exponential in
depth for the process running breadth-first search. In contrast to that, D&B-
search has space complexity polynomial in depth. It is this property that made
necessary the somewhat involved form of integrating depth-first with breadth-
first search.

In this paper we have not addressed implementation issues. The technical
report [2] on which the paper is based also presents two implementation ap-
proaches to the level of detail of pseudo code showing that the required data
structures are essentially a doubly-linked list of doubly-linked lists. Coding this
pseudo code in a real programming language is rather straightforward.

We are about to start work on a prototype implementation of one of these
approaches and plan to use it for empirical comparisons with other uninformed
search methods. We intend to focus especially on logic programming applications
using backward reasoning approaches without and with memoization [15,13].

At the conceptual level, we plan to follow-up the observation that the form
of integrating depth-first with breadth-first search results in a kind of built-in
adaptivity as explained in Section 2. The predominant behaviour of D&B-search
corresponds to depth-first search if the search tree is finite and to breadth-first
search if the search tree is infinite. This effect can be maintained if depth-first
search is integrated with other complete search methods in the same way.

Its space complexity being exponential in depth, breadth-first search, al-
though theoretically complete on infinite trees, cannot advance to very deep
levels in practice. Iterative-deepening usually does better and is also complete.
However, as pointed out in Section 1, iterative-deepening deteriorates time com-
plexity in those cases in which depth-first search is complete. It would therefore
be alluring if there was a possibility to use depth-first search whenever it is com-
plete and iterative-deepening only when needed to ensure completeness. Alas,
these conditions are not decidable as they stand.

But we can come very close to such a combination by transferring the prin-
ciple of integration used for D&B-search to a combination of depth-first search

Search for More Declarativity 15

and iterative-deepening. The result, called D&I-search, behaves predominantly
like depth-first search if the search tree is finite and like iterative-deepening if
the search tree is infinite.

Technically, this can be achieved by the same depth bounds fi as with D&B-
search. D&I-search even has the same representing ordering as D&B-search, so
its completeness is just a corollary. In order to make sure that iterative-deepening
does not expand any nodes that have already been expanded by depth-first
search, iterative-deepening’s algorithm needs to be slightly modified and the
underlying data structure becomes slightly more complicated. This optimisation
even results in the converse effect: with D&I-search, iterative-deepening can to
some extent also prune the search space of depth-first search.

We plan to investigate D&I-search and also, using the same principle, other
promising combinations of search methods.

Acknowledgements. We are grateful to Tim Furche, who read a draft of this
paper and gave many valuable hints for its improvement. We thank all of our col-
leagues in the group for stimulating discussions about the work presented here.

References

1. R. Barták. Incomplete depth-first search techniques: A short survey. In Pro-
ceedings of 6th Workshop on Constraint Programming for Decision and Control
(CPDC 2004), pages 7–14, 2004.

2. S. Brodt. Tree-search, partial orderings, and a new family of uninformed algo-
rithms. Research report PMS-FB-2009-7, Institute for Informatics, University of
Munich, Oettingenstraße 67, D-80538 München, Germany, 2009.
http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7.

3. F. Bry. Query evaluation in recursive databases: Bottom-up and top-down recon-
ciled. Data and Knowledge Engineering, 5(4):289–312, 1990.

4. S. Debray and R. Ramakrishnan. Abstract interpretation of logic programs using
magic transformations. Journal of Logic Programming, 18:149–176, 1994.

5. M. L. Ginsberg and W. D. Harvey. Iterative broadening. In Proc. Eighth National
Conference on Artificial Intelligence (AAAI-90), pages 216–220, 1990.

6. J.-M. Kerisit. A relational approach to logic programming: the extended Alexander
method. Theoretical Computer Science, 69:55–68, 1989.

7. D. E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley
Publishing Co., Reading, MA, USA, 3rd edition, 1997.

8. R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97–109, 1985.

9. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, Heidelberg,
New York, Tokyo, 2nd edition, 1987.

10. N. J. Nilsson. Principles of Artificial Intelligence. Springer, Berlin, Heidelberg,
New York, Tokyo, 1982.

11. J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Co., Reading, MA, USA, 1984.

12. W. Ruml. Heuristic search in bounded-depth trees: Best-leaf-first search. Technical
report, Harvard University, 2002.

http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7

16 S. Brodt, F. Bry, N. Eisinger

13. Y.-D. Shen, L.-Y. Yuan, and J.-H. You. SLT-resolution for the well-founded se-
mantics. Journal of Automated Reasoning, 28:53–97, 2002.

14. M. E. Stickel. A Prolog technology theorem prover: Implementation by an extended
Prolog compiler. Journal of Automated Reasoning, 4(4):353–380, 1988.

15. H. Tamaki and T. Sato. OLDT resolution with tablulation. In International
Conference on Logic Programming, pages 84–98, 1986.

16. P. H. Winston. Artificial Intelligence. Addison-Wesley Publishing Co., Reading,
MA, USA, 3rd edition, 1992.

